Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nucleic Acids Res ; 52(16): 9397-9406, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39077944

RESUMEN

G-quadruplex (G4) structures play integral roles in modulating biological functions and can be regulated by small molecules. The MYC gene is critical during tumor initiation and malignant progression, in which G4 acts as an important modulation motif. Herein, we reported the MYC promoter G4 recognized by a platinum(II) compound Pt-phen. Two Pt-phen-MYC G4 complex structures in 5 mM K+ were determined by NMR. The Pt-phen first strongly binds the 3'-end of MYC G4 to form a 1:1 3'-end binding complex and then binds 5'-end to form a 2:1 complex with more Pt-phen. In the complexes, the Pt-phen molecules are well-defined and stack over four bases at the G-tetrad for a highly extensive π-π interaction, with the Pt atom aligning with the center of the G-tetrad. The flanking residues were observed to rearrange and cover on top of Pt-phen to stabilize the whole complex. We further demonstrated that Pt-phen targets G4 DNA in living cells and represses MYC gene expression in cancer cells. Our work elucidated the structural basis of ligand binding to MYC promoter G4. The platinum compound bound G4 includes multiple complexes formation, providing insights into the design of metal ligands targeting oncogene G4 DNA.


Asunto(s)
G-Cuádruplex , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc , G-Cuádruplex/efectos de los fármacos , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/química , ADN/química , ADN/metabolismo , Compuestos de Platino/química , Genes myc , Platino (Metal)/química
2.
Nucleic Acids Res ; 50(14): 7816-7828, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35766415

RESUMEN

G-quadruplex (G4) transitions play integral roles in regulating biological functions and can be modified by ligands. However, little is known about G4 transitions. Herein, we reveal distinct pathways of a platinum(II) compound Pt-phen converting parallel-stranded MYC G4 to a hybrid-type structure. Three NMR structures, 1:1 5'-end binding, 1:1 3'-end binding and 2:1 Pt-phen-MYC G4 complexes, were determined by NMR. We find that Pt-phen drives G4 transition at a low ratio. Under physiological 100 mM K+ conditions, a significant stable hydrogen-bonded T:T:A triad is formed at 3'-end of hybrid-type Myc1234, and consequently, Pt-phen first binds the 5'-end to form a 1:1 5'-end binding complex and then disrupts the 3' T:T:A triad and binds 3'-end to form a 2:1 complex with more Pt-phen. Remarkably, the G4 transition pathway is different in 5 mM K+ with Pt-phen first binding the 3'-end and then the 5'-end. 'Edgewise-loop and flanking/ligand/G-tetrad' sandwich structure formation and terminal T:T:A triad stabilization play decisive roles in advancing and altering transition pathways. Our work is the first to elucidate the molecular structures of G4 transitions driven by a small molecule. The ligand-driven G4 transition is a dynamic process that includes a quick G4 transition and multiple complexes formation.


Asunto(s)
G-Cuádruplex , Compuestos de Platino , Ligandos , Espectroscopía de Resonancia Magnética , Estructura Molecular
3.
Angew Chem Int Ed Engl ; : e202410803, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180126

RESUMEN

The integration of pyroptosis and ferroptosis hybrid cell death induction to augment immune activation represents a promising avenue for anti-tumor treatment, but there is a lack of research. Herein, we developed two iridium(III)-triphenylamine photosensitizers, IrC and IrF, with the capacity to disrupt redox balance and induce photo-driven cascade damage to DNA and Kelch-like ECH-associated protein 1 (KEAP1). The activation of the absent in melanoma 2 (AIM2)-related cytoplasmic nucleic acid-sensing pathway, triggered by damaged DNA, leads to the induction of gasdermin D (GSDMD)-mediated pyroptosis. Simultaneously, iron homeostasis, regulated by the KEAP1/nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase 1 (HO-1) pathway, serves as a pivotal bridge, facilitating not only the induction of gasdermin E (GSDME)-mediated non-canonical pyroptosis, but also ferroptosis in synergy with glutathione peroxidase 4 (GPX4) depletion. The collaborative action of pyroptosis and ferroptosis generates a synergistic effect that elicits immunogenic cell death, stimulates a robust immune response and effectively inhibits tumor growth in vivo. Our work introduces the first metal-based small molecule dual-inducers of pyroptosis and ferroptosis for potent cancer immunotherapy, and highlights the significance of iron homeostasis as a vital hub connecting synergistic effects of pyroptosis and ferroptosis.

4.
Angew Chem Int Ed Engl ; 62(36): e202305645, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37464955

RESUMEN

G-quadruplexes (G4s) have been revived as promising therapeutic targets with the development of immunotherapy, but the G4-mediated immune response remains unclear. We designed a novel class of G4-binding organic-platinum hybrids, L1 -cispt and L1 -transpt, with spatial matching for G4 binding and G4 DNA reactivity for binding site locking. The solution structure of L1 -transpt-MYT1L G4 demonstrated the effectiveness of the covalent binding and revealed the covalent binding-guided dynamic balance, accompanied by the destruction of the A5-T17 base pairs to achieve the covalent binding of the platinum unit to N7 of the G6 residue. Furthermore, L1 -cispt- and L1 -transpt-mediated genomic dysfunction could activate the retinoic acid-induced gene I (RIG-I) pathway and induce immunogenic cell death (ICD). The use of L1 -cispt/L1 -transpt-treated dying cells as therapeutic vaccines stimulated a robust immune response and effectively inhibited tumor growth in vivo. Our findings highlight the importance of the rational combination of specific spatial recognition and covalent locking in G4-trageting drug design and their potential in immunotherapy.


Asunto(s)
G-Cuádruplex , Neoplasias , Platino (Metal) , Sitios de Unión , Regiones Promotoras Genéticas , Inmunoterapia , Ligandos , Neoplasias/tratamiento farmacológico
5.
J Am Chem Soc ; 144(26): 11878-11887, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35749293

RESUMEN

The nucleic acid G-quadruplex (G4) has emerged as a promising therapeutic target for a variety of diseases such as cancer and neurodegenerative disease. Among small-molecule G4-binders, pyridostatin (PDS) and its derivatives (e.g., PyPDS) exhibit high specificity to G4s, but the structural basis for their specific recognition of G4s remains unknown. Here, we presented two solution structures of PyPDS and PDS with a quadruplex-duplex hybrid. The structures indicate that the rigid aromatic rings of PyPDS/PDS linked by flexible amide bonds match adaptively with G-tetrad planes, enhancing π-π stacking and achieving specific recognition of G4s. The aliphatic amine side chains of PyPDS/PDS adjust conformation to interact with the phosphate backbone via hydrogen bonding and electrostatic interactions, increasing affinity for G4s. Moreover, the N-H of PyPDS/PDS amide bonds interacts with two O6s of G-tetrad guanines via hydrogen bonding, achieving a further increase in affinity for G4s, which is different from most G4 ligands. Our findings reveal from structural perspectives that the rational assembly of rigid and flexible structural units in a ligand can synergistically improve the selectivity and affinity for G4s through spatial selective and adaptive matching.


Asunto(s)
G-Cuádruplex , Enfermedades Neurodegenerativas , Amidas , Aminoquinolinas , ADN/química , Humanos , Ligandos , Ácidos Picolínicos
6.
Angew Chem Int Ed Engl ; 61(15): e202114600, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35132748

RESUMEN

The nucleus is considered the ideal target for anti-tumor therapy because DNA and some enzymes in the nucleus are the main causes of cell canceration and malignant proliferation. However, nuclear target drugs with good biosafety and high efficiency in cancer treatment are rare. Herein, a nuclear-targeted material MeTPAE with aggregation-induced emission (AIE) characteristics was developed based on a triphenylamine structure skeleton. MeTPAE can not only interact with histone deacetylases (HDACs) to inhibit cell proliferation but also damage telomere and nucleic acids precisely through photodynamic treatment (PDT). The cocktail strategy of MeTPAE caused obvious cell cycle arrest and showed excellent PDT anti-tumor activity, which offered new opportunities for the effective treatment of malignant tumors.


Asunto(s)
Neoplasias , Fotoquimioterapia , Puntos de Control del Ciclo Celular , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
7.
Angew Chem Int Ed Engl ; 61(43): e202210988, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-35979672

RESUMEN

Activation of the cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) pathway is a potent anticancer immunotherapeutic strategy, and the induction of pyroptosis is a feasible way to stimulate the anticancer immune responses. Herein, two PtII complexes (Pt1 and Pt2) were designed as photoactivators of the cGAS-STING pathway. In response to light irradiation, Pt1 and Pt2 could damage mitochondrial/nuclear DNA and the nuclear envelope to activate the cGAS-STING pathway, and concurrently induce pyroptosis in cancer cells, which evoked an intense anticancer immune response in vitro and in vivo. Overall, we present the first photoactivator of the cGAS-STING pathway, which may provide an innovative design strategy for anticancer immunotherapy.


Asunto(s)
Neoplasias , Nucleotidiltransferasas , Nucleotidiltransferasas/metabolismo , Interferones/farmacología , Platino (Metal)/farmacología , Piroptosis , Proteínas de la Membrana/metabolismo , Transducción de Señal , Inmunoterapia , ADN/metabolismo , Antivirales/farmacología , Neoplasias/terapia
8.
Anal Chem ; 93(3): 1612-1619, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33381958

RESUMEN

The misregulation of nucleic acids behavior leads to cell dysfunction and induces serious diseases. A ratiometric fluorescence probe is a powerful tool to study the dynamic behavior and function relationships of nucleic acids. However, currently, no such effective probe has been reported for in situ, real-time tracking of nucleic acids in living cells and tissue sections. Herein, the unique probe named QPP-AS was rationally designed for ratiometric fluorescence response to nucleic acids through skillful regulation of the intramolecular charge-transfer capabilities of the electron acceptor and donor. Encouraged by the advantages of the selective nucleic acid response, ideal biocompatibility, and high signal-to-noise ratio, QPP-AS has been applied for in situ, real-time ratiometric fluorescence imaging of nucleic acids in living cells for the first time. Furthermore, we have demonstrated that QPP-AS is capable of visualizing the dynamic behavior of nucleic acids during different cellular processes (e.g., cell division and apoptosis) by ratiometric fluorescence imaging. More significantly, QPP-AS has been successfully used for ratiometric fluorescence imaging of nucleic acids in human tissue sections, which provides not only the cell contour, nuclear morphology, and nuclear-plasma ratio but also the nucleic acid content information and may greatly improve accuracy in clinicopathological diagnosis.


Asunto(s)
Adenocarcinoma Bronquioloalveolar/diagnóstico por imagen , Colorantes Fluorescentes/química , Ácidos Nucleicos/análisis , Imagen Óptica , Células A549 , Humanos
9.
Angew Chem Int Ed Engl ; 60(27): 15095-15100, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33835669

RESUMEN

Ferroptosis regulates cell death through reactive oxygen species (ROS)-associated lipid peroxide accumulation, which is expected to affect the structure and polarity of lipid droplets (LDs), but with no clear evidence. Herein, we report the first example of an LD/nucleus dual-targeted ratiometric fluorescent probe, CQPP, for monitoring polarity changes in the cellular microenvironment. Due to the donor-acceptor structure of CQPP, it offers ratiometric fluorescence emission and fluorescence lifetime signals that reflect polarity variations. Using nucleus imaging as a reference, CQPP was applied to report the increase in LD polarity and the homogenization of polarity between LDs and cytoplasm in the ferroptosis model. This LD/nucleus dual-targeted fluorescent probe shows the great potential of using fluorescence imaging to study ferroptosis and ferroptosis-related diseases.


Asunto(s)
Núcleo Celular/metabolismo , Colorantes Fluorescentes/química , Gotas Lipídicas/metabolismo , Ferroptosis , Colorantes Fluorescentes/síntesis química , Humanos , Gotas Lipídicas/química , Estructura Molecular , Especies Reactivas de Oxígeno/metabolismo
10.
Angew Chem Int Ed Engl ; 60(38): 20833-20839, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34288320

RESUMEN

The sequence-dependent DNA secondary structures possess structure polymorphism. To date, studies on regulated ligands mainly focus on individual DNA secondary topologies, while lack focus on quadruplex-duplex hybrids (QDHs). Here, we design an organic-metal hybrid ligand L1 Pt(dien), which matches and selectively binds one type of QDHs with lateral duplex stem-loop (QLDH) with high affinity, while shows poor affinity for other QDHs and individual G4 or duplex DNA. The solution structure of QLDH MYT1L-L1 Pt(dien) complex was determined by NMR. The structure reveals that L1 Pt(dien) presents a chair-type conformation, whose large aromatic "chair surface" intercalates into the G-quadruplex-duplex interface via π-π stacking and "backrest" platinum unit interacts with duplex region through hydrogen bonding and electrostatic interactions, showing a highly matched lock-key binding mode. Our work provided guidance for spatial matching design of selectively targeting ligands to QDH structures.

11.
Angew Chem Int Ed Engl ; 60(28): 15340-15343, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33899272

RESUMEN

G-quadruplexes (G4s) are prevalent in oncogenes and are potential antitumor drug targets. However, binding selectivity of compounds to G4s still faces challenges. Herein, we report a platinum(II) complex (Pt1), whose affinity to G4-DNA is activated by adaptive binding and selectivity controlled by binding kinetics. The resolved structure of Pt1/VEGF-G4 (a promoter G4) shows that Pt1 matches 3'-G-tetrad of VEGF-G4 through Cl- -dissociation and loop rearrangement of VEGF-G4. Binding rate constants are determined by coordination bond breakage/formation, correlating fully with affinities. The selective rate-determining binding step, Cl- -dissociation upon G4-binding, is 2-3 orders of magnitude higher than dsDNA. Pt1 potently targets G4 in living cells, effectively represses VEGF expression, and inhibits vascular growth in zebrafish. We show adaptive G4-binding activation and controlled by kinetics, providing a complementary design principle for compounds targeting G4 or similar biomolecules.


Asunto(s)
Antineoplásicos/farmacología , G-Cuádruplex/efectos de los fármacos , Compuestos Organoplatinos/farmacología , Antineoplásicos/química , Sitios de Unión/efectos de los fármacos , Células HeLa , Humanos , Cinética , Estructura Molecular , Compuestos Organoplatinos/química
12.
Angew Chem Int Ed Engl ; 59(24): 9719-9726, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32173994

RESUMEN

G-quadruplex DNA show structural polymorphism, leading to challenges in the use of selective recognition probes for the accurate detection of G-quadruplexes in vivo. Herein, we present a tripodal cationic fluorescent probe, NBTE, which showed distinguishable fluorescence lifetime responses between G-quadruplexes and other DNA topologies, and fluorescence quantum yield (Φf ) enhancement upon G-quadruplex binding. We determined two NBTE-G-quadruplex complex structures with high Φf values by NMR spectroscopy. The structures indicated NBTE interacted with G-quadruplexes using three arms through π-π stacking, differing from that with duplex DNA using two arms, which rationalized the higher Φf values and lifetime response of NBTE upon G-quadruplex binding. Based on photon counts of FLIM, we detected the percentage of G-quadruplex DNA in live cells with NBTE and found G-quadruplex DNA content in cancer cells is 4-fold that in normal cells, suggesting the potential applications of this probe in cancer cell detection.


Asunto(s)
ADN/química , G-Cuádruplex , Línea Celular Tumoral , ADN/análisis , Humanos , Fotones
13.
Angew Chem Int Ed Engl ; 59(43): 19229-19236, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32662563

RESUMEN

It is of great significance to track the platinum drugs in real time with super-resolution to elucidate their mechanism of action, such as their behavior and distribution in live cells. Such information is required for further drug development. However, it is always challenging to design platinum complexes suitable for such research. Herein, we design a luminescent building block (L) for metal complexes and a dinuclear platinum complex (Pt2 L) for super-resolution imaging. Because of its super-large Stokes shift and excellent photophysical properties, Pt2 L is capable of serving as an ideal candidate for super-resolution imaging with extremely low luminescence background and high photobleaching resistance. Moreover, upon light stimulation, a matter flux of Pt2 L escaping from autolysosomes to nucleus was observed, which represents a new transportation path. Utilizing the photoactivated escape properties, we can regulate the nuclear accessibility of Pt2 L form autolysosomes with photo-selectivity, which provides a new way to improve the targeting of platinum drugs.


Asunto(s)
Color , Lisosomas/metabolismo , Compuestos de Platino/química , Células A549 , Transporte Biológico , Núcleo Celular/metabolismo , Células HeLa , Humanos , Microscopía Fluorescente/métodos , Mitocondrias/metabolismo , Compuestos de Platino/metabolismo
14.
J Med Chem ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250558

RESUMEN

Triggering ferroptosis represents a promising anticancer therapeutic strategy, but the development of a selective ferroptosis inducer for cancer-specific therapy remains a great challenge. Herein, a H2S-responsive iridium(III) complex NA-Ir has been well-designed as a ferroptosis inducer. NA-Ir could selectively light up H2S-rich cancer cells, primarily localize in mitochondria, intercalate into mitochondrial DNA (mtDNA), and induce mtDNA damage, exhibiting higher anticancer activity under light irradiation. Mechanistic studies showed that NA-Ir-mediated PDT triggered lipid peroxidation and glutathione peroxidase 4 downregulation through ROS production and GSH depletion, resulting in ferroptosis through multiple pathways. Moreover, the intense mtDNA damage can activate the cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) pathway, leading to ferritinophagy and further ferroptosis. RNA-sequencing analysis showed that NA-Ir-mediated PDT mainly affects the expression of genes related to ferroptosis, autophagy, and cancer immunity. This study demonstrates the first cancer-specific example with ferroptosis and cGAS-STING activation, which provides a new strategy for multimodal synergistic therapy.

15.
Chem Sci ; 15(25): 9756-9774, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38939132

RESUMEN

G-quadruplexes (G4s) are atypical nucleic acid structures involved in basic human biological processes and are regulated by small molecules. To date, pyridostatin and its derivatives [e.g., PyPDS (4-(2-aminoethoxy)-N 2,N 6-bis(4-(2-(pyrrolidin-1-yl) ethoxy) quinolin-2-yl) pyridine-2,6-dicarboxamide)] are the most widely used G4-binding small molecules and considered to have the best G4 specificity, which provides a new option for the development of cisplatin-binding DNA. By combining PyPDS with cisplatin and its analogs, we synthesize three platinum complexes, named PyPDSplatins. We found that cisplatin with PyPDS (CP) exhibits stronger specificity for covalent binding to G4 domains even in the presence of large amounts of dsDNA compared with PyPDS either extracellularly or intracellularly. Multiomics analysis reveals that CP can effectively regulate G4 functions, directly damage G4 structures, activate multiple antitumor signaling pathways, including the typical cGAS-STING pathway and AIM2-ASC pathway, trigger a strong immune response and lead to potent antitumor effects. These findings reflect that cisplatin-conjugated specific G4 targeting groups have antitumor mechanisms different from those of classic cisplatin and provide new strategies for the antitumor immunity of metals.

16.
Chem Commun (Camb) ; 59(89): 13348-13351, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37872783

RESUMEN

A TTPP probe was developed to distinguish G-quadruplexes (G4s) from other nucleic acid topologies through longer fluorescence lifetimes and higher quantum yields. In fluorescence lifetime imaging microscopy, TTPP enabled the visualization of cytoplasmic G4s in live cells, and showed the potential to detect cell apoptosis and ferroptosis by tracking cytoplasmic G4s.


Asunto(s)
G-Cuádruplex , Ácidos Nucleicos , Colorantes Fluorescentes , Citoplasma , Citosol
17.
Cell Rep ; 42(12): 113472, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37999975

RESUMEN

Mitochondria are dynamic organelles that undergo fusion and fission events, in which the mitochondrial membrane and DNA (mtDNA) play critical roles. The spatiotemporal organization of mtDNA reflects and impacts mitochondrial dynamics. Herein, to study the detailed dynamics of mitochondrial membrane and mtDNA, we rationally develop a dual-color fluorescent probe, mtGLP, that could be used for simultaneously monitoring mitochondrial membrane and mtDNA dynamics via separate color outputs. By combining mtGLP with structured illumination microscopy to monitor mitochondrial dynamics, we discover the formation of nucleoid condensates in damaged mitochondria. We further reveal that nucleoid condensates promoted the peripheral fission of damaged mitochondria via asymmetric segregation. Through simulations, we find that the peripheral fission events occurred when the nucleoid condensates interacted with the highly curved membrane regions at the two ends of the mitochondria. Overall, we show that mitochondrial nucleoid condensates utilize peripheral fission to maintain mitochondrial homeostasis.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Mitocondrias/genética , ADN Mitocondrial/genética , Membranas Mitocondriales , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales
18.
Chem Sci ; 13(28): 8371-8379, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35919711

RESUMEN

Thrombin Binding Aptamer (TBA) is a monomolecular well-defined two G-tetrad antiparallel G-quadruplex DNA that inhibits the activity of human α-thrombin. In this report, we synthesized a quasi-cross-shaped platinum(ii) compound (L'2LPt) with one cyclometalated and two carbene ligands. We found L'2LPt has selective affinity to bind the TBA G-quadruplex. A fibrinogen clotting assay revealed that L'2LPt can abrogate the inhibitory activity of TBA against thrombin. We solved the 1 : 1 L'2LPt-TBA complex structure by NMR, which revealed a unique self-adaptive property of L'2LPt upon binding to TBA. In the complex, a carbene ligand of L'2LPt rotates to pair with the cyclometalated ligand to form a plane stacking over half of the TBA G-tetrad and covered by lateral TT loops. It is notable that the heavy atom Pt stays out of the G-tetrad. Meanwhile, the other carbene ligand remains relatively perpendicular and forms a hydrogen bond with a guanine to anchor the L'2LPt position. This structure exhibits a quasi-cross-shaped Pt(ii) compound bound to the G-quadruplex with an unusual "wall-mounted" binding mode. Our structures provide insights into the specific recognition of antiparallel G-quadruplex DNA by a self-adaptive Pt(ii) compound and useful information for the design of selective G-quadruplex targeting non-planar molecules.

19.
Adv Sci (Weinh) ; 8(8): 2004379, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33898198

RESUMEN

Nuclei and mitochondria are the only cellular organelles containing genes, which are specific targets for efficient cancer therapy. So far, several photosensitizers have been reported for mitochondria targeting, and another few have been reported for nuclei targeting. However, none have been reported for photosensitization in both mitochondria and nucleus, especially in cascade mode, which can significantly reduce the photosensitizers needed for maximal treatment effect. Herein, a light-driven, mitochondria-to-nucleus cascade dual organelle cancer cell ablation strategy is reported. A functionalized iridium complex, named BT-Ir, is designed as a photosensitizer, which targets mitochondria first for photosensitization and subsequently is translocated to a cell nucleus for continuous photodynamic cancer cell ablation. This strategy opens new opportunities for efficient photodynamic therapy.


Asunto(s)
Núcleo Celular/efectos de los fármacos , Iridio/farmacología , Mitocondrias/efectos de los fármacos , Neoplasias/terapia , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Técnicas de Ablación/métodos , Línea Celular Tumoral , Humanos
20.
Adv Sci (Weinh) ; 8(17): e2004566, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34197052

RESUMEN

Oncosis, depending on DNA damage and mitochondrial swelling, is an important approach for treating cancer and other diseases. However, little is known about the behavior of mitochondria during oncosis, due to the lack of probes for in situ visual illumination of the mitochondrial membrane and mtDNA. Herein, a mitochondrial lipid and mtDNA dual-labeled probe, MitoMN, and a continuous add-on assay, are designed to image the dynamic process of mitochondria in conditions that are unobservable with current mitochondrial probes. Meanwhile, the MitoMN can induce oncosis in a light-activated manner, which results in the enlargement of mitochondria and the death of cancer cells. Using structured illumination microscopy (SIM), MitoMN-stained mitochondria with a dual-color response reveals, for the first time, how swelled mitochondria interacts and fuses with each other for a nonlinear enlargement to accelerate oncosis into an irreversible stage. With this sign of irreversible oncosis revealed by MitoMN, oncosis can be segregated into three stages, including before oncosis, initial oncosis, and accelerated oncosis.


Asunto(s)
Muerte Celular/fisiología , ADN Mitocondrial/metabolismo , Diseño de Equipo/métodos , Microscopía/instrumentación , Microscopía/métodos , Mitocondrias/metabolismo , Células Cultivadas , Luz , Membranas Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA