Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 70(6): 468-481, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38381098

RESUMEN

Small muscular pulmonary artery remodeling is a dominant feature of pulmonary arterial hypertension (PAH). PSEN1 affects angiogenesis, cancer, and Alzheimer's disease. We aimed to determine the role of PSEN1 in the pathogenesis of vascular remodeling in pulmonary hypertension (PH). Hemodynamics and vascular remodeling in the Psen1-knockin and smooth muscle-specific Psen1-knockout mice were assessed. The functional partners of PSEN1 were predicted by bioinformatics analysis and biochemical experiments. The therapeutic effect of PH was evaluated by administration of the PSEN1-specific inhibitor ELN318463. We discovered that both the mRNA and protein levels of PSEN1 were increased over time in hypoxic rats, monocrotaline rats, and Su5416/hypoxia mice. Psen1 transgenic mice were highly susceptible to PH, whereas smooth muscle-specific Psen1-knockout mice were resistant to hypoxic PH. STRING analysis showed that Notch1/2/3, ß-catenin, Cadherin-1, DNER (delta/notch-like epidermal growth factor-related receptor), TMP10, and ERBB4 appeared to be highly correlated with PSEN1. Immunoprecipitation confirmed that PSEN1 interacts with ß-catenin and DNER, and these interactions were suppressed by the catalytic PSEN1 mutations D257A, D385A, and C410Y. PSEN1 was found to mediate the nuclear translocation of the Notch1 intracellular domains and activated RBP-Jκ. Octaarginine-coated liposome-mediated pharmacological inhibition of PSEN1 significantly prevented and reversed the pathological process in hypoxic and monocrotaline-induced PH. PSEN1 essentially drives the pathogenesis of PAH and interacted with the noncanonical Notch ligand DNER. PSEN1 can be used as a promising molecular target for treating PAH. PSEN1 inhibitor ELN318463 can prevent and reverse the progression of PH and can be developed as a potential anti-PAH drug.


Asunto(s)
Hipertensión Pulmonar , Presenilina-1 , Remodelación Vascular , Animales , Remodelación Vascular/efectos de los fármacos , Presenilina-1/genética , Presenilina-1/metabolismo , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/patología , Ratas , Ratones , Ratones Noqueados , Ratas Sprague-Dawley , Masculino , Pirroles/farmacología , Humanos , Hipoxia/metabolismo , Monocrotalina , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Indoles
2.
Cancer Sci ; 115(4): 1170-1183, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38287874

RESUMEN

Platinum-based therapies have revolutionized the treatment of high-grade serous ovarian cancer (HGSOC). However, high rates of disease recurrence and progression remain a major clinical concern. Impaired mitochondrial function and dysregulated reactive oxygen species (ROS), hallmarks of cancer, hold potential as therapeutic targets for selectively sensitizing cisplatin treatment. Here, we uncover an oncogenic role of the palmitoyltransferase ZDHHC12 in regulating mitochondrial function and ROS homeostasis in HGSOC cells. Analysis of The Cancer Genome Atlas (TCGA) ovarian cancer data revealed significantly elevated ZDHHC12 expression, demonstrating the strongest positive association with ROS pathways among all ZDHHC enzymes. Transcriptomic analysis of independent ovarian cancer datasets and the SNU119 cell model corroborated this association, highlighting a strong link between ZDHHC12 expression and signature pathways involving mitochondrial oxidative metabolism and ROS regulation. Knockdown of ZDHHC12 disrupted this association, leading to increased cellular complexity, ATP levels, mitochondrial activity, and both mitochondrial and cellular ROS. This dysregulation, achieved by the siRNA knockdown of ZDHHC12 or treatment with the general palmitoylation inhibitor 2BP or the fatty acid synthase inhibitor C75, significantly enhanced cisplatin cytotoxicity in 2D and 3D spheroid models of HGSOC through ROS-mediated mechanisms. Markedly, ZDHHC12 inhibition significantly augmented the anti-tumor activity of cisplatin in an ovarian cancer xenograft tumor model, as well as in an ascites-derived organoid line of platinum-resistant ovarian cancer. Our data suggest the potential of ZDHHC12 as a promising target to improve the outcome of HGSOCs in response to platinum-based chemotherapy.


Asunto(s)
Cisplatino , Neoplasias Ováricas , Humanos , Femenino , Cisplatino/farmacología , Cisplatino/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Resistencia a Antineoplásicos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Línea Celular Tumoral
3.
Cell Physiol Biochem ; 47(6): 2261-2277, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29975924

RESUMEN

BACKGROUND/AIMS: Diseases caused by atherosclerosis are the leading causes of death in postmenopausal women, owing to the loss of estradiol. Hormone replacement therapy (HRT) provides short-term beneficial effects in the treatment of cardiovascular disease for postmenopausal women but may increase the risk of stroke and gynecological cancer. Therefore, a substitute for HRT is urgently in needed. METHODS: In this study, we examined the effectiveness of alpha-lipoic acid (ALA), a natural potent antioxidant, in preventing the development and progression of atherosclerosis in the low density lipoprotein receptor deficient (Ldlr-/-) mouse model, using western blot analysis, immunohistochemistry, Oil-red-O, elastin staining and TUNEL assay. We also examined the protective effect of ALA in human aortic endothelial cells (HAECs) against H2O2-induced oxidative injury, using western blotting, immunofluorescence staining, and monocyte adhesion assay. RESULTS: We showed that ALA treatment significantly reduced the atherosclerosis induced by ovariectomy and high fat diet in the Ldlr-/- mouse model and restored expression of estrogen receptors (ERα and ERß), which reduced the progression of atherosclerosis. Moreover, ALA treatment attenuated monocyte adhesion, suppressed cellular apoptosis, and eliminated excessive generation of intracellular reactive oxygen species (ROS) by reducing the protein levels of ROS-generating enzymes Nox4 and p22phox, as well as inhibiting NF-κB activation in HAECs stimulated by H2O2. CONCLUSIONS: ALA could provide a potential treatment for atherosclerosis in postmenopausal patients.


Asunto(s)
Aorta , Aterosclerosis , Células Endoteliales , Peróxido de Hidrógeno/toxicidad , Ovariectomía , Ácido Tióctico/farmacología , Animales , Aorta/lesiones , Aorta/metabolismo , Aorta/patología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/prevención & control , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Humanos , Ratones , Ratones Noqueados
5.
Biochim Biophys Acta ; 1855(2): 254-63, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25842298

RESUMEN

Experimental, epidemiological, and clinical data from the last two decades have each supported the hypothesis that aspirin possesses anticancer properties, and that its use may also reduce the lifetime probability of developing or dying from a number of cancers. Aspirin's ability to act on multiple key metabolic and signaling pathways via inhibition of the cyclooxygenase (COX) enzyme, as well as through COX-independent mechanisms, makes it particularly relevant in the fight against cancer. A growing body of evidence indicates that aspirin may not only reduce cancer risk, but also prevent metastasis and angiogenesis while slowing the rate of mutation-inducing DNA damage. These emerging benefits of aspirin are offset to some extent by the known risks of treatment, such as cardiovascular events and gastrointestinal bleeding. However, it has been shown that pre-treatment risk assessment of individual patients and the use of proton pump inhibitors or Helicobacter pylori eradication therapy concomitantly with aspirin treatment can reduce these potential risks. Thus, the significant benefits of aspirin treatment, coupled with recent data concerning its risks, may prove to tip the balance in favor of aspirin use in cancer prevention.


Asunto(s)
Anticarcinógenos/uso terapéutico , Aspirina/uso terapéutico , Daño del ADN/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Ciclooxigenasa 1/biosíntesis , Inhibidores de la Ciclooxigenasa/uso terapéutico , Humanos , Neoplasias/genética , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Medición de Riesgo
6.
Gynecol Oncol ; 142(3): 548-56, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27426307

RESUMEN

OBJECTIVE: Combined inhibition of PI3K and PARP has been shown to be effective in the treatment of preclinical models of breast cancer and prostate cancer independent of BRCA or PIK3CA mutational status. However, the knowledge about this combination treatment in ovarian cancer is limited. The aim of this study was to evaluate the therapeutic effect of PI3K inhibitor BKM120 and PARP inhibitor Olaparib on ovarian cancer cell lines bearing wild-type PIK3CA genes. METHODS: We exposed three wild-type PIK3CA ovarian cancer cell lines to a PI3K inhibitor BKM120 and/or a PARP inhibitor Olaparib. The effect of BKM120 as a single-agent or in combination with Olaparib was evaluated by Cell Count Kit (CCK8) assay, immunoblotting, comet assay, flow cytometry and immunofluorescence staining assay. The combination indexes for synergistic effect on cell viability were calculated with the Chou-Talalay method. Ex vivo cultured ovarian cancer tissues from patients were analyzed by histological and immunohistochemical analyses. RESULTS: Combined inhibition of PI3K and PARP effectively synergized to block the growth of three wild-type PIK3CA ovarian cancer cell lines and explants of a primary ovarian tumor specimen. Mechanistically, dual blockade of PI3K and PARP in these ovarian cancer cell lines resulted in substantially attenuated PI3K/AKT/mTOR signaling, impaired DNA damage response and deficient homologous recombination repair, with remarkable BRCA downregulation. CONCLUSIONS: The combined use of PI3K inhibitor BKM120 and PARP inhibitor Olaparib may be effective in ovarian cancers with a broader spectrum of cancer-associated genetic alterations but not limited to those with mutant PIK3CA or BRCA genes. BRCA downregulation may be a potential biomarker for the effective response to the proposed combination treatment.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Aminopiridinas/administración & dosificación , Aminopiridinas/farmacología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I , Sinergismo Farmacológico , Femenino , Genes BRCA1 , Genes BRCA2 , Humanos , Persona de Mediana Edad , Morfolinas/administración & dosificación , Morfolinas/farmacología , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ftalazinas/administración & dosificación , Ftalazinas/farmacología , Piperazinas/administración & dosificación , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/administración & dosificación , Poli(ADP-Ribosa) Polimerasas/metabolismo , Inhibidores de Proteínas Quinasas/administración & dosificación
7.
J Cardiovasc Pharmacol ; 67(6): 510-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26859197

RESUMEN

Saikosaponins-a (Ssa) is a major bioactive extract of Radix Bupleuri which is a traditional Chinese medicine. The roles of inflammatory response and lipid transportation in the process of atherosclerosis have drawn increasing attention. We explored the regulation of lipid transportation and immune-inflammatory role of Ssa in early atherosclerosis. The antiatherogenic actions and possible molecular mechanisms of Ssa were texted in THP-1 cells. We examined the effect of Ssa on oxidized low-density lipoprotein (ox-LDL)-induced lipid uptake, cholesterol efflux, immune-inflammatory response. THP-1 macrophages were treated with Ssa followed by ox-LDL for 24 hours. Results from western blot showed that Ssa obviously reduced lipoprotein uptake to block foam cell formation and the expression of Density Lipoprotein Receptor-1 and CD36. Ssa also significantly boosted cholesterol efflux and the expression of ATP binding cassettetransporter A1 and peroxisome proliferator-activated receptor γ. The results also indicated that Ssa inhibited ox-LDL-induced activation of AKT and nuclear factor-κB, assembly of NLRP3 inflammasome and production of proinflammatory cytokines. It is suggested that the ability against immune inflammatory response of Ssa is due to modulation of the PI3K/AKT/NF-κB/NLRP3 pathway. In conclusion, this study provides new insight into Ssa's molecular mechanism and its therapeutic potential in the treatment of atherosclerosis.


Asunto(s)
Aterosclerosis/fisiopatología , Colesterol/metabolismo , Lipoproteínas LDL/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ácido Oleanólico/análogos & derivados , Saponinas/farmacología , Transportador 1 de Casete de Unión a ATP/biosíntesis , Antígenos CD36/metabolismo , Técnicas de Cultivo de Célula , Citocinas/metabolismo , Humanos , Lipoproteínas/metabolismo , FN-kappa B/biosíntesis , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ácido Oleanólico/farmacología , PPAR gamma/biosíntesis , Receptores de Lipoproteína/metabolismo
8.
BMC Gastroenterol ; 16(1): 57, 2016 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-27255554

RESUMEN

BACKGROUND: Hexokinase-2 (HK2) and Beta2-adrenergic receptor (Beta2AR) are overexpressed in hepatocellular carcinoma (HCC) tissues and associated with poor prognosis. However, the synergistic effect of HK2 and Beta2AR in HCC prognosis is not elucidated. The present study aims to investigate the association between HK2 and Beta2AR expressions in HCC tissues, and to evaluate the synergistic effect of HK2 and Beta2AR in HCC prognosis. METHODS: Immunohistochemistry of HK2 and Beta2AR was performed on 155 paraffin embedded HCC samples retrieved from the archives of pathology department. Corresponding clinical data and prognostic data were collected through searching medical record systems, death registration systems and interviews with patient families. Spearman correlation test was performed to evaluate the association between HK2 and Beta2AR expression. Kaplan-Meier survival curves and Cox regressions were employed to evaluate HK2 and Beta2AR expression in HCC prognosis, respectively and synergistically. RESULTS: 109 of 155 HCC patients reached the death point, the survival time of HCC patients was 46.23 ± 31.01 months after curative surgical resections of HCC. Kaplan-Meier survival analysis showed that large tumor size (more than 5 cm) (hazard ratio (HR) = 8.42, 95 % confidence interval (CI) = 3.81-18.59, P < 0.0001), advanced TNM stage (III and IV stages) (HR = 2.09, 95%CI = 1.21-3.62, P < 0.001) and AFP more than 20 µg/L (HR = 1.49, 95%CI = 1.02-2.18, P = 0.0302) were predictors for poor prognosis. HK2 and Beta2AR positive expression was detected in 66 (42.58) and 122 (78.71 %) HCC samples respectively. In univariate analysis, HK2(+) (HR = 2.70, 95%CI = 1.76-4.15, P < 0.0001) and Beta2AR(+) (HR = 4.61, 96%CI = 3.14-6.76, P < 0.0001) were associated with poor prognosis. In multivariate analysis, HK2(+) (P < 0.0001) and Beta2AR(+) (P < 0.0001) were also associated with poor prognosis. HK2(+)/Beta2AR(+) in HCC samples had poorer prognosis compared with HK2(-)/Beta2AR(-) in both univariate analysis (HR = 4.69, 95%CI = 2.91-7.57, P < 0.0001) and multivariate analysis (P < 0.0001). HK2(+)/Beta2AR(+) in HCC samples had poorer prognosis compared with HK2(-)/Beta2AR(+) in both univariate analysis (HR = 1.76, 95%CI = 1.17-2.64, P = 0.003) and multivariate analysis (P = 0.004). CONCLUSION: HK2 and Beta2AR play important roles in HCC progression. HK2 and Beta2AR expression in HCC is correlated positively. Beta2AR may increase HCC invasion and metastasis in collaboration with HK2. HK2 and Beta2AR can predict HCC prognosis both independently and synergistically.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/cirugía , Hexoquinasa/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/cirugía , Receptores Adrenérgicos beta 2/metabolismo , Carcinoma Hepatocelular/mortalidad , Sinergismo Farmacológico , Femenino , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Neoplasias Hepáticas/mortalidad , Masculino , Persona de Mediana Edad , Pronóstico
9.
Basic Res Cardiol ; 110(3): 28, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25860962

RESUMEN

Myocardial infarction (MI) is one major cause of heart failure through its induction of cardiomyocyte death. However, the molecular mechanisms associated with MI-induced cardiomyocyte apoptosis in the context of sialylation of heart are not yet understood. In this study, we found that sialyltransferase7A (Siat7A), one of the members of sialyltransferase family, was significantly increased in the ischemic myocardium, as well as in the human cardiomyocyte cell line AC16 under hypoxic condition. The Sialyl-Tn antigen (Neu5Acα2-6GalNAc-O-Ser/Thr) synthesized by Siat7A also increased in the AC16 cardiomyocytes following hypoxic stimulus. Increased Siat7A promoted cardiomyocyte apoptosis. The knockdown of Siat7A expression reduced cardiomyocyte apoptosis in both of vivo and vitro. Furthermore, the decreased extracellular signal-regulated kinase ERK1 and ERK2 (ERK1/2) activity was involved in the Siat7A-induced cardiomyocyte apoptosis. Notably, we showed that Krüppel-like factor 4 (Klf4), one of the transcription factors, specifically bound to the Siat7A promoter by ChIP assays. Deletion and mutagenesis analysis identified that Klf4 could transactivate the Siat7A promoter region (nt -655 to -636 bp). The upregulated Siat7A expression, which was paralleled by the increased Klf4 in the ischemic myocardium, contributed to cardiomyocyte apoptosis. Our study suggests Siat7A could be a valuable target for developing treatments for MI patients.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/patología , Sialiltransferasas/biosíntesis , Animales , Apoptosis/genética , Western Blotting , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Microscopía Confocal , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología , Activación Transcripcional
10.
Cell Commun Signal ; 12: 45, 2014 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-25012758

RESUMEN

The pathogenesis of hepatocellular carcinoma (HCC) is not fully understood, which has affected the early diagnosis and treatment of HCC and the survival time of patients. MicroRNAs (miRNAs) are a class of evolutionarily conserved small, non-coding RNAs, which regulate the expression of various genes post-transcriptionally. Emerging evidence indicates that the key enzymes involved in the miRNA biosynthesis pathway and some tumor-specific miRNAs are widely deregulated or upregulated in HCC and closely associated with the occurrence and development of various cancers, including HCC. Early studies have shown that miRNAs have critical roles in HCC progression by targeting many critical protein-coding genes, thereby contributing to the promotion of cell proliferation; the avoidance of apoptosis, inducing via angiogenesis; and the activation of invasion and metastasis pathways. Experimental data indicate that discovery of increasing numbers of aberrantly expressed miRNAs has opened up a new field for investigating the molecular mechanism of HCC progression. In this review, we describe the current knowledge about the roles and validated targets of miRNAs in the above pathways that are known to be hallmarks of HCC, and we also describe the influence of genetic variations in miRNA biosynthesis and genes.


Asunto(s)
Carcinogénesis/patología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , MicroARNs/metabolismo , Transporte Activo de Núcleo Celular , Animales , Apoptosis , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Proliferación Celular , Predisposición Genética a la Enfermedad , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , Invasividad Neoplásica , Polimorfismo Genético , Transducción de Señal
11.
Nature ; 454(7205): 776-9, 2008 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-18594509

RESUMEN

On activation by receptors, the ubiquitously expressed class IA isoforms (p110alpha and p110beta) of phosphatidylinositol-3-OH kinase (PI(3)K) generate lipid second messengers, which initiate multiple signal transduction cascades. Recent studies have demonstrated specific functions for p110alpha in growth factor and insulin signalling. To probe for distinct functions of p110beta, we constructed conditional knockout mice. Here we show that ablation of p110beta in the livers of the resulting mice leads to impaired insulin sensitivity and glucose homeostasis, while having little effect on phosphorylation of Akt, suggesting the involvement of a kinase-independent role of p110beta in insulin metabolic action. Using established mouse embryonic fibroblasts, we found that removal of p110beta also had little effect on Akt phosphorylation in response to stimulation by insulin and epidermal growth factor, but resulted in retarded cell proliferation. Reconstitution of p110beta-null cells with a wild-type or kinase-dead allele of p110beta demonstrated that p110beta possesses kinase-independent functions in regulating cell proliferation and trafficking. However, the kinase activity of p110beta was required for G-protein-coupled receptor signalling triggered by lysophosphatidic acid and had a function in oncogenic transformation. Most strikingly, in an animal model of prostate tumour formation induced by Pten loss, ablation of p110beta (also known as Pik3cb), but not that of p110alpha (also known as Pik3ca), impeded tumorigenesis with a concomitant diminution of Akt phosphorylation. Taken together, our findings demonstrate both kinase-dependent and kinase-independent functions for p110beta, and strongly indicate the kinase-dependent functions of p110beta as a promising target in cancer therapy.


Asunto(s)
Proliferación Celular , Transformación Celular Neoplásica , Glucosa/metabolismo , Insulina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Fibroblastos/citología , Intolerancia a la Glucosa/enzimología , Intolerancia a la Glucosa/genética , Homeostasis , Humanos , Insulina/farmacología , Resistencia a la Insulina/genética , Hígado/enzimología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/deficiencia , Fosfatidilinositol 3-Quinasas/genética , Fosforilación/efectos de los fármacos , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
12.
Mater Today Bio ; 25: 100958, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38327975

RESUMEN

Cirrhosis is an aggressive disease, and over 80 % of liver cancer patients are complicated by cirrhosis, which lacks effective therapies. Transplantation of mesenchymal stem cells (MSCs) is a promising option for treating liver cirrhosis. However, this therapeutic approach is often challenged by the low homing ability and short survival time of transplanted MSCs in vivo. Therefore, a novel and efficient cell delivery system for MSCs is urgently required. This new system can effectively extend the persistence and duration of MSCs in vivo. In this study, we present novel porous microspheres with microfluidic electrospray technology for the encapsulation of bone marrow-derived MSCs (BMSCs) in the treatment of liver cirrhosis. Porous microspheres loaded with BMSCs (Mi-BMSCs) exhibit good biocompatibility and demonstrate better anti-inflammatory properties than BMSCs alone. Mi-BMSCs significantly increase the duration of BMSCs and exert potent anti-inflammatory and anti-fibrosis effects against CCl4 and TAA-induced liver cirrhosis by targeting the TGF-ß/Smad signaling pathway to ameliorate cirrhosis, which highlight the potential of Mi-BMSCs as a promising therapeutic approach for early liver cirrhosis.

13.
Adv Sci (Weinh) ; : e2401396, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38859590

RESUMEN

Despite the initial efficacy of enzalutamide in castration-resistant prostate cancer (CRPC), inevitable resistance remains a significant challenge. Here, the synergistic induction of copper-dependent cell death (cuproptosis) in CRPC cells is reported by enzalutamide and copper ionophores (elesclomol/disulfiram). Mechanistically, enzalutamide treatment increases mitochondrial dependence in CRPC cells, rendering them susceptible to cuproptosis, as evidenced by specific reversal with the copper chelator tetrathiomolybdate. This susceptibility is characterized by hallmarks of cuproptosis, including lipoylated protein aggregation and iron-sulfur cluster protein instability. Interestingly, the mitochondrial matrix reductase, FDX1, specifically correlates with elesclomol sensitivity, suggesting a potential mechanistic divergence between the two copper ionophores. Notably, this synergistic effect extends beyond in vitro models, demonstrating efficacy in 22Rv1 xenografts, mouse Pten p53 knockout organoids. Importantly, enzalutamide significantly enhances copper ionophore-mediated cytotoxicity in enzalutamide-resistant cells. Collectively, these findings indicate that enzalutamide and copper ionophores synergistically induce cuproptosis, offering a promising therapeutic avenue for CRPC, potentially including enzalutamide-resistant cases.

14.
Redox Biol ; 67: 102931, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37866161

RESUMEN

Cancer cells frequently exhibit aberrant redox homeostasis and adaptation to oxidative stress. Hence abrogation of redox adaptation in cancer cells can be exploited for therapeutic benefit. Here we report SGK3 functions as an anti-oxidative factor to promote cell growth and drug resistance in cervical cancers harboring PIK3CA helical domain mutations. Mechanistically, SGK3 is activated upon oxidative stress and exerts anti-ROS activity by stabilizing and activating the antioxidant enzyme catalase. SGK3 interacts with and phosphorylates catalase, promoting its tetrameric state and activity. Meanwhile, SGK3 phosphorylates GSK3ß and protects catalase from GSK3ß-ß-TrCP mediated ubiquitination and proteasomal degradation. Furthermore, SGK3 inhibition not only potentiates CDK4/6 inhibitor Palbociclib-mediated cytotoxicity, but also overcomes cisplatin resistance through ROS-mediated mechanisms. These data uncover the role of SGK3 in maintaining redox homeostasis and suggest that the SGK3-catalase antioxidant signaling axis may be therapeutically targeted to improve treatment efficacy for cervical cancers carrying PIK3CA helical domain mutations.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Neoplasias del Cuello Uterino , Femenino , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Antioxidantes , Glucógeno Sintasa Quinasa 3 beta , Catalasa , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo
15.
ACS Appl Mater Interfaces ; 15(8): 10371-10382, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36786554

RESUMEN

Malignant ascites (MA) is a common symptom of peritoneal metastasis in liver cancer. Cancer immunotherapy can modulate immune cells to induce antitumor immune efficiency. Reprogramming tumor immune microenvironment (TIME) is a momentous strategy to overcome immunosuppression and achieve immune functional normalization. Inspired by the inherent apoptotic bodies and vesicles, we proposed and systematically studied engineered apoptosis-bioinspired nanoparticles (EBN) for cancer immunotherapy of MA. Using both in vitro and in vivo experimental validations, we elucidated that EBN could be efficiently engulfed by the tumor-associated macrophages (TAMs) and manipulate their polarization. Moreover, a boosted immune cascade response as a result of heightening cytotoxic T-lymphocytes (CTLs) activity was investigated. Based on these results, EBN was confirmed to have strong immune cascade activation capability. Remarkably, the injection of EBN further reduced ascites volume and reformed immune cell subtypes, compared to the injection of either PBS or free TMP195 alone. In short, this novel nanodrug delivery system (NDDS) represents a prospective immunotherapeutic approach for clinical therapeutics of hepatoma ascites and other malignant effusion.


Asunto(s)
Neoplasias Hepáticas , Nanopartículas , Neoplasias Peritoneales , Humanos , Ascitis/patología , Estudios Prospectivos , Macrófagos , Inmunoterapia/métodos , Neoplasias Hepáticas/tratamiento farmacológico , Apoptosis , Microambiente Tumoral
16.
Nat Commun ; 13(1): 5412, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109518

RESUMEN

Pangenomic study might improve the completeness of human reference genome (GRCh38) and promote precision medicine. Here, we use an automated pipeline of human pangenomic analysis to build gastric cancer pan-genome for 185 paired deep sequencing data (370 samples), and characterize the gene presence-absence variations (PAVs) at whole genome level. Genes ACOT1, GSTM1, SIGLEC14 and UGT2B17 are identified as highly absent genes in gastric cancer population. A set of genes from unaligned sequences with GRCh38 are predicted. We successfully locate one of predicted genes GC0643 on chromosome 9q34.2. Overexpression of GC0643 significantly inhibits cell growth, cell migration and invasion, cell cycle progression, and induces cell apoptosis in cancer cells. The tumor suppressor functions can be reversed by shGC0643 knockdown. The GC0643 is approved by NCBI database (GenBank: MW194843.1). Collectively, the robust pan-genome strategy provides a deeper understanding of the gene PAVs in the human cancer genome.


Asunto(s)
Neoplasias Gástricas , Pueblo Asiatico/genética , China , Genoma Humano , Humanos , Lectinas/genética , Receptores de Superficie Celular/genética , Neoplasias Gástricas/genética
17.
Front Oncol ; 11: 812264, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35155204

RESUMEN

While PARP inhibitor (PARPi) therapies have shown promising results in the treatment of high-grade serous ovarian cancer (HGSOC) harboring homologous recombination deficiencies, primary resistance to PARPi frequently occurs and even initial responders may eventually become resistant. Therefore, the development of novel effective combinatorial strategies to treat HGSOC is urgently needed. Here, we report that H2O2-induced oxidative stress sensitized HGSOC cells to PARPi BMN 673. Furthermore, Phenethyl isothiocyanate (PEITC) as a ROS-inducing agent significantly enhanced the cytotoxic effects of BMN 673. Mechanistically, combined use of PEITC and BMN 673 resulted in ROS overproduction and accumulation, enhanced DNA damage, G2/M arrest and apoptosis, all of which were significantly reversed by the ROS scavenger N-Acetyl-L-cysteine. We also showed that while PEITC did not further enhance the ability of BMN 673 on PARP1 trapping in HGSOC cells, the therapeutic effects of the PEITC/BMN 673 combination were at least in part dependent on the presence of PARP1. Importantly, the PEITC/BMN 673 combination potently abrogated the growth of HGSOC tumor spheroids and patient-derived organoid models of HGSOC and cervical cancer. Our findings provide a basis for further investigation of the utility of PARPi combination regimen in HGSOC and cervical cancer through ROS-mediated mechanisms.

18.
Cancer Lett ; 518: 82-93, 2021 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-34153400

RESUMEN

Despite HER2-targeted cancer treatments have provided considerable clinical benefits, resistance to HER2-targeted agents will inevitably develop. Targeting non-oncogene vulnerabilities including endoplasmic reticulum (EnR) stress has emerged as an attractive alternative approach to improve the efficacy of existing targeted cancer therapies. In the current study, we find that Melatonin sensitizes HER2-positive breast cancer cells to the dual tyrosine kinase inhibitor Lapatinib in vitro. Mechanistically, Melatonin enhances the cytotoxic effects of Lapatinib through promoting excessive EnR stress-induced unfolded protein response (UPR) and ROS overaccumulation. Consistently, the antioxidant N-acetylcysteine remarkably reverses the effects of the drug combination on ROS production, DNA damage and cytotoxicity. Furthermore, Melatonin significantly enhances the anti-tumor effect of Lapatinib in an HCC1954 xenograft model. Meanwhile, Lapatinib resistant HER2-positive breast cancer cells (LapR) display lower basal expression levels of UPR genes and enhanced tolerance to EnR stress with attenuated response to Brefeldin A and Tunicamycin. Importantly, Melatonin also increases the sensitivity of HCC1954 LapR cells to Lapatinib. Together, our findings highlight the potential utility of Melatonin as an adjuvant in the treatment of primary or therapy resistant HER2-positive breast cancer via EnR stress-mediated mechanisms.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Lapatinib/farmacología , Melatonina/farmacología , Receptor ErbB-2/metabolismo , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Femenino , Humanos , Ratones , Ratones Desnudos , Inhibidores de Proteínas Quinasas/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
19.
Oncogene ; 40(44): 6273-6283, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34556812

RESUMEN

Complete blockade of the HER2 protein itself and HER signaling network is critical to achieving effective HER2-targeted therapies. Despite the success of HER2-targeted therapies, the diseases will relapse in a significant fraction of patients with HER2+ breast cancers. How to improve the therapeutic efficacy of existing HER2-targeted agents remains an unmet clinical need. Here, we uncover a role of Melatonin in diminishing HER2-mediated signaling by destruction of HER2 protein. Mechanistically, Melatonin treatment attenuated the protective effect of the HSP90 chaperone complex on its client protein HER2, triggering ubiquitylation and subsequent endocytic lysosomal degradation of HER2. The inhibitory effect of Melatonin on HER2 signaling substantially enhanced the cytotoxic effects of the pan-HER inhibitor Neratinib in HER2+ breast cancer cells. Lastly, we demonstrate that dual inhibition of HER2 by combined use of Melatonin and Neratinib effectively blocked the growth of HER2+ breast tumor xenografts in vivo. Our findings shed light on the potential use of Melatonin in a novel dual HER2 blockade strategy for HER2+ breast cancer treatment.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Melatonina/administración & dosificación , Quinolinas/administración & dosificación , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Endocitosis , Femenino , Humanos , Lisosomas/metabolismo , Células MCF-7 , Melatonina/farmacología , Ratones , Proteolisis , Quinolinas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Cell Death Dis ; 12(1): 12, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33414468

RESUMEN

High levels of Basic Transcription Factor 3 (BTF3) have been associated with prostate cancer. However, the mechanisms underlying the role of BTF3 as an oncogenic transcription factor in prostate tumorigenesis have not been explored. Herein, we report that BTF3 confers oncogenic activity in prostate cancer cells. Mechanistically, while both BTF3 splicing isoforms (BTF3a and BTF3b) promote cell growth, BTF3b, but not BTF3a, regulates the transcriptional expression of the genes encoding the subunits of Replication Factor C (RFC) family that is involved in DNA replication and damage repair processes. BTF3 knockdown results in decreased expression of RFC genes, and consequently attenuated DNA replication, deficient DNA damage repair, and increased G2/M arrest. Furthermore, knockdown of the RFC3 subunit diminishes the growth advantage and DNA damage repair capability conferred by ectopic overexpression of BTF3b. Importantly, we show that enforced BTF3 overexpression in prostate cancer cells induces substantial accumulation of cisplatin-DNA adducts and render the cells more sensitive to cisplatin treatment both in vitro and in vivo. These findings provide novel insights into the role of BTF3 as an oncogenic transcription factor in prostate cancer and suggest that BTF3 expression levels may serve as a potential biomarker to predict cisplatin treatment response.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias de la Próstata/genética , Proteína de Replicación C/metabolismo , Factores de Transcripción/metabolismo , Proliferación Celular , Humanos , Masculino , Oncogenes , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA