Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(2): e2308415120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38150477

RESUMEN

Genomic DNA of the cyanophage S-2L virus is composed of 2-aminoadenine (Z), thymine (T), guanine (G), and cytosine (C), forming the genetic alphabet ZTGC, which violates Watson-Crick base pairing rules. The Z-base has an extra amino group on the two position that allows the formation of a third hydrogen bond with thymine in DNA strands. Here, we explored and expanded applications of this non-Watson-Crick base pairing in protein expression and gene editing. Both ZTGC-DNA (Z-DNA) and ZUGC-RNA (Z-RNA) produced in vitro show detectable compatibility and can be decoded in mammalian cells, including Homo sapiens cells. Z-crRNA can guide CRISPR-effectors SpCas9 and LbCas12a to cleave specific DNA through non-Watson-Crick base pairing and boost cleavage activities compared to A-crRNA. Z-crRNA can also allow for efficient gene and base editing in human cells. Together, our results help pave the way for potential strategies for optimizing DNA or RNA payloads for gene editing therapeutics and give insights to understanding the natural Z-DNA genome.


Asunto(s)
Emparejamiento Base , Sistemas CRISPR-Cas , ADN de Forma Z , Edición Génica , Humanos , ADN/genética , ADN/química , ADN de Forma Z/genética , Edición Génica/métodos , ARN/genética , ARN Guía de Sistemas CRISPR-Cas , Timina/química
2.
Proc Natl Acad Sci U S A ; 120(52): e2311752120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38134199

RESUMEN

The emergence of highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that are resistant to the current COVID-19 vaccines highlights the need for continued development of broadly protective vaccines for the future. Here, we developed two messenger RNA (mRNA)-lipid nanoparticle (LNP) vaccines, TU88mCSA and ALCmCSA, using the ancestral SARS-CoV-2 spike sequence, optimized 5' and 3' untranslated regions (UTRs), and LNP combinations. Our data showed that these nanocomplexes effectively activate CD4+ and CD8+ T cell responses and humoral immune response and provide complete protection against WA1/2020, Omicron BA.1 and BQ.1 infection in hamsters. Critically, in Omicron BQ.1 challenge hamster models, TU88mCSA and ALCmCSA not only induced robust control of virus load in the lungs but also enhanced protective efficacy in the upper respiratory airways. Antigen-specific immune analysis in mice revealed that the observed cross-protection is associated with superior UTRs [Carboxylesterase 1d (Ces1d)/adaptor protein-3ß (AP3B1)] and LNP formulations that elicit robust lung tissue-resident memory T cells. Strong protective effects of TU88mCSA or ALCmCSA against both WA1/2020 and VOCs suggest that this mRNA-LNP combination can be a broadly protective vaccine platform in which mRNA cargo uses the ancestral antigen sequence regardless of the antigenic drift. This approach could be rapidly adapted for clinical use and timely deployment of vaccines against emerging and reemerging VOCs.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Cricetinae , Animales , Humanos , Ratones , ARN Mensajero/genética , Vacunas contra la COVID-19/genética , Vacunas de ARNm , SARS-CoV-2/genética , COVID-19/prevención & control , Regiones no Traducidas 3' , Anticuerpos Neutralizantes , Anticuerpos Antivirales
3.
Antimicrob Agents Chemother ; 68(9): e0061124, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39046236

RESUMEN

As methicillin-resistant Staphylococcus aureus (MRSA) exhibits formidable resistance to many drugs, the imperative for alternative therapeutic strategies becomes increasingly evident. At the heart of our study is the identification of a novel inhibitor through fluorescence anisotropy assays, specifically targeting the crucial multiple gene regulator A (MgrA) regulatory network in S. aureus. Isorhapontigenin (Iso), a natural compound, exhibits outstanding inhibitory efficacy, modulating bacterial virulence pathways without exerting direct bactericidal activity. This suggests a paradigm shift toward attenuating virulence instead of purely focusing on bacterial elimination. Through comprehensive in vitro and in vivo evaluations, we elucidated the complex interplay between Iso and MgrA, leading to reduced S. aureus adhesion, and overall virulence. At the cellular level, Iso offers significant protection to A549 cells infected with S. aureus, reducing cellular damage. Importantly, Iso augments the chemotaxis of neutrophils, curtailing the immune evasion capabilities of S. aureus. Furthermore, in vivo investigations highlight the notable effectiveness of Iso against MRSA-induced pneumonia and within the Galleria mellonella infection model, underscoring its pivotal role in the evolving realm of antibacterial drug discovery. Significantly, when Iso is used in combination with vancomycin, it outperforms its solo application, indicating a more pronounced therapeutic impact. This seminal research emphasizes Iso's potential as a primary defense against the surge of multidrug-resistant pathogens, heralding new prospects in antimicrobial therapy.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Animales , Humanos , Virulencia/efectos de los fármacos , Células A549 , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Mariposas Nocturnas/microbiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Pruebas de Sensibilidad Microbiana , Redes Reguladoras de Genes/efectos de los fármacos , Ratones , Neutrófilos/efectos de los fármacos
4.
Small ; 20(25): e2311056, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38377262

RESUMEN

The poor efficiency and low immunogenicity of photodynamic therapy (PDT), and the immunosuppressive tumor microenvironment (ITM) lead to tumor recurrence and metastasis. In this work, TCPP-TER-Zn@RSV nanosheets (TZR NSs) that co-assembled from the endoplasmic reticulum (ER)-targeting photosensitizer TCPP-TER-Zn nanosheets (TZ NSs for short) and the autophagy promoting and indoleamine-(2, 3)-dioxygenase (IDO) inhibitor-like resveratrol (RSV) are fabricated to enhance antitumor PDT. TZR NSs exhibit improved therapeutic efficiency and amplified immunogenic cancer cell death (ICD) by ER targeting PDT and ER autophagy promotion. TZR NSs reversed the ITM with an increase of CD8+ T cells and reduce of immunosuppressive Foxp3 regulatory T cells, which effectively burst antitumor immunity thus clearing residual tumor cells. The ER-targeting TZR NSs developed in this paper presents a simple but valuable reference for high-efficiency tumor photodynamic immunotherapy.


Asunto(s)
Autofagia , Retículo Endoplásmico , Inmunoterapia , Fotoquimioterapia , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Fotoquimioterapia/métodos , Inmunoterapia/métodos , Autofagia/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Animales , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Nanoestructuras/química , Humanos , Línea Celular Tumoral , Ratones
5.
Microb Pathog ; 186: 106502, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103581

RESUMEN

Starvation stress can profoundly impact various physiological parameters in fish, including metabolism, behavior, meat quality, and reproduction. However, the repercussions of starvation on the intestinal microbiota of grass carp remain under-explored. This research aimed to elucidate the effects of a 28-day starvation period on the composition of the intestinal microbiota of grass carp. Tissue pathology assessments revealed significant alterations in the dimensions of intestinal villi in the foregut, midgut, and hindgut as compared to the controls. Specifically, dominant differences appeared in both the length and width of the villi. Moreover, a marked decline in the goblet cell population was observed across all the intestinal segments. 16S rDNA sequencing was used to investigate changes in the gut microbiota, which revealed distinct clustering patterns among the starved and control groups. While α diversity metrics remained consistent for the anterior intestine, significant deviations were recorded in the Shannon (midgut: ***P < 0.001; hindgut: *P < 0.05) and Simpson indices (midgut and hindgut: ***P < 0.001), demonstrating alterations in microbial richness and evenness. At the phylum level, Proteobacteria, Bacteroidetes, and Fusobacteria emerged as dominant groups post-starvation. Other bacterial taxa, such as Actinobacteria and Verrucomicrobia, decreased, whereas Bacteroidetes and Firmicutes showed a small increase. In summation, starvation induces considerable morphological and microbial shifts in the grass carp intestine, and thus, this study offers valuable insights into their cultivation strategies.


Asunto(s)
Carpas , Animales , Bacterias/genética , Intestinos/microbiología , Proteobacteria/genética , Bacteroidetes
6.
Mol Pharm ; 21(3): 1526-1536, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38379524

RESUMEN

Tumoral thermal defense mechanisms considerably attenuate the therapeutic outcomes of mild-temperature photothermal therapy (PTT). Thus, developing a simple, efficient, and universal therapeutic strategy to sensitize mild-temperature PTT is desirable. Herein, we report self-delivery nanomedicines ACy NPs comprising a near-infrared (NIR) photothermal agent (Cypate), mitochondrial oxidative phosphorylation inhibitor (ATO), and distearoylphosphatidylethanolamine-polyethylene glycol 2000 (DSPE-PEG2000), which have a high drug-loading efficiency that can reverse tumoral thermal resistance, thereby increasing mild-temperature PTT efficacy. ACy NPs achieved targeted tumor accumulation and performed NIR fluorescence imaging capability in vivo to guide tumor PTT for optimized therapeutic outcomes. The released ATO reduced intracellular ATP levels to downregulate multiple heat shock proteins (including HSP70 and HSP90) before PTT, which reversed the thermal resistance of tumor cells, contributing to the excellent results of mild-temperature PTT in vitro and in vivo. Therefore, this study provides a simple, biosafe, advanced, and universal heat shock protein-blocking strategy for tumor PTT.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Nanomedicina , Fototerapia/métodos , Temperatura , Hipertermia Inducida/métodos , Neoplasias/patología , Línea Celular Tumoral
7.
Fish Shellfish Immunol ; 149: 109474, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38513914

RESUMEN

Grass carp hemorrhagic disease is a significant problem in grass carp aquaculture. It releases highly oxidizing hemoglobin (Hb) into tissues, induces rapid autooxidation, and subsequently discharges cytotoxic reactive oxygen species (ROS). However, the mechanism underlying Hb damage to the teleost remains unclear. Here, we employed ferrylHb and heme to incubate L8824 (grass carp liver) cells and quantitatively analyzed the corresponding molecular regulation using the RNA-seq method. Based on the RNA-seq analysis data, after 12 h of incubation of the L8824 cells with ferrylHb, a total of 3738 differentially expressed genes (DEGs) were identified, 1824 of which were upregulated, and 1914 were downregulated. A total of 4434 DEGs were obtained in the heme treated group, with 2227 DEGs upregulated and 2207 DEGs downregulated. KEGG enrichment analysis data revealed that the incubation of ferrylHb and heme significantly activated the pathways related to Oxidative Phosphorylation, Autophagy, Mitophagy and Protein Processing in Endoplasmic Reticulum. The genes associated with NF-κB, autophagy and apoptosis pathways were selected for further validation by quantitative real-time RT-PCR (qRT-PCR). The results were consistent with the RNA-seq data. Taken together, the incubation of Hb and heme induced the molecular regulation of L8824, which consequently led to programmed cell death through multiple pathways.


Asunto(s)
Carpas , Hemoglobinas , Hepatocitos , Animales , Carpas/inmunología , Carpas/genética , Inflamación/veterinaria , Inflamación/inmunología , Muerte Celular , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Regulación de la Expresión Génica/inmunología , Regulación de la Expresión Génica/efectos de los fármacos
8.
Fish Shellfish Immunol ; 150: 109596, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692380

RESUMEN

Streptococcosis, the most common bacterial disease of fish in recent years, is highly infectious and lethal, and has become an important factor hindering the healthy and sustainable development of aquaculture. Chicken egg yolk antibody (IgY) has the advantages of high antigen specificity, inexpensive and easy to obtain, simple preparation, no toxic side effects, and in line with animal welfare, which is a green and safe alternative to antibiotics. In this study, the potential of specific IgY in the treatment of gastrointestinal pathogens was explored by observing the effects of specific IgY on intestinal flora, pathological tissue, apoptosis, oxidative stress, and inflammatory response of tilapia. We used the specific IgY prepared in the early stage to feed tilapia for 10 days, and then the tilapia was challenged with Streptococcus agalactiae. The results showed that feeding IgY before challenge had a small effect on the intestinal flora, and after challenge specific IgY decreased the proportion of Streptococcus and increased the diversity of the intestinal flora; in histopathology, specific IgY decreased tissue damage and maintained the integrity of tissue structure. Further study found that specific IgY can reduce intestinal epithelial cell apoptosis and reduce caspase activity; at the same time, the content of MDA was decreased, and the activities of SOD, CAT, GSH-Px and GR were increased. In addition, specific IgY can down-regulate the expression levels of IL-8 and TNF-α genes and up-regulate the expression levels of IL-10 and TGF-ß. The results of this study showed that specific IgY could improve the intestinal flora of tilapia infected with Streptococcus agalactiae, reduce intestinal cell apoptosis, oxidative stress injury and inflammatory response, thereby reducing tissue damage and protecting the health of tilapia. Overall, specific IgY can be further explored as a potential antibiotic alternative for gastrointestinal pathogen infections.


Asunto(s)
Alimentación Animal , Apoptosis , Pollos , Cíclidos , Enfermedades de los Peces , Microbioma Gastrointestinal , Inmunoglobulinas , Intestinos , Estrés Oxidativo , Infecciones Estreptocócicas , Streptococcus agalactiae , Animales , Streptococcus agalactiae/fisiología , Infecciones Estreptocócicas/veterinaria , Infecciones Estreptocócicas/inmunología , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Inmunoglobulinas/inmunología , Cíclidos/inmunología , Pollos/inmunología , Enfermedades de los Peces/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Alimentación Animal/análisis , Intestinos/inmunología , Dieta/veterinaria , Yema de Huevo/inmunología , Yema de Huevo/química
9.
Fish Shellfish Immunol ; 150: 109603, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38704112

RESUMEN

Infection-induced hemolysis results in intravascular hemolysis, which releases hemoglobin (Hb) into the tissues. Free Hb exhibits cytotoxic, oxidative, and pro-inflammatory effects, leading to systemic inflammation, vascular constriction dysfunction, thrombosis, and proliferative vascular lesions. Currently, the impact of intravascular hemolysis on the middle kidney in fish is unclear. Here, the injection of phenylhydrazine (PHZ) was used to establish a persistent hemolysis model in grass carp. The determination results revealed that the PHZ-induced hemolysis caused conspicuous tissue damage in the kidneys of grass carp, increased the levels of Cr in the serum and the expression indicators of kidney injury-related genes in the middle kidney. Prussian blue staining indicated that PHZ-induced hemolysis significantly increased the deposition of iron ions in the kidneys of grass carp, and activated the expression levels of iron metabolism-related genes. The results of oxidative damage-related experiments indicate that under PHZ treatment, the activity of middle kidney cells decreases, and the production of oxidative damage markers malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) increases, simultaneously inhibiting the activity of antioxidant enzymes and upregulating the transcription levels of antioxidant enzyme-related genes. Additionally, the analysis of inflammatory factors revealed a significant upregulation of genes associated with inflammation induced by PHZ-induced hemolysis. The transcriptome analysis was performed to further explore the molecular regulatory effects of hemolysis on tissues, the analysis revealed the treatment of PHZ activated various of programmed cell death (PCD) pathways, including ferroptosis, apoptosis, and autophagy. In summary, this study found that sustained hemolysis in fish results in Hb and iron ion deposition in middle kidney, promoting oxidative damage, ultimately inducing various forms of PCD.


Asunto(s)
Carpas , Enfermedades de los Peces , Hemólisis , Animales , Carpas/inmunología , Enfermedades de los Peces/inmunología , Fenilhidrazinas/efectos adversos , Fenilhidrazinas/toxicidad , Enfermedades Renales/veterinaria , Enfermedades Renales/etiología , Enfermedades Renales/inmunología , Riñón/inmunología , Riñón/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
10.
Fish Shellfish Immunol ; 149: 109526, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554743

RESUMEN

In teleost blood, red blood cells (RBCs) are the most common type of cell, and they differ from mammalian RBCs in having a nucleus and other organelles. As nucleated cells, teleost RBCs contribute to the immune response against pathogens, but their antibacterial mechanism remains unclear. Here, we utilized RNA-Seq to analyze gene expression patterns of grass carp (Ctenopharyngodon idellus) RBCs (GcRBCs) stimulated by Aeromonas hydrophila, Escherichia coli, and Staphylococcus aureus. Our transcriptomic data showed that bacterial stimulation generated many differentially expressed genes (DEGs). Furthermore, several inflammatory pathways responded to bacterial activation, and the TLR, IL-17, and tumor necrosis factor (TNF) signaling pathways were significantly activated based on Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Furthermore, the findings of qRT-PCR showed markedly elevated expression of various cytokines, including IL-1ß, IL4, IL6, IL8, IL12, and TNFα, in GcRBCs after incubation with bacteria. Reactive oxygen species (ROS) production in GcRBCs was markedly increased after the cells were stimulated with the three bacteria, and the expression of superoxide dismutase, glutathione peroxidase, and antioxidant enzymes, including catalase, was altered. Flow cytometry analysis showed that the apoptosis rate of GcRBCs was enhanced after stimulation with the three bacteria for different times. In summary, our findings reveal that bacterial stimulation activates the immune response of GcRBCs by regulating ROS release, cytokine expression, and the antioxidant system, leading to apoptosis of GcRBCs.


Asunto(s)
Aeromonas hydrophila , Carpas , Eritrocitos , Escherichia coli , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Inmunidad Innata , Animales , Carpas/inmunología , Carpas/genética , Enfermedades de los Peces/inmunología , Eritrocitos/inmunología , Aeromonas hydrophila/fisiología , Inmunidad Innata/genética , Escherichia coli/inmunología , Escherichia coli/fisiología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Staphylococcus aureus/fisiología , Staphylococcus aureus/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/veterinaria , Transcriptoma/inmunología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/veterinaria
11.
Fish Shellfish Immunol ; 145: 109315, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134975

RESUMEN

In contrast to mammalian red blood cells (RBCs), Osteichthyes RBCs contain a nucleus and organelles, suggesting the involvement of more intricate mechanisms, particularly in the context of ferroptosis. In this study, we utilized RBCs from Clarias fuscus (referred to as Cf-RBCs) as a model system. We conducted RNA-seq analysis to quantify gene expression levels in Cf-RBCs after exposure to both Aeromonas hydrophila and lipopolysaccharides. Our analysis unveiled 1326 differentially expressed genes (DEGs) in Cf-RBCs following 4 h of incubation with A. hydrophila, comprising 715 and 611 genes with upregulated and downregulated expression, respectively. These DEGs were further categorized into functional clusters: 292 related to cellular processes, 241 involved in environmental information processing, 272 associated with genetic information processing, and 399 linked to organismal systems. Additionally, notable changes were observed in genes associated with the autophagy pathway at 4 h, and alterations in the ferroptosis pathway were observed at 8 h following A. hydrophila incubation. To validate these findings, we assessed the expression of cytokines (DMT1, TFR1, LC3, and GSS). All selected genes were significantly upregulated after exposure to A. hydrophila. Using flow cytometry, we evaluated the extent of ferroptosis, and the group incubated with A. hydrophila for 8 h exhibited higher levels of lipid peroxidation compared with the 4-h incubation group, even under baseline conditions. An evaluation of the glutathione redox system through GSSG/GSH ratios indicated an increased ratio in Cf-RBCs after exposure to A. hydrophila. In summary, our data suggest that A. hydrophila may induce ferroptosis in Cf-RBCs, potentially by triggering the cystine/glutamate antiporter system (system XC-), while Cf-RBCs counteract ferroptosis through the regulation of the glutathione redox system. These findings contribute to our understanding of the iron overload mechanism in Osteichthyes RBCs, provide insights into the management of bacterial diseases in Clarias fuscus, and offer potential strategies to mitigate economic losses in aquaculture.


Asunto(s)
Aeromonas hydrophila , Infecciones por Bacterias Gramnegativas , Animales , Aeromonas hydrophila/fisiología , Apoptosis , Eritrocitos , Glutatión , Infecciones por Bacterias Gramnegativas/microbiología , Mamíferos
12.
Sensors (Basel) ; 24(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38931732

RESUMEN

The recent advancements of mobile edge computing (MEC) technologies and unmanned aerial vehicles (UAVs) have provided resilient and flexible computation services for ground users beyond the coverage of terrestrial service. In this paper, we focus on a UAV-assisted MEC system in which the UAV equipped with MEC servers is used to assist user devices in computing their tasks. To minimize the weighted average energy consumption and delay in the UAV-assisted MEC system, a LQR-Lagrange-based DDPG (LLDDPG) algorithm, which jointly optimizes the user task offloading and the UAV trajectory design, is proposed. To be specific, the LLDDPG algorithm consists of three subproblems. The DDPG algorithm is used to address the issue of UAV desired trajectory planning, and subsequently, the LQR-based algorithm is employed to achieve the real-time tracking control of UAV desired trajectory. Finally, the Lagrange duality method is proposed to solve the optimization problem of computational resource allocation. Simulation results indicate that the proposed LLDDPG algorithm can effectively improve the system resource management and realize the real-time UAV trajectory design.

13.
Sensors (Basel) ; 23(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37448039

RESUMEN

Multiple unmanned aerial vehicles (UAVs) have a greater potential to be widely used in UAV-assisted IoT applications. UAV formation, as an effective way to improve surveillance and security, has been extensively of concern. The leader-follower approach is efficient for UAV formation, as the whole formation system needs to find only the leader's trajectory. This paper studies the leader-follower surveillance system. Owing to different scenarios and assignments, the leading velocity is dynamic. The inevitable communication time delays resulting from information sending, communicating and receiving process bring challenges in the design of real-time UAV formation control. In this paper, the design of UAV formation tracking based on deep reinforcement learning (DRL) is investigated for high mobility scenarios in the presence of communication delay. To be more specific, the optimization UAV formation problem is firstly formulated to be a state error minimization problem by using the quadratic cost function when the communication delay is considered. Then, the delay-informed Markov decision process (DIMDP) is developed by including the previous actions in order to compensate the performance degradation induced by the time delay. Subsequently, an extended-delay informed deep deterministic policy gradient (DIDDPG) algorithm is proposed. Finally, some issues, such as computational complexity analysis and the effect of the time delay are discussed, and then the proposed intelligent algorithm is further extended to the arbitrary communication delay case. Numerical experiments demonstrate that the proposed DIDDPG algorithm can significantly alleviate the performance degradation caused by time delays.


Asunto(s)
Algoritmos , Inteligencia , Cadenas de Markov , Políticas , Registros
14.
Int J Mol Sci ; 23(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35682882

RESUMEN

Sulfur (S) is an essential mineral nutrient required for plant growth and development. Plants usually face temporal and spatial variation in sulfur availability, including the heterogeneous sulfate content in soils. As sessile organisms, plants have evolved sophisticated mechanisms to modify their gene expression and physiological processes in order to optimize S acquisition and usage. Such plasticity relies on a complicated network to locally sense S availability and systemically respond to S status, which remains poorly understood. Here, we took advantage of a split-root system and performed transcriptome-wide gene expression analysis on rice plants in S deficiency followed by sulfate resupply. S deficiency altered the expressions of 6749 and 1589 genes in roots and shoots, respectively, accounting for 18.07% and 4.28% of total transcripts detected. Homogeneous sulfate resupply in both split-root halves recovered the expression of 27.06% of S-deficiency-responsive genes in shoots, while 20.76% of S-deficiency-responsive genes were recovered by heterogeneous sulfate resupply with only one split-root half being resupplied with sulfate. The local sulfate resupply response genes with expressions only recovered in the split-root half resupplied with sulfate but not in the other half remained in S deficiency were identified in roots, which were mainly enriched in cellular amino acid metabolic process and root growth and development. Several systemic response genes were also identified in roots, whose expressions remained unchanged in the split-root half resupplied with sulfate but were recovered in the other split-root half without sulfate resupply. The systemic response genes were mainly related to calcium signaling and auxin and ABA signaling. In addition, a large number of S-deficiency-responsive genes exhibited simultaneous local and systemic responses to sulfate resupply, such as the sulfate transporter gene OsSULTR1;1 and the O-acetylserine (thiol) lyase gene, highlighting the existence of a systemic regulation of sulfate uptake and assimilation in S deficiency plants followed by sulfate resupply. Our studies provided a comprehensive transcriptome-wide picture of a local and systemic response to heterogeneous sulfate resupply, which will facilitate an understanding of the systemic regulation of S homeostasis in rice.


Asunto(s)
Oryza , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Raíces de Plantas/metabolismo , Plantas/metabolismo , Sulfatos/metabolismo , Azufre/metabolismo
15.
Entropy (Basel) ; 24(5)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35626606

RESUMEN

With the rapid development of wireless sensor technology, recent progress in wireless sensor and actuator networks (WSANs) with energy harvesting provide the possibility for various real-time applications. Meanwhile, extensive research activities are carried out in the fields of efficient energy allocation and control strategy design. However, the joint design considering physical plant control, energy harvesting, and consumption is rarely concerned in existing works. In this paper, in order to enhance system control stability and promote quality of service for the WSAN energy efficiency, a novel three-step joint optimization algorithm is proposed through control strategy and energy management analysis. First, the optimal sampling interval can be obtained based on energy harvesting, consumption, and remaining conditions. Then, the control gain for each sampling interval is derived by using a backward iteration. Finally, the optimal control strategy is determined as a linear function of the current plant states and previous control strategies. The application of UAV formation flight system demonstrates that better system performance and control stability can be achieved by the proposed joint optimization design for all poor, sufficient, and general energy harvesting scenarios.

16.
Entropy (Basel) ; 24(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35205598

RESUMEN

With the rapid development of UAV technology, the research of optimal UAV formation tracking has been extensively studied. However, the high maneuverability and dynamic network topology of UAVs make formation tracking control much more difficult. In this paper, considering the highly dynamic features of uncertain time-varying leader velocity and network-induced delays, the optimal formation control algorithms for both near-equilibrium and general dynamic control cases are developed. First, the discrete-time error dynamics of UAV leader-follower models are analyzed. Next, a linear quadratic optimization problem is formulated with the objective of minimizing the errors between the desired and actual states consisting of velocity and position information of the follower. The optimal formation tracking problem of near-equilibrium cases is addressed by using a backward recursion method, and then the results are further extended to the general dynamic case where the leader moves at an uncertain time-varying velocity. Additionally, angle deviations are investigated, and it is proved that the similar state dynamics to the general case can be derived and the principle of control strategy design can be maintained. By using actual real-world data, numerical experiments verify the effectiveness of the proposed optimal UAV formation-tracking algorithm in both near-equilibrium and dynamic control cases in the presence of network-induced delays.

17.
Small ; 14(11): e1703321, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29325204

RESUMEN

Multidrug resistance (MDR) remains one of the biggest obstacles in chemotherapy of tumor mainly due to P-glycoprotein (P-gp)-mediated drug efflux. Here, a transformable chimeric peptide is designed to target and self-assemble on cell membrane for encapsulating cells and overcoming tumor MDR. This chimeric peptide (C16 -K(TPE)-GGGH-GFLGK-PEG8 , denoted as CTGP) with cathepsin B-responsive and cell membrane-targeting abilities can self-assemble into nanomicelles and further encapsulate the therapeutic agent doxorubicin (termed as CTGP@DOX). After the cleavage of the Gly-Phe-Leu-Gly (GFLG) sequence by pericellular overexpressed cathepsin B, CTGP@DOX is dissociated and transformed from spherical nanoparticles to nanofibers due to the hydrophilic-hydrophobic conversion and hydrogen bonding interactions. Thus obtained nanofibers with cell membrane-targeting 16-carbon alkyl chains can adhere firmly to the cell membrane for cell encapsulation and restricting DOX efflux. In comparison to free DOX, 45-time higher drug retention and 49-fold greater anti-MDR ability of CTGP@DOX to drug-resistant MCF-7R cells are achieved. This novel strategy to encapsulate cells and reverse tumor MDR via morphology transformation would open a new avenue towards chemotherapy of tumor.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Péptidos/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Membrana Celular/metabolismo , Doxorrubicina/química , Doxorrubicina/farmacología , Resistencia a Múltiples Medicamentos , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Células MCF-7
18.
Small ; 13(18)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28266809

RESUMEN

The nanoplatform GNR-ACPP-PpIX (designated as GNR-ACPI) is designed for dual image guided combined activatable photodynamic therapy (PDT) and photothermal therapy (PTT). In GNR-ACPI, gold nanorods (GNRs) are modified with a protoporphyrin (PpIX, a PDT agent) conjugated activatable cell penetrating peptide (ACPP), which consists of the matrix metalloproteinases-2 (MMP-2) sensitive peptide sequence GPLGLAG. First, the photoactivity of PpIX is effectively quenched by GNRs due to the strong near infrared region light absorption of GNR and the special "U type" structure of ACPP induced close contact between PpIX and GNR. However, once arriving at the tumor site, the GPLGLAG sequence is hydrolyzed by the MMP-2 overexpressed by tumor cells, resulting in the release of the residual cell membrane penetrating peptide (CPP) attached PpIX (CPP-PpIX) with the recovery of photoactivity of PpIX. In addition, with the help of CPP, more efficient cellular uptake of PpIX by tumor cells can be achieved, which will greatly improve the PDT efficacy. Moreover, the GNR can also be utilized for photothermic imaging as well as PTT for tumors. It is found that the combination of PTT and PDT under the guidance of dual-mode imaging greatly enhances the antitumor effects, while possessing negligible systematic toxicity.


Asunto(s)
Oro/química , Nanotubos/química , Fotoquimioterapia/métodos , Péptidos de Penetración Celular/química
19.
Small ; 13(37)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28783253

RESUMEN

Tumor hypoxia severely limits the efficacy of traditional photodynamic therapy (PDT). Here, a liposome-based nanoparticle (designated as LipoMB/CaO2 ) with O2 self-sufficient property for dual-stage light-driven PDT is demonstrated to address this problem. Through a short time irradiation, 1 O2 activated by the photosensitizer methylene blue (MB) can induce lipid peroxidation to break the liposome, and enlarge the contact area of CaO2 with H2 O, resulting in accelerated O2 production. Accelerated O2 level further regulates hypoxic tumor microenvironment and in turn improves 1 O2 generation by MB under another long time irradiation. In vitro and in vivo experiments also demonstrate the superior competence of LipoMB/CaO2 to alleviate tumor hypoxia, suppress tumor growth and antitumor metastasis with low side-effect. The O2 self-sufficient LipoMB/CaO2 nanoplatform with dual-stage light manipulation is a successful attempt for PDT against hypoxic tumor.


Asunto(s)
Luz , Nanopartículas/química , Oxígeno/química , Fotoquimioterapia , Hipoxia Tumoral , Animales , Apoptosis , Peso Corporal , Compuestos de Calcio/química , Línea Celular Tumoral , Liposomas , Azul de Metileno , Ratones , Nanopartículas/ultraestructura , Necrosis , Óxidos/química , Carga Tumoral , Difracción de Rayos X
20.
Macromol Rapid Commun ; 38(21)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28960608

RESUMEN

In recent decades, diverse drug delivery systems (DDS) constructed by self-assembly of dendritic peptides have shown advantages and improvable potential for cancer treatment. Here, an arginine-enriched dendritic amphiphilic chimeric peptide CRRK(RRCG(Fmoc))2 containing multiple thiol groups is programmed to form drug-loaded nano-micelles by self-assembly. With a rational design, the branched hydrophobic groups (Fmoc) of the peptides provide a strong hydrophobic force to prevent the drug from premature release, and the reduction-sensitive disulfide linkages formed between contiguous peptides can control drug release under reducing stimulation. As expected, specific to multidrug resistance (MDR) tumor cells, the arginine-enriched peptide/drug (PD) nano-micelles show accurate nuclear localization ability to prevent the drug being pumped by P-glycoprotein (P-gp) in vitro, as well as exhibiting satisfactory efficacy for MDR tumor treatment in vivo. This design successfully realizes stimuli-responsive drug release aimed at MDR tumor cells via an ingenious sequence arrangement.


Asunto(s)
Dendrímeros/química , Sistemas de Liberación de Medicamentos , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Péptidos/química , Animales , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Liberación de Fármacos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Micelas , Células 3T3 NIH , Nanopartículas/química , Neoplasias/patología , Tejido Subcutáneo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA