Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Appl Microbiol Biotechnol ; 107(7-8): 2403-2412, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36929192

RESUMEN

Polyketides are a class of natural products with astonishing structural diversities, fascinating biological activities, and a versatile of applications. In polyketides biosynthesis, acyltransferases (ATs) are the 'gatekeeping' enzymes selecting the specific CoA-activated acyl groups as building blocks and transferring them onto the phosphopantetheine arm of acyl carrier proteins (ACPs) to enable the following condensation reactions to assemble the polyketide chain. Herein, the Art2 protein from aurantinins, a group of the antibacterial polyketides, is characterized in vitro as an AT that can load a CoA-activated succinyl unit onto the first ACP domain of Art17 (ACPArt17-1). In addition, another two proteins, GbnB and EtnB, involved in the biosynthesis of gladiolin and etnangien respectively, were traced by literature mining, homologous searching, and product structure analysis and then identified as functional succinyl-CoA ATs by the ACPArt17-1 assays. Taken together, by the assay method employing ACPArt17-1 as an acyl acceptor, we identified three ATs that can introduce a succinyl unit into the polyketide assembly line, which enriches the toolbox of polyketide biosynthetic enzymes and sets a stage for incorporating a succinyl unit into polyketide backbones in synthetic biological manners. KEY POINTS: • Three acyltransferases that are able to load ACP with a succinyl unit were characterized in vitro. • ACPArt17-1 can be used as an acceptor to assay succinyl-CoA AT from different polyketides. • The succinyl unit can be incorporated into polyketides assembly process.


Asunto(s)
Aciltransferasas , Policétidos , Aciltransferasas/metabolismo , Policétidos/metabolismo , Acilcoenzima A/metabolismo , Antibacterianos , Sintasas Poliquetidas/metabolismo
2.
Angew Chem Int Ed Engl ; 58(47): 17026-17032, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31523900

RESUMEN

Replacing the commonly used nonaqueous liquid electrolytes in rechargeable sodium batteries with polymer solid electrolytes is expected to provide new opportunities to develop safer batteries with higher energy densities. However, this poses challenges related to the interface between the Na-metal anode and polymer electrolytes. Driven by systematically investigating the interface properties, an improved interface is established between a composite Na/C metal anode and electrolyte. The observed chemical bonding between carbon matrix of anode with solid polymer electrolyte, prevents delamination, and leads to more homogeneous plating and stripping, which reduces/suppresses dendrite formation. Full solid-state polymer Na-metal batteries, using a high mass loaded Na3 V2 (PO4 )3 cathode, exhibit ultrahigh capacity retention of more than 92 % after 2 000 cycles and over 80 % after 5 000 cycles, as well as the outstanding rate capability.

3.
Inorg Chem ; 54(7): 3477-84, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25756843

RESUMEN

A new perovskite cathode, Sr0.95Ce0.05CoO3-δ, performs well for oxygen-reduction reactions in solid oxide fuel cells (SOFCs). We gain insight into the crystal structure of Sr1-xCexCoO3-δ (x = 0.05, 0.1) and temperature-dependent structural evolution of Sr0.95Ce0.05CoO3-δ by X-ray diffraction, neutron powder diffraction, and scanning transmission electron microscopy experiments. Sr0.9Ce0.1CoO3-δ shows a perfectly cubic structure (a = a0), with a large oxygen deficiency in a single oxygen site; however, Sr0.95Ce0.05CoO3-δ exhibits a tetragonal perovskite superstructure with a double c axis, defined in the P4/mmm space group, that contains two crystallographically different cobalt positions, with distinct oxygen environments. The structural evolution of Sr0.95Ce0.05CoO3-δ at high temperatures was further studied by in situ temperature-dependent NPD experiments. At 1100 K, the oxygen atoms in Sr0.95Ce0.05CoO3-δ show large and highly anisotropic displacement factors, suggesting a significant ionic mobility. The test cell with a La0.8Sr0.2Ga0.83Mg0.17O3-δ-electrolyte-supported (∼300 µm thickness) configuration yields peak power densities of 0.25 and 0.48 W cm(-2) at temperatures of 1023 and 1073 K, respectively, with pure H2 as the fuel and ambient air as the oxidant. The electrochemical impedance spectra evolution with time of the symmetric cathode fuel cell measured at 1073 K shows that the Sr0.95Ce0.05CoO3-δ cathode possesses superior ORR catalytic activity and long-term stability. Mixed ionic-electronic conduction properties of Sr0.95Ce0.05CoO3-δ account for its good performance as an oxygen-reduction catalyst.


Asunto(s)
Cerio/química , Cobalto/química , Suministros de Energía Eléctrica , Estroncio/química , Cristalografía por Rayos X , Electrodos , Oxidación-Reducción , Temperatura
4.
J Agric Food Chem ; 72(13): 7299-7307, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38504621

RESUMEN

Abscisic acid (ABA) is an important plant hormone with a variety of physiological functions such as regulating plant growth and helping plants to resist an adverse growth environment. However, at present, the ABA yield of heterologous biosynthesis by metabolic engineering is still low for industrial production. Therefore, five Botrytis cinerea genes (bcaba1, bcaba2, bcaba3, bcaba4, and bccpr1) related to ABA biosynthesis were expressed in Yarrowia lipolytica PO1h; its ABA production was 24.33 mg/L. By increasing the copy number of IDI and ERG12S, ERG20YMT, and bcaba3, bcaba1 genes, the yield of ABA was increased to 54.51 mg/L. By locating HMG-CoA reductase and HMG-CoA synthase in mitochondria, acetyl-CoA in mitochondria was converted into mevalonate; this increased the ABA yield to 102.12 mg/L. Finally, in the fed-batch fermentation process with the addition of dodecane, the ABA yield was up to 1212.57 mg/L, which is the highest yield of heterologous production of ABA by metabolic engineering.


Asunto(s)
Ácido Abscísico , Yarrowia , Ácido Abscísico/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Fermentación , Ingeniería Metabólica
5.
Nat Commun ; 15(1): 241, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38172095

RESUMEN

The unequal distribution of medical resources and scarcity of experienced practitioners confine access to bronchoscopy primarily to well-equipped hospitals in developed regions, contributing to the unavailability of bronchoscopic services in underdeveloped areas. Here, we present an artificial intelligence (AI) co-pilot bronchoscope robot that empowers novice doctors to conduct lung examinations as safely and adeptly as experienced colleagues. The system features a user-friendly, plug-and-play catheter, devised for robot-assisted steering, facilitating access to bronchi beyond the fifth generation in average adult patients. Drawing upon historical bronchoscopic videos and expert imitation, our AI-human shared control algorithm enables novice doctors to achieve safe steering in the lung, mitigating misoperations. Both in vitro and in vivo results underscore that our system equips novice doctors with the skills to perform lung examinations as expertly as seasoned practitioners. This study offers innovative strategies to address the pressing issue of medical resource disparities through AI assistance.


Asunto(s)
Pilotos , Robótica , Adulto , Humanos , Broncoscopios , Inteligencia Artificial , Broncoscopía/métodos
6.
IEEE J Biomed Health Inform ; 27(7): 3270-3281, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37071523

RESUMEN

Common medical image segmentation tasks require large training datasets with pixel-level annotations which are very expensive and time-consuming to prepare. To overcome such limitation and achieve the desired segmentation accuracy, a novel Weakly-Interactive-Mixed Learning (WIML) framework is proposed by efficiently using weak labels. On one hand, utilize weak labels to reduce annotation time for high-quality strong labels by designing a Weakly-Interactive Annotation (WIA) part of the WIML which prudently introduces interactive learning into the weakly-supervised segmentation strategy. On the other hand, utilize weak labels and very few strong labels to achieve desired segmentation accuracy by designing a Mixed-Supervised Learning (MSL) part of the WIML which can boost the segmentation accuracy by providing strong prior knowledge during training. Besides, a multi-task Full-Parameter-Sharing Network (FPSNet) is proposed to better implement this framework. Specifically, to further reduce annotation time, attention modules (scSE) are integrated into FPSNet to improve the class activation map (CAM) performance for the first time. To further improve segmentation accuracy, a Full-Parameter-Sharing (FPS) strategy is designed in FPSNet to alleviate the overfitting of the segmentation task supervised by very few strong labels. The proposed method is validated on the BraTS 2019 and LiTS 2017 datasets, and experiments demonstrate that the proposed method WIML-FPSNet outperforms several state-of-the-art segmentation methods with minimal annotation efforts.


Asunto(s)
Conocimiento , Entrenamiento Simulado , Humanos , Extremidad Superior , Procesamiento de Imagen Asistido por Computador
7.
Adv Mater ; 33(32): e2100921, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34218476

RESUMEN

Sulfide solid electrolytes (SEs) are recognized as one of the most promising candidates for all-solid-state batteries (ASSBs), due to their superior ionic conductivity and remarkable ductility. However, poor air stability, complex synthesis process, low yield, and high production cost obstruct the large-scale application of sulfide SEs. Herein, a one-step gas-phase synthesis method for sulfide SEs with oxide raw materials in ambient air, completely getting rid of the glovebox and thus making large-scale production possible, is reported. By adjusting substituted elements and concentrations, the ionic conductivity of Li4- x Sn1- x Mx S4 can reach 2.45 mS cm-1 , which represents the highest value among all reported moist-air-stable and recoverable lithium-ion sulfide SEs reported. Furthermore, ASSBs with air/water-exposed and moderate-temperature-treated Li3.875 Sn0.875 As0.125 S4 even maintains superior performances with the highest reversible capacity (188.4 mAh g-1 ) and the longest cycle life (210 cycles), which also breaks the record. Therefore, it may become one of the most critical breakthroughs during the development of sulfide ASSBs toward its practical application and commercialization.

8.
Micromachines (Basel) ; 12(7)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34357254

RESUMEN

Intra-operative target pose estimation is fundamental in minimally invasive surgery (MIS) to guiding surgical robots. This task can be fulfilled by the 2-D/3-D rigid registration, which aligns the anatomical structures between intra-operative 2-D fluoroscopy and the pre-operative 3-D computed tomography (CT) with annotated target information. Although this technique has been researched for decades, it is still challenging to achieve accuracy, robustness and efficiency simultaneously. In this paper, a novel orthogonal-view 2-D/3-D rigid registration framework is proposed which combines the dense reconstruction based on deep learning and the GPU-accelerated 3-D/3-D rigid registration. First, we employ the X2CT-GAN to reconstruct a target CT from two orthogonal fluoroscopy images. After that, the generated target CT and pre-operative CT are input into the 3-D/3-D rigid registration part, which potentially needs a few iterations to converge the global optima. For further efficiency improvement, we make the 3-D/3-D registration algorithm parallel and apply a GPU to accelerate this part. For evaluation, a novel tool is employed to preprocess the public head CT dataset CQ500 and a CT-DRR dataset is presented as the benchmark. The proposed method achieves 1.65 ± 1.41 mm in mean target registration error(mTRE), 20% in the gross failure rate(GFR) and 1.8 s in running time. Our method outperforms the state-of-the-art methods in most test cases. It is promising to apply the proposed method in localization and nano manipulation of micro surgical robot for highly precise MIS.

9.
Nat Chem ; 13(11): 1061-1069, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34635811

RESUMEN

Super-concentrated water-in-salt electrolytes make high-voltage aqueous batteries possible, but at the expense of high cost and several adverse effects, including high viscosity, low conductivity and slow kinetics. Here, we observe a concentration-dependent association between CO2 and TFSI anions in water that reaches maximum strength at 5 mol kg-1 LiTFSI. This TFSI-CO2 complex and its reduction chemistry allow us to decouple the interphasial responsibility of an aqueous electrolyte from its bulk properties, hence making high-voltage aqueous Li-ion batteries practical in dilute salt-in-water electrolytes. The CO2/salt-in-water electrolyte not only inherits the wide electrochemical stability window and non-flammability from water-in-salt electrolytes but also successfully circumvents the numerous disadvantages induced by excessive salt. This work represents a deviation from the water-in-salt pathway that not only benefits the development of practical aqueous batteries, but also highlights how the complex interactions between electrolyte components can be used to manipulate interphasial chemistry.

10.
Adv Mater ; 32(2): e1904427, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31782981

RESUMEN

Water-in-salt (WiS) electrolytes provide a new pathway to widen the electrochemical window of aqueous electrolytes. However, their formulation strongly depends on the solubility of the chosen salts, imposing a stringent restriction on the number of possible WiS systems. This issue becomes more severe for aqueous Na-ion batteries (ANIBs) owing to the relatively lower solubility of sodium salts compared to its alkaline cousins (Li, K, and Cs). A new class of the inert-cation-assisted WiS (IC-WiS) electrolytes containing the tetraethylammonium (TEA+ ) inert cation is reported. The Na IC-WiS electrolyte at a superhigh concentration of 31 mol kg-1 exhibits a wide electrochemical window of 3.3 V, suppresses transition metal dissolution from the cathode, and ensures singular intercalation of Na into both cathode and anode electrodes during cycling, which is often problematic in mixed alkali cation systems such as K-Na and Li-Na. Owing to these unique advantages of the IC-WiS electrolyte, the NaTiOPO4 anode and Prussian blue analog Na1.88 Mn[Fe(CN)6 ]0.97 ·1.35H2 O cathode can be coupled to construct a full ANIB, delivering an average voltage of 1.74 V and a high energy density of 71 Wh kg-1 with a capacity retention of 90% after 200 cycles at 0.25C and of 76% over 800 cycles at 1C.

11.
ACS Appl Mater Interfaces ; 9(46): 40215-40223, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29076718

RESUMEN

Rechargeable sodium-ion batteries have drawn increasing attention as candidates for the post lithium-ion batteries in large-scale energy storage systems. Layered oxides are the most promising cathode materials and their pure phases (e.g., P2, O3) have been widely investigated. Here we report a series of cathode materials with O3/P2 hybrid phase for sodium-ion batteries, which possesses advantages of both P2 and O3 structures. The designed material, Na0.78Ni0.2Fe0.38Mn0.42O2, can deliver a capacity of 86 mAh g-1 with great rate capability and cycling performance. 66% capacity is still maintained when the current rate reaches as high as 10C, and the capacity retention is 90% after 1500 cycles. Moreover, in situ XRD was performed to examine the structure change during electrochemical testing in different voltage ranges, and the results demonstrate 4 V as the optimized upper voltage limit, with which smaller polarization, better structural stability, and better cycling performance are achieved. The results obtained here provide new insights in designing cathode materials with optimal structure and improved performance for sodium-ion batteries.

12.
Oncotarget ; 7(48): 78421-78432, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27191997

RESUMEN

A biomimetic microsystem might compensate costly and time-consuming animal metastatic models. Herein we developed a biomimetic microfluidic model to study cancer metastasis. Primary cells isolated from different organs were cultured on the microlfuidic model to represent individual organs. Breast and salivary gland cancer cells were driven to flow over primary cell culture chambers, mimicking dynamic adhesion of circulating tumor cells (CTCs) to endothelium in vivo. These flowing artificial CTCs showed different metastatic potentials to lung on the microfluidic model. The traditional nude mouse model of lung metastasis was performed to investigate the physiological similarity of the microfluidic model to animal models. It was found that the metastatic potential of different cancer cells assessed by the microfluidic model was in agreement with that assessed by the nude mouse model. Furthermore, it was demonstrated that the metastatic inhibitor AMD3100 inhibited lung metastasis effectively in both the microfluidic model and the nude mouse model. Then the microfluidic model was used to mimick liver and bone metastasis of CTCs and confirm the potential for research of multiple-organ metastasis. Thus, the metastasis of CTCs to different organs was reconstituted on the microfluidic model. It may expand the capabilities of traditional cell culture models, providing a low-cost, time-saving, and rapid alternative to animal models.


Asunto(s)
Neoplasias de la Mama/patología , Movimiento Celular , Dispositivos Laboratorio en un Chip , Neoplasias Pulmonares/secundario , Técnicas Analíticas Microfluídicas/instrumentación , Células Neoplásicas Circulantes/patología , Neoplasias de las Glándulas Salivales/patología , Animales , Antineoplásicos/farmacología , Bencilaminas , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Adhesión Celular , Movimiento Celular/efectos de los fármacos , Quimiocinas/metabolismo , Técnicas de Cocultivo , Ciclamas , Femenino , Compuestos Heterocíclicos/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/prevención & control , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Células Neoplásicas Circulantes/efectos de los fármacos , Células Neoplásicas Circulantes/metabolismo , Especificidad de Órganos , Cultivo Primario de Células , Ratas Sprague-Dawley , Neoplasias de las Glándulas Salivales/tratamiento farmacológico , Neoplasias de las Glándulas Salivales/metabolismo , Factores de Tiempo
13.
ACS Appl Mater Interfaces ; 8(48): 32631-32636, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27934144

RESUMEN

A non-sintered method with toothpaste electrode for improving electrode ionic conductivity and reducing interface impedance is introduced in solid-state rechargeable batteries. At 70 °C, this novel solid-state battery can deliver a capacity of 80 mAh g-1 in a voltage range of 2.5-3.8 V at 0.1C rate using layered oxide Na0.66Ni0.33Mn0.67O2, Na-ß″-Al2O3 and sodium metal as cathode, electrolyte and anode, respectively. Moreover, the battery shows a superior stability and high reversibility, with a capacity retention of 90% after 10 000 cycles at 6C rate and a capacity of 79 mAh g-1 is recovered when the current rate is returned to 0.1C. Furthermore, a very thick electrode with active material mass loading of 6 mg cm-2 also presents a reasonable electrochemical performance. These results demonstrate that this is a promising approach to solve the interface problem and would open a new route in designing the next generation solid-state battery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA