Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Gene Med ; 25(1): e3456, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36219542

RESUMEN

BACKGROUND: The c.194+2 T>C variant of serine protease inhibitor Kazal type 1 (SPINK1) is a known genetic risk factor found in Chinese patients with idiopathic chronic pancreatitis (ICP), but the early-onset mechanisms of ICP are still unclear. METHODS: Complementary experimental approaches were used to pursue other potential pathologies in the present study. The serum level of SPINK1 of ICP patients in the Han population in China was detected and verified by an enzyme-linked immunosorbent assay. Next, differentially expressed proteins and microRNAs from plasma samples of early-onset and late-onset ICP patients were screened by proteomic analysis and microarray, respectively. RESULTS: Combined with these advanced methods, the data strongly suggest that the regulatory effects of microRNAs were involved in the early-onset mechanism of the ICP by in vitro experiments. There was no significant difference in the plasma SPINK1 expression between the early-onset ICP and the late-onset patients. However, the expression of plasma glutathione peroxidase (GPx3) in early-onset ICP patients was markedly lower than that in late-onset ICP patients, although the level of hsa-miR-323b-5p was lower in late-onset patients compared to the early-onset ICP group. In vitro experiments confirmed that hsa-miR-323b-5p could increase apoptosis in caerulein-treated pancreatic acinar cells and inhibit the expression of GPx3. CONCLUSIONS: The up-regulated hsa-miR-323b-5p might play a crucial role in the early-onset mechanisms of ICP by diminishing the antioxidant activity through the down-regulation of GPx3.


Asunto(s)
MicroARNs , Pancreatitis Crónica , Humanos , MicroARNs/metabolismo , Pancreatitis Crónica/genética , Proteómica , Factores de Riesgo , Inhibidor de Tripsina Pancreática de Kazal/genética
2.
Am J Transl Res ; 8(7): 2889-96, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27508010

RESUMEN

OBJECTIVE: Comparative study of type 2 diabetes and healthy controls by metabolomics methods to explore the pathogenesis of Type II diabetes. METHODS: Gas chromatography - mass spectrometry (GC-MS) with a variety of multivariate statistical analysis methods to the healthy control group 58 cases, 68 cases of Type II diabetes group were analyzed. Chromatographic conditions: DB-5MS column; the carrier gas He; flow rate of 1 mL·min(-1), the injection volume 1 uL; split ratio is 100: 1. MS conditions: electron impact (EI) ion source, an auxiliary temperature of 280°C, the ion source 230°C, quadrupole 150°C; mass scan range 30~600 mAu. RESULTS: Established analytical method based on urine metabolomics GC-MS of Type II diabetes, determine the urine succinic acid, L-leucine, L-isoleucine, tyrosine, slanine, acetoace acid, mannose, L-isoleucine, L-threonine, Phenylalanine, fructose, D-glucose, palmi acid, oleic acid and arachidonic acid were significantly were significantly changed. CONCLUSION: Based on metabolomics of GC-MS detection and analysis metabolites can be found differences between type 2 diabetes and healthy control group, PCA diagram can effectively distinguish Type II diabetes and healthy control group, with load diagrams and PLS-DA VIP value metabolite screening, the resulting differences in metabolic pathways involved metabolites, including amino acid metabolism, lipid metabolism, glucose metabolism and energy metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA