Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(14): 6415-6424, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38528735

RESUMEN

The total oxidizable precursor (TOP) assay has been extensively used for detecting PFAS pollutants that do not have analytical standards. It uses hydroxyl radicals (HO•) from the heat activation of persulfate under alkaline pH to convert H-containing precursors to perfluoroalkyl carboxylates (PFCAs) for target analysis. However, the current TOP assay oxidation method does not apply to emerging PFAS because (i) many structures do not contain C-H bonds for HO• attack and (ii) the transformation products are not necessarily PFCAs. In this study, we explored the use of classic acidic persulfate digestion, which generates sulfate radicals (SO4-•), to extend the capability of the TOP assay. We examined the oxidation of Nafion-related ether sulfonates that contain C-H or -COO-, characterized the oxidation products, and quantified the F atom balance. The SO4-• oxidation greatly expanded the scope of oxidizable precursors. The transformation was initiated by decarboxylation, followed by various spontaneous steps, such as HF elimination and ester hydrolysis. We further compared the oxidation of legacy fluorotelomers using SO4-• versus HO•. The results suggest novel product distribution patterns, depending on the functional group and oxidant dose. The general trends and strategies were also validated by analyzing a mixture of 100000- or 10000-fold diluted aqueous film-forming foam (containing various fluorotelomer surfactants and organics) and a spiked Nafion precursor. Therefore, (1) the combined use of SO4-• and HO• oxidation, (2) the expanded list of standard chemicals, and (3) further elucidation of SO4-• oxidation mechanisms will provide more critical information to probe emerging PFAS pollutants.


Asunto(s)
Contaminantes Ambientales , Polímeros de Fluorocarbono , Fluorocarburos , Contaminantes Químicos del Agua , Éter , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Ácidos Carboxílicos , Éteres , Alcanosulfonatos , Éteres de Etila , Digestión , Estrés Oxidativo
2.
J Minim Invasive Gynecol ; 31(3): 227-236, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38147937

RESUMEN

STUDY OBJECTIVE: To develop a noninvasive predictive model based on patients with infertility for identifying minimal or mild endometriosis. DESIGN: A retrospective cohort study. SETTING: This study was conducted at a tertiary referral center. PATIENTS: A total of consecutive 1365 patients with infertility who underwent laparoscopy between January 2013 and August 2020 were divided into a training set (n = 910) for developing the predictive model and a validation set (n = 455) to confirm the model's prediction efficiency. The patients were randomly assigned in a 2:1 ratio. INTERVENTIONS: Sensitivities, specificities, area under the curve, the Hosmer-Lemeshow goodness of fit test, Net Reclassification Improvement index, and Integrated Discrimination Improvement index were evaluated in the training set to select the optimum model. In the validation set, the model's discriminations, calibrations, and clinical use were tested for validation. MEASUREMENTS AND MAIN RESULTS: In the training set, there were 587 patients with minimal or mild endometriosis and 323 patients without endometriosis. The combination of clinical parameters in the model was evaluated for both statistical and clinical significance. The best-performing model ultimately included body mass index, dysmenorrhea, dyspareunia, uterosacral tenderness, and serum cancer antigen 125 (CA-125). The nomogram based on this model demonstrated sensitivities of 87.7% and 93.3%, specificities of 68.6% and 66.4%, and area under the curve of 0.84 (95% confidence interval 0.81-0.87) and 0.85 (95% confidence interval 0.80-0.89) for the training and validation sets, respectively. Calibration curves and decision curve analyses also indicated that the model had good calibration and clinical value. Uterosacral tenderness emerged as the most valuable predictor. CONCLUSION: This study successfully developed a predictive model with high accuracy in identifying infertile women with minimal or mild endometriosis based on clinical characteristics, signs, and cost-effective blood tests. This model would assist clinicians in screening infertile women for minimal or mild endometriosis, thereby facilitating early diagnosis and treatment.


Asunto(s)
Endometriosis , Infertilidad Femenina , Laparoscopía , Femenino , Humanos , Infertilidad Femenina/diagnóstico , Infertilidad Femenina/etiología , Endometriosis/complicaciones , Endometriosis/diagnóstico , Endometriosis/cirugía , Estudios Retrospectivos , Dismenorrea
3.
Angew Chem Int Ed Engl ; 63(19): e202402440, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38426574

RESUMEN

Perfluoroalkyl substances (PFASs) are persistent and toxic to human health. It is demanding for high-efficient and green technologies to remove PFASs from water. In this study, a novel PFAS treatment technology was developed, utilizing polytetrafluoroethylene (PTFE) particles (1-5 µm) as the catalyst and a low frequency ultrasound (US, 40 kHz, 0.3 W/cm2) for activation. Remarkably, this system can induce near-complete defluorination for different structured PFASs. The underlying mechanism relies on contact electrification between PTFE and water, which induces cumulative electrons on PTFE surface, and creates a high surface voltage (tens of volts). Such high surface voltage can generate abundant reactive oxygen species (ROS, i.e., O2⋅-, HO⋅, etc.) and a strong interfacial electrostatic field (IEF of 109~1010 V/m). Consequently, the strong IEF significantly activates PFAS molecules and reduces the energy barrier of O2⋅- nucleophilic reaction. Simultaneously, the co-existence of surface electrons (PTFE*(e-)) and HO⋅ enables synergetic reduction and oxidation of PFAS and its intermediates, leading to enhanced and thorough defluorination. The US/PTFE method shows compelling advantages of low energy consumption, zero chemical input, and few harmful intermediates. It offers a new and promising solution for effectively treating the PFAS-contaminated drinking water.

4.
Environ Sci Technol ; 57(9): 3962-3970, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36808945

RESUMEN

Chlorate (ClO3-) is a common water pollutant due to its gigantic scale of production, wide applications in agriculture and industry, and formation as a toxic byproduct in various water treatment processes. This work reports on the facile preparation, mechanistic elucidation, and kinetic evaluation of a bimetallic catalyst for highly active ClO3- reduction into Cl-. Under 1 atm H2 and 20 °C, PdII and RuIII were sequentially adsorbed and reduced on a powdered activated carbon support, affording Ru0-Pd0/C from scratch within only 20 min. The Pd0 particles significantly accelerated the reductive immobilization of RuIII as >55% dispersed Ru0 outside Pd0. At pH 7, Ru-Pd/C shows a substantially higher activity of ClO3- reduction (initial turnover frequency >13.9 min-1 on Ru0; rate constant at 4050 L h-1 gmetal-1) than reported catalysts (e.g., Rh/C, Ir/C, Mo-Pd/C) and the monometallic Ru/C. In particular, Ru-Pd/C accomplished the reduction of concentrated 100 mM ClO3- (turnover number > 11,970), whereas Ru/C was quickly deactivated. In the bimetallic synergy, Ru0 rapidly reduces ClO3- while Pd0 scavenges the Ru-passivating ClO2- and restores Ru0. This work demonstrates a simple and effective design for heterogeneous catalysts tailored for emerging water treatment needs.


Asunto(s)
Cloratos , Paladio , Oxidación-Reducción , Concentración de Iones de Hidrógeno
5.
Environ Sci Technol ; 57(48): 20392-20399, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37976223

RESUMEN

Chlorate (ClO3-) is a toxic oxyanion pollutant from industrial wastes, agricultural applications, drinking water disinfection, and wastewater treatment. Catalytic reduction of ClO3- using palladium (Pd) nanoparticle catalysts exhibited sluggish kinetics. This work demonstrates an 18-fold activity enhancement by integrating earth-abundant vanadium (V) into the common Pd/C catalyst. X-ray photoelectron spectroscopy and electrochemical studies indicated that VV and VIV precursors are reduced to VIII in the aqueous phase (rather than immobilized on the carbon support) by Pd-activated H2. The VIII/IV redox cycle is the predominant mechanism for the ClO3- reduction. Further reduction of chlorine intermediates to Cl- could proceed via VIII/IV and VIV/V redox cycles or direct reduction by Pd/C. To capture the potentially toxic V metal from the treated solution, we adjusted the pH from 3 to 8 after the reaction, which completely immobilized VIII onto Pd/C for catalyst recycling. The enhanced performance of reductive catalysis using a Group 5 metal adds to the diversity of transition metals (e.g., Cr, Mo, Re, Fe, and Ru in Groups 6-8) for water pollutant treatment via various unique mechanisms.


Asunto(s)
Cloratos , Vanadio , Vanadio/química , Oxidación-Reducción , Agua/química , Cloruros , Concentración de Iones de Hidrógeno , Catálisis , Paladio/química
6.
Environ Sci Technol ; 57(28): 10438-10447, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37406161

RESUMEN

Perfluorochemicals (PFCs), especially perfluorooctanoic acid (PFOA), have contaminated the ground and surface waters throughout the world. Efficient removal of PFCs from contaminated waters has been a major challenge. This study developed a novel UV-based reaction system to achieve fast PFOA adsorption and decomposition without addition of sacrificial chemicals by using synthetic photocatalyst sphalerite (ZnS-[N]) with sufficient surface amination and defects. The obtained ZnS-[N] has the capability of both reduction and oxidation due to the suitable band gap and photo-generated hole-trapping properties created by surface defects. The cooperated organic amine functional groups on the surface of ZnS-[N] play a crucial role in the selective adsorption of PFOA, which guarantee the efficient destruction of PFOA subsequently, and 1 µg L-1 PFOA could be degraded to <70 ng L-1 after 3 h in the presence of 0.75 g L-1 ZnS-[N] under 500 W UV irradiation. In this process, the photogenerated electrons (reduction) and holes (oxidation) on the ZnS-[N] surface work in a synergistic manner to achieve complete defluorination of PFOA. This study not only provides promising green technology for PFC-pollution remediation but also highlights the significance of developing a target system capable of both reduction and oxidation for PFC degradation.


Asunto(s)
Aminas , Fluorocarburos , Hidrocarburos Fluorados , Caprilatos/química
7.
Environ Sci Technol ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36633933

RESUMEN

Adding CrIII or AlIII salts into the water suspension of platinum group metal (PGM) catalysts accelerated oxyanion pollutant reduction by up to 600%. Our initial attempts of adding K2CrVIO4, K2CrVI2O7, or KCrIII(SO4)2 into Pd/C enhanced BrO3- reduction with 1 atm H2 by 6-fold. Instrument characterizations and kinetic explorations collectively confirmed the immobilization of reduced CrVI as CrIII(OH)3 on the catalyst surface. This process altered the ζ-potentials from negative to positive, thus substantially enhancing the Langmuir-Hinshelwood adsorption equilibrium constant for BrO3- onto Pd/C by 37-fold. Adding AlIII(OH)3 from alum at pH 7 achieved similar enhancements. The Cr-Pd/C and Al-Pd/C showed top-tier efficiency of catalytic performance (normalized with Pd dosage) among all the reported Pd catalysts on conventional and nanostructured support materials. The strategy of adding inert metal hydroxides works for diverse PGMs (palladium and rhodium), substrates (BrO3- and ClO3-), and support materials (carbon, alumina, and silica). This work shows a simple, inexpensive, and effective example of enhancing catalyst activity and saving PGMs for environmental applications.

8.
Environ Sci Technol ; 57(50): 21459-21469, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38056012

RESUMEN

The hydrated electron (eaq-) system is typically suitable for degrading perfluoroalkyl substances (PFASs). To enhance eaq- utilization, we synthesized a new indole compound (DIHA) that forms stable nanospheres (100-200 nm) in water via a supramolecular assembly. Herein, the DIHA nanoemulsion system exhibits high degradation efficiencies toward a broad category of PFASs, regardless of the headgroup, chain length, and branching structure, under UV (254 nm) irradiation. The strong adsorption of PFAS on the DIHA surface ensures its effective degradation/defluorination. Quenching experiments further demonstrated that the reaction took place on the surface of DIHA nanospheres. This specific heterogeneous surface reaction unveiled novel PFAS degradation and defluorination mechanisms that differ from previously reported eaq- systems. First, the photogenerated surface electrons nonselectively attacked multiple C-F bonds of the -CF2- chain. This plays a dominant degrading/defluorinating role in the DIHA system. Second, abundant hydroxyl radicals (•OH) were also produced, leading to synergistic reduction (by surface electron) and oxidation (by surface •OH) in a single system. This facilitates faster and deeper defluorination of different structured PFASs through multiple pathways. The new mechanism inspires the design of innovative organo-heterogeneous eaq- systems possessing synergistic reduction and oxidation functions, thereby making them potentially effective for treating PFAS-contaminated water.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Agua , Oxidación-Reducción , Electrones , Adsorción , Contaminantes Químicos del Agua/análisis
9.
JAMA ; 329(17): 1460-1468, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37129654

RESUMEN

Importance: Implantation failure remains a critical barrier to in vitro fertilization. Prednisone, as an immune-regulatory agent, is widely used to improve the probability of implantation and pregnancy, although the evidence for efficacy is inadequate. Objective: To determine the efficacy of 10 mg of prednisone compared with placebo on live birth among women with recurrent implantation failure. Design, Setting, and Participants: A double-blind, placebo-controlled, randomized clinical trial conducted at 8 fertility centers in China. Eligible women who had a history of 2 or more unsuccessful embryo transfer cycles, were younger than 38 years when oocytes were retrieved, and were planning to undergo frozen-thawed embryo transfer with the availability of good-quality embryos were enrolled from November 2018 to August 2020 (final follow-up August 2021). Interventions: Participants were randomized (1:1) to receive oral pills containing either 10 mg of prednisone (n = 357) or matching placebo (n = 358) once daily, from the day at which they started endometrial preparation for frozen-thawed embryo transfer through early pregnancy. Main Outcomes and Measures: The primary outcome was live birth, defined as the delivery of any number of neonates born at 28 or more weeks' gestation with signs of life. Results: Among 715 women randomized (mean age, 32 years), 714 (99.9%) had data available on live birth outcomes and were included in the primary analysis. Live birth occurred among 37.8% of women (135 of 357) in the prednisone group vs 38.8% of women (139 of 358) in the placebo group (absolute difference, -1.0% [95% CI, -8.1% to 6.1%]; relative ratio [RR], 0.97 [95% CI, 0.81 to 1.17]; P = .78). The rates of biochemical pregnancy loss were 17.3% in the prednisone group and 9.9% in the placebo group (absolute difference, 7.5% [95% CI, 0.6% to 14.3%]; RR, 1.75 [95% CI, 1.03 to 2.99]; P = .04). Of those in the prednisone group, preterm delivery occurred among 11.8% and of those in the placebo group, 5.5% of pregnancies (absolute difference, 6.3% [95% CI, 0.2% to 12.4%]; RR, 2.14 [95% CI, 1.00 to 4.58]; P = .04). There were no statistically significant between-group differences in the rates of biochemical pregnancy, clinical pregnancy, implantation, neonatal complications, congenital anomalies, other adverse events, or mean birthweights. Conclusions and Relevance: Among patients with recurrent implantation failure, treatment with prednisone did not improve live birth rate compared with placebo. Data suggested that the use of prednisone may increase the risk of preterm delivery and biochemical pregnancy loss. Our results challenge the value of prednisone use in clinical practice for the treatment of recurrent implantation failure. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR1800018783.


Asunto(s)
Aborto Habitual , Fertilización In Vitro , Nacimiento Vivo , Prednisona , Nacimiento Prematuro , Femenino , Humanos , Embarazo , Aborto Espontáneo , Fertilización In Vitro/métodos , Prednisona/efectos adversos , Prednisona/farmacología , Prednisona/uso terapéutico , Índice de Embarazo , Nacimiento Prematuro/prevención & control , Placebos , Aborto Habitual/terapia , Implantación del Embrión/efectos de los fármacos , Método Doble Ciego , Administración Oral , Adulto , Transferencia de Embrión , Resultado del Embarazo
10.
Environ Sci Technol ; 56(5): 3267-3276, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35175742

RESUMEN

An organometallic rhenium catalyst was deposited on a Ti4O7 reactive electrochemical membrane (Re/REM) for the electrocatalytic reduction of aqueous ClO4- to Cl-. Results showed increasing ClO4- reduction upon increasing cathodic potential (i.e., -0.4 to-1.7 V/SHE). A 5 mM ClO4- solution was reduced by ∼21% in a single pass (residence time ∼0.2 s) through the Re/REM at a pH of 7, with >99% Cl- selectivity and a current efficiency of ∼100%. Kinetic analysis indicated that the reaction rate constant increased from 3953 to 7128 L h-1 gRe-1 at pH values of 9 to 3, respectively, and was mass transport-limited at pH < 5. The rate constants were 2 orders of magnitude greater than reported values for an analogous catalytic system using hydrogen as an electron donor. A continuous flow Re/REM system reduced 1 ppm ClO4- in a groundwater sample by >99.9% for the first 93.5 h, and concentrations were lower than the EPA ClO4- guideline (56 ppb) for 374 h of treatment. The fast ClO4- reduction kinetics and high chloride selectivity without the need for acidic conditions and a continual hydrogen electron donor supply for catalyst regeneration indicate the promising ability of the Re/REM for aqueous electrocatalytic ClO4- treatment.


Asunto(s)
Renio , Contaminantes Químicos del Agua , Cloruros , Hidrógeno , Cinética , Oxidación-Reducción , Percloratos , Titanio , Agua , Contaminantes Químicos del Agua/análisis
11.
Environ Sci Technol ; 56(6): 3699-3709, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35226468

RESUMEN

The addition of iodide (I-) in the UV/sulfite system (UV/S) significantly accelerated the reductive degradation of perfluorosulfonates (PFSAs, CnF2n+1SO3-) and perfluorocarboxylates (PFCAs, CnF2n+1COO-). Using the highly recalcitrant perfluorobutane sulfonate (C4F9SO3-) as a probe, we optimized the UV/sulfite + iodide system (UV/S + I) to degrade n = 1-7 PFCAs and n = 4, 6, 8 PFSAs. In general, the kinetics of per- and polyfluoroalkyl substance (PFAS) decay, defluorination, and transformation product formations in UV/S + I were up to three times faster than those in UV/S. Both systems achieve a similar maximum defluorination. The enhanced reaction rates and optimized photoreactor settings lowered the EE/O for PFCA degradation below 1.5 kW h m-3. The relatively high quantum yield of eaq- from I- made the availability of hydrated electrons (eaq-) in UV/S + I and UV/I two times greater than that in UV/S. Meanwhile, the rapid scavenging of reactive iodine species by SO32- made the lifetime of eaq- in UV/S + I eight times longer than that in UV/I. The addition of I- also substantially enhanced SO32- utilization in treating concentrated PFAS. The optimized UV/S + I system achieved >99.7% removal of most PFSAs and PFCAs and >90% overall defluorination in a synthetic solution of concentrated PFAS mixtures and NaCl. We extended the discussion over molecular transformation mechanisms, development of PFAS degradation technologies, and the fate of iodine species.


Asunto(s)
Fluorocarburos , Yodo , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Yoduros , Sulfitos , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
12.
Environ Sci Technol ; 56(8): 4894-4904, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35373561

RESUMEN

The recently discovered microbial reductive defluorination of two C6 branched and unsaturated fluorinated carboxylic acids (FCAs) provided valuable insights into the environmental fate of per- and polyfluoroalkyl substances (PFASs) and potential bioremediation strategies. However, a systematic investigation is needed to further demonstrate the role of C═C double bonds in the biodegradability of unsaturated PFASs. Here, we examined the structure-biodegradability relationships of 13 FCAs, including nine commercially available unsaturated FCAs and four structurally similar saturated ones, in an anaerobic defluorinating enrichment and an activated sludge community. The anaerobic and aerobic transformation/defluorination pathways were elucidated. The results showed that under anaerobic conditions, the α,ß-unsaturation is crucial for FCA biotransformation via reductive defluorination and/or hydrogenation pathways. With sp2 C-F bonds being substituted by C-H bonds, the reductive defluorination became less favorable than hydrogenation. Moreover, for the first time, we reported enhanced degradability and defluorination capability of specific unsaturated FCA structures with trifluoromethyl (-CF3) branches at the α/ß-carbon. Such FCA structures can undergo anaerobic abiotic defluorination in the presence of reducing agents and significant aerobic microbial defluorination. Given the diverse applications and emerging concerns of fluorochemicals, this work not only advances the fundamental understanding of the fate of unsaturated PFASs in natural and engineered environments but also may provide insights into the design of readily degradable fluorinated alternatives to existing PFAS compounds.


Asunto(s)
Ácidos Carboxílicos , Fluorocarburos , Anaerobiosis , Biodegradación Ambiental , Fluorocarburos/química , Aguas del Alcantarillado
13.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(10): 1070-1075, 2022 Oct 10.
Artículo en Zh | MEDLINE | ID: mdl-36184085

RESUMEN

OBJECTIVE: To explore the genetic etiology of recurrent hydatidiform mole (RHM) and provide accurate guidance for reproduction. METHODS: Peripheral venous blood samples of the probands with RHM and members from 5 unrelated pedigrees were collected. Genomic DNA was extracted by using routine method, and whole exome sequencing was carried out to detect variants of RHM-associated genes including NLRP7 and KHDC3L. Sanger sequencing and real-time quantitative PCR (RT-qPCR) were used to validate the candidate variants and delineate their parental origin. RESULTS: Homozygous or compound heterozygous variants of the NLRP7 gene were identified in four patients from three pedigrees, which included a homozygous deletion of exon 1 to 4 of NLRP7 in patient P1 and her elder sister, compound heterozygous variants of NLRP7 c.939delG (p.Q314Sfs*6) pat and c.1533delG (p.N512Tfs*4) mat in patient P2, and compound heterozygous variants of NLRP7 c.2389_2390delTC (p.A798Qfs*6) pat and c.2165A>G (p.D722G) mat in patient P4. All variants were interpreted as pathogenic or likely pathogenic according to the American College of Medical and Genomics (ACMG) guidelines. Among these, NLRP7 exons 1 to 4 deletion, c.939delG (p.Q314Sfs*6), c.1533delG (p.N512Tfs*4) and c.2389_2390delTC (p.A798Qfs*6) were unreported previously. CONCLUSION: Variants of the NLRP7 gene probably underlay autosomal recessive RHM in the three pedigrees, and definitive molecular diagnosis is beneficial for accurate genetic counseling. Above finding has also enriched the spectrum of the NLRP7 variants underlying RHM.


Asunto(s)
Mola Hidatiforme , Proteínas Adaptadoras Transductoras de Señales/genética , Anciano , China , Femenino , Homocigoto , Humanos , Mola Hidatiforme/genética , Mola Hidatiforme/patología , Mutación , Linaje , Embarazo , Eliminación de Secuencia
14.
J Am Chem Soc ; 143(21): 7891-7896, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34003633

RESUMEN

Perchlorate (ClO4-) is a pervasive, harmful, and inert anion on both Earth and Mars. Current technologies for ClO4- reduction entail either harsh conditions or multicomponent enzymatic processes. Herein, we report a heterogeneous (L)Mo-Pd/C catalyst directly prepared from Na2MoO4, a bidentate nitrogen ligand (L), and Pd/C to reduce aqueous ClO4- into Cl- with 1 atm of H2 at room temperature. A suite of instrument characterizations and probing reactions suggest that the MoVI precursor and L at the optimal 1:1 ratio are transformed in situ into oligomeric MoIV active sites at the carbon-water interface. For each Mo site, the initial turnover frequency (TOF0) for oxygen atom transfer from ClOx- substrates reached 165 h-1. The turnover number (TON) reached 3840 after a single batch reduction of 100 mM ClO4-. This study provides a water-compatible, efficient, and robust catalyst to degrade and utilize ClO4- for water purification and space exploration.

15.
Environ Sci Technol ; 55(20): 14146-14155, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34618445

RESUMEN

Omega-hydroperfluorocarboxylates (ω-HPFCAs, HCF2-(CF2)n-1-COO-) are commercially available in bulk quantities and have been applied in agrochemicals, fluoropolymer production, and semiconductor coating. In this study, we used kinetic measurements, theoretical calculations, model compound experiments, and transformation product analyses to reveal novel mechanistic insights into the reductive and oxidative transformation of ω-HPFCAs. Like perfluorocarboxylates (PFCAs, CF3-(CF2)n-1-COO-), the direct linkage between HCnF2n- and -COO- enables facile degradation under UV/sulfite treatment. To our surprise, the presence of the H atom on the remote carbon makes ω-HPFCAs more susceptible than PFCAs to decarboxylation (i.e., yielding shorter-chain ω-HPFCAs) and less susceptible to hydrodefluorination (i.e., H/F exchange). Like fluorotelomer carboxylates (FTCAs, CnF2n+1-CH2CH2-COO-), the C-H bond in HCF2-(CF2)n-1-COO- allows hydroxyl radical oxidation and limited defluorination. While FTCAs yielded PFCAs in all chain lengths, ω-HPFCAs only yielded -OOC-(CF2)n-1-COO- (major) and -OOC-(CF2)n-2-COO- (minor) due to the unfavorable ß-fragmentation pathway that shortens the fluoroalkyl chain. We also compared two treatment sequences-UV/sulfite followed by heat/persulfate and the reverse-toward complete defluorination of ω-HPFCAs. The findings will benefit the treatment and monitoring of H-containing per- and polyfluoroalkyl substance (PFAS) pollutants as well as the design of future fluorochemicals.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Ácidos Carboxílicos , Radical Hidroxilo , Oxidación-Reducción
16.
Environ Sci Technol ; 55(10): 7052-7062, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33950686

RESUMEN

The UV-sulfite reductive treatment using hydrated electrons (eaq-) is a promising technology for destroying perfluorocarboxylates (PFCAs, CnF2n+1COO-) in any chain length. However, the C-H bonds formed in the transformation products strengthen the residual C-F bonds and thus prevent complete defluorination. Reductive treatments of fluorotelomer carboxylates (FTCAs, CnF2n+1-CH2CH2-COO-) and sulfonates (FTSAs, CnF2n+1-CH2CH2-SO3-) are also sluggish because the ethylene linker separates the fluoroalkyl chain from the end functional group. In this work, we used oxidation (Ox) with hydroxyl radicals (HO•) to convert FTCAs and FTSAs to a mixture of PFCAs. This process also cleaved 35-95% of C-F bonds depending on the fluoroalkyl chain length. We probed the stoichiometry and mechanism for the oxidative defluorination of fluorotelomers. The subsequent reduction (Red) with UV-sulfite achieved deep defluorination of the PFCA mixture for up to 90%. The following use of HO• to oxidize the H-rich residues led to the cleavage of the remaining C-F bonds. We examined the efficacy of integrated oxidative and reductive treatment of n = 1-8 PFCAs, n = 4,6,8 perfluorosulfonates (PFSAs, CnF2n+1-SO3-), n = 1-8 FTCAs, and n = 4,6,8 FTSAs. A majority of structures yielded near-quantitative overall defluorination (97-103%), except for n = 7,8 fluorotelomers (85-89%), n = 4 PFSA (94%), and n = 4 FTSA (93%). The results show the feasibility of complete defluorination of legacy PFAS pollutants and will advance both remediation technology design and water sample analysis.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Contaminantes Químicos del Agua , Alcanosulfonatos , Ácidos Carboxílicos , Oxidación-Reducción
17.
Environ Sci Technol ; 54(22): 14393-14402, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33121241

RESUMEN

The C-F bond is one of the strongest single bonds in nature. Although microbial reductive dehalogenation is well known for the other organohalides, no microbial reductive defluorination has been documented for perfluorinated compounds except for a single, nonreproducible study on trifluoroacetate. Here, we report on C-F bond cleavage in two C6 per- and polyfluorinated compounds via reductive defluorination by an organohalide-respiring microbial community. The reductive defluorination was demonstrated by the release of F- and the formation of the corresponding product when lactate was the electron donor, and the fluorinated compound was the sole electron acceptor. The major dechlorinating species in the seed culture, Dehalococcoides, were not responsible for the defluorination as no growth of Dehalococcoides or active expression of Dehalococcoides-reductive dehalogenases was observed. It suggests that minor phylogenetic groups in the community might be responsible for the reductive defluorination. These findings expand our fundamental knowledge of microbial reductive dehalogenation and warrant further studies on the enrichment, identification, and isolation of responsible microorganisms and enzymes. Given the wide use and emerging concerns of fluorinated organics (e.g., per- and polyfluoroalkyl substances), particularly the perfluorinated ones, the discovery of microbial defluorination under common anaerobic conditions may provide valuable insights into the environmental fate and potential bioremediation strategies of these notorious contaminants.


Asunto(s)
Chloroflexi , Biodegradación Ambiental , Filogenia
18.
Environ Sci Technol ; 54(11): 6957-6967, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32343565

RESUMEN

Ultraviolet photochemical reaction of sulfite (SO32-) photosensitizer generates strongly reducing hydrated electrons (eaq-; NHE = -2.9 V) that have been shown to effectively degrade individual per- and polyfluoroalkyl substances (PFASs), including perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). However, treatment of complex PFAS mixtures in aqueous film-forming foam (AFFF) remains largely unknown. Here, UV-sulfite was applied to a diluted AFFF to characterize eaq- reactions with 15 PFASs identified by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) targeted analysis. Results show that reactivity varies widely among PFASs, but reaction rates observed for individual PFASs in AFFF are similar to rates observed in single-solute experiments. While some structures, including long-chain perfluoroalkyl sulfonic acids (PFSAs) and perfluoroalkyl carboxylic acids (PFCAs) were readily degraded, other structures, most notably short-chain PFSAs and fluorotelomer sulfonic acids (FTSs), were more recalcitrant. This finding is consistent with results showing incomplete fluoride ion release (up to 53% of the F content in AFFF) during reactions. Furthermore, results show that selected PFSAs, PFCAs, and FTSs can form as transient intermediates or unreactive end-products via eaq- reactions with precursor structures in AFFF. These results indicate that while UV-sulfite treatment can be effective for treating PFOS and PFOA to meet health advisory levels, remediation of the wider range of PFASs in AFFF will prove more challenging.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Carboxílicos , Fluorocarburos/análisis , Sulfitos , Agua , Contaminantes Químicos del Agua/análisis
19.
Environ Sci Technol ; 54(4): 2489-2499, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31999101

RESUMEN

This study explores structure-reactivity relationships for the degradation of emerging perfluoroalkyl ether carboxylic acid (PFECA) pollutants with ultraviolet-generated hydrated electrons (eaq-). The rate and extent of PFECA degradation depend on both the branching extent and the chain length of oxygen-segregated fluoroalkyl moieties. Kinetic measurements, theoretical calculations, and transformation product analyses provide a comprehensive understanding of the PFECA degradation mechanisms and pathways. In comparison to traditional full-carbon-chain perfluorocarboxylic acids, the distinct degradation behavior of PFECAs is attributed to their ether structures. The ether oxygen atoms increase the bond dissociation energy of the C-F bonds on the adjacent -CF2- moieties. This impact reduces the formation of H/F-exchanged polyfluorinated products that are recalcitrant to reductive defluorination. Instead, the cleavage of ether C-O bonds generates unstable perfluoroalcohols and thus promotes deep defluorination of short fluoroalkyl moieties. In comparison to linear PFECAs, branched PFECAs have a higher tendency of H/F exchange on the tertiary carbon and thus lower percentages of defluorination. These findings provide mechanistic insights for an improved design and efficient degradation of fluorochemicals.


Asunto(s)
Ácidos Carboxílicos , Fluorocarburos , Electrones , Éter , Éteres
20.
Environ Sci Technol ; 53(7): 3718-3728, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30874441

RESUMEN

This study investigates critical structure-reactivity relationships within 34 representative per- and polyfluoroalkyl substances (PFASs) undergoing defluorination with UV-generated hydrated electrons. While C nF2 n+1-COO- with variable fluoroalkyl chain lengths ( n = 2 to 10) exhibited a similar rate and extent of parent compound decay and defluorination, the reactions of telomeric C nF2 n+1-CH2CH2-COO- and C nF2 n+1-SO3- showed an apparent dependence on the length of the fluoroalkyl chain. Cross comparison of experimental results, including different rates of decay and defluorination of specific PFAS categories, the incomplete defluorination from most PFAS structures, and the surprising 100% defluorination from CF3COO-, leads to the elucidation of new mechanistic insights into PFAS degradation. Theoretical calculations on the C-F bond dissociation energies (BDEs) of all PFAS structures reveal strong relationships among (i) the rate and extent of decay and defluorination, (ii) head functional groups, (iii) fluoroalkyl chain length, and (iv) the position and number of C-F bonds with low BDEs. These relationships are further supported by the spontaneous cleavage of specific bonds during calculated geometry optimization of PFAS structures bearing one extra electron, and by the product analyses with high-resolution mass spectrometry. Multiple reaction pathways, including H/F exchange, dissociation of terminal functional groups, and decarboxylation-triggered HF elimination and hydrolysis, result in the formation of variable defluorination products. The selectivity and ease of C-F bond cleavage highly depends on molecular structures. These findings provide critical information for developing PFAS treatment processes and technologies to destruct a wide scope of PFAS pollutants and for designing fluorochemical formulations to avoid releasing recalcitrant PFASs into the environment.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Electrones , Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA