Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256233

RESUMEN

Synapse loss is one of the most critical features in Alzheimer's disease (AD) and correlates with cognitive decline. Astrocytes mediate synapse elimination through multiple EGF-like domains 10 (MEGF10) pathways in the developing and adult brain to build the precise neural connectivity. However, whether and how astrocytes mediate synapse loss in AD remains unknown. We here find that the phagocytic receptor MEGF10 of astrocytes is significantly increased in vivo and in vitro, which results in excessive engulfment of synapses by astrocytes in APP/PS1 mice. We also observe that the astrocytic lysosomal-associated membrane protein 1 (LAMP1) is significantly elevated, colocalized with the engulfed synaptic puncta in APP/PS1 mice, and astrocytic lysosomes contain more engulfed synaptic puncta in APP/PS1 mice relative to wild type mice. Together, our data provide evidence that astrocytes excessively engulf synapses in APP/PS1 mice, which is mediated by increased MEGF10 and activated lysosomes. The approach targeting synapse engulfment pathway in astrocytes would be a potent therapy for AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/genética , Astrocitos , Sinapsis , Modelos Animales de Enfermedad , Encéfalo
2.
Angew Chem Int Ed Engl ; 63(10): e202318530, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38196070

RESUMEN

Dendritic cell (DC) maturation and antigen presentation are key factors for successful vaccine-based cancer immunotherapy. This study developed manganese-based layered double hydroxide (Mn-LDH) nanoparticles as a self-adjuvanted vaccine carrier that not only promoted DC maturation through synergistically depleting endogenous glutathione (GSH) and activating STING signaling pathway, but also facilitated the delivery of model antigen ovalbumin (OVA) into lymph nodes and subsequent antigen presentation in DCs. Significant therapeutic-prophylactic efficacy of the OVA-loaded Mn-LDH (OVA/Mn-LDH) nanovaccine was determined by the tumor growth inhibition in the mice bearing B16-OVA tumor. Our results showed that the OVA/Mn-LDH nanoparticles could be a potent delivery system for cancer vaccine development without the need of adjuvant. Therefore, the combination of GSH exhaustion and STING pathway activation might be an advisable approach for promoting DC maturation and antigen presentation, finally improving cancer vaccine efficacy.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Ratones , Animales , Eficacia de las Vacunas , Neoplasias/patología , Inmunoterapia/métodos , Adyuvantes Inmunológicos/farmacología , Glutatión , Células Dendríticas , Ratones Endogámicos C57BL , Ovalbúmina
3.
J Neuroinflammation ; 18(1): 131, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34116706

RESUMEN

BACKGROUND: Tau pathology is a hallmark of Alzheimer's disease (AD) and other tauopathies. During disease progression, abnormally phosphorylated forms of tau aggregate and accumulate into neurofibrillary tangles, leading to synapse loss, neuroinflammation, and neurodegeneration. Thus, targeting of tau pathology is expected to be a promising strategy for AD treatment. METHODS: The effect of rutin on tau aggregation was detected by thioflavin T fluorescence and transmission electron microscope imaging. The effect of rutin on tau oligomer-induced cytotoxicity was assessed by MTT assay. The effect of rutin on tau oligomer-mediated the production of IL-1ß and TNF-α in vitro was measured by ELISA. The uptake of extracellular tau by microglia was determined by immunocytochemistry. Six-month-old male Tau-P301S mice were treated with rutin or vehicle by oral administration daily for 30 days. The cognitive performance was determined using the Morris water maze test, Y-maze test, and novel object recognition test. The levels of pathological tau, gliosis, NF-kB activation, proinflammatory cytokines such as IL-1ß and TNF-α, and synaptic proteins including synaptophysin and PSD95 in the brains of the mice were evaluated by immunolabeling, immunoblotting, or ELISA. RESULTS: We showed that rutin, a natural flavonoid glycoside, inhibited tau aggregation and tau oligomer-induced cytotoxicity, lowered the production of proinflammatory cytokines, protected neuronal morphology from toxic tau oligomers, and promoted microglial uptake of extracellular tau oligomers in vitro. When applied to Tau-P301S mouse model of tauopathy, rutin reduced pathological tau levels, regulated tau hyperphosphorylation by increasing PP2A level, suppressed gliosis and neuroinflammation by downregulating NF-kB pathway, prevented microglial synapse engulfment, and rescued synapse loss in mouse brains, resulting in a significant improvement of cognition. CONCLUSION: In combination with the previously reported therapeutic effects of rutin on Aß pathology, rutin is a promising drug candidate for AD treatment based its combinatorial targeting of tau and Aß.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/prevención & control , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/prevención & control , Rutina/farmacología , Rutina/uso terapéutico , Proteínas tau/antagonistas & inhibidores , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Humanos , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/metabolismo , Microscopía Electrónica de Transmisión , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/patología , Rutina/administración & dosificación , Transducción de Señal , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
4.
J Nanobiotechnology ; 18(1): 160, 2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33160377

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder. No disease-modifying strategy to prevent or delay AD progression currently exists. Aß oligomers (AßOs), rather than monomers or fibrils, are considered as the primary neurotoxic species. Therapeutic approaches that direct against AßOs and promote Aß clearance may have great value for AD treatment. RESULTS: We here reported a multifunctional superparamagnetic iron oxide nanoparticle conjugated with Aß oligomer-specific scFv antibody W20 and class A scavenger receptor activator XD4 (W20/XD4-SPIONs). Besides the diagnostic value, W20/XD4-SPIONs retained the anti-Aß properties of W20 and XD4 by inhibiting Aß aggregation, attenuating AßO-induced cytotoxicity and increasing microglial phagocytosis of Aß. When applied to APP/PS1 mice, W20/XD4-SPIONs significantly rescued cognitive deficits and alleviated neuropathology of AD mice. CONCLUSION: These results suggest that W20/XD4-SPIONs show therapeutic benefits for AD. In combination with the early diagnostic property, W20/XD4-SPIONs present as a promising agent for early-stage AD diagnosis and intervention.


Asunto(s)
Enfermedad de Alzheimer/terapia , Nanopartículas Magnéticas de Óxido de Hierro/química , Receptores Depuradores/química , Anticuerpos de Cadena Única/química , Enfermedad de Alzheimer/diagnóstico , Amiloide , Péptidos beta-Amiloides/farmacología , Animales , Encéfalo/patología , Citocinas , Cinética , Masculino , Ratones , Ratones Transgénicos , Microglía , Fragmentos de Péptidos/farmacología , Fagocitosis
5.
Nanomedicine ; 28: 102223, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32422220

RESUMEN

Personalized cancer vaccine which targets neoepitopes shows great promise for cancer treatment. However, rapid preparation is a critical challenge for clinical application of personalized cancer vaccine. Genetic recombination and chemical modification are a time-consuming "trial and error" pattern for making vaccines. Here we first constructed a platform for peptide vaccine preparation by inserting SpyCatcher into the major immunodominant region (MIR) of hepatitis B core protein (HBc) (1-183). The resulted recombinant protein HBc(1-183)-SpyCatcher (HBc(1-183)-S) assembled to virus-like particles (VLPs) and readily bound to SpyTag conjugated with OVA epitope peptides by just mixing, forming HBc(1-183)-S-OVA. HBc(1-183)-S-OVA VLPs effectively induced dendritic cell maturation. Our further results indicated that HBc(1-183)-S-OVA VLPs vaccination inhibited tumor growth in both prophylactic and treatment ways in E.G7-OVA tumor bearing mice by generating significant OVA-specific cytotoxic T lymphocyte responses. Our study provides a simple, rapid, efficient and universal HBc-based platform for the preparation of personalized cancer vaccine.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Antígenos del Núcleo de la Hepatitis B/inmunología , Animales , Línea Celular , Dispersión Dinámica de Luz , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Medicina de Precisión/métodos , Vacunas de Partículas Similares a Virus/química , Vacunas de Partículas Similares a Virus/inmunología
6.
Int J Mol Sci ; 21(12)2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599696

RESUMEN

It is widely accepted that ß-amyloid oligomers (Aßos) play a key role in the progression of Alzheimer's disease (AD) by inducing neuron damage and cognitive impairment, but Aßos are highly heterogeneous in their size, structure and cytotoxicity, making the corresponding studies tough to carry out. Nevertheless, a number of studies have recently made remarkable progress in the describing the characteristics and pathogenicity of Aßos. We here review the mechanisms by which Aßos exert their neuropathogenesis for AD progression, including receptor binding, cell membrane destruction, mitochondrial damage, Ca2+ homeostasis dysregulation and tau pathological induction. We also summarize the characteristics and pathogenicity such as the size, morphology and cytotoxicity of dimers, trimers, Aß*56 and spherical oligomers, and suggest that Aßos may play a different role at different phases of AD pathogenesis, resulting in differential consequences on neuronal synaptotoxicity and survival. It is warranted to investigate the temporal sequence of Aßos in AD human brain and examine the relationship between different Aßos and cognitive impairment.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Agregación Patológica de Proteínas , Enfermedad de Alzheimer/metabolismo , Animales , Humanos
7.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33212758

RESUMEN

α-synuclein (α-syn) is a protein associated with the pathogenesis of Parkinson's disease (PD), the second most common neurodegeneration disease with no effective treatment. However, how α-syn drives the pathology of PD remains elusive. Recent studies suggest that α-syn oligomers are the primary cause of neurotoxicity and play a critical role in PD. In this review, we discuss the process of α-syn oligomers formation and the current understanding of the structures of oligomers. We also describe seed and propagation effects of oligomeric forms of α-syn. Then, we summarize the mechanism by which α-syn oligomers exert neurotoxicity and promote neurodegeneration, including mitochondrial dysfunction, endoplasmic reticulum stress, proteostasis dysregulation, synaptic impairment, cell apoptosis and neuroinflammation. Finally, we investigate treatment regimens targeting α-syn oligomers at present. Further research is needed to understand the structure and toxicity mechanism of different types of oligomers, so as to provide theoretical basis for the treatment of PD.


Asunto(s)
Enfermedad de Parkinson/metabolismo , Multimerización de Proteína , alfa-Sinucleína/metabolismo , Animales , Apoptosis , Estrés del Retículo Endoplásmico , Humanos , Inflamación/metabolismo , Inflamación/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Proteostasis
8.
Neurobiol Dis ; 124: 202-217, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30481547

RESUMEN

It has been suggested that aggregation of α-synuclein (α-syn) into oligomers leads to neurodegeneration in Parkinson's disease (PD), but intravenous immunoglobulin (IVIG) which contains antibodies against α-syn monomers and oligomers fails to treat PD mouse model. The reason may be because IVIG contains much low level of antibodies against α-syn, and of which only a small part can penetrate the blood-brain barrier, resulting in an extremely low level of effective antibodies in the brain, and limiting the beneficial effect of IVIG on PD mice. Here, we first isolated naturally occurring autoantibodies against α-syn (NAbs-α-syn) from IVIG. Our further investigation results showed that NAbs-α-syn inhibited α-syn aggregation and attenuated α-syn-induced cytotoxicity in vitro. Compared with vehicles, NAbs-α-syn significantly attenuated the memory and motor deficits by reducing the levels of soluble α-syn, total human α-syn and α-syn oligomers, decreasing the intracellular p-α-synser129 deposits and axonal pathology, inhibiting the microgliosis and astrogliosis, as well as the production of proinflammatory cytokines, increasing the levels of PSD95, synaptophysin and TH in the brain of A53T transgenic mice. These findings suggest that NAbs-α-syn overcomes the deficiency of IVIG and exhibits a promising therapeutic potential for the treatment of PD.


Asunto(s)
Autoanticuerpos/administración & dosificación , Encéfalo/inmunología , Actividad Motora , Enfermedad de Parkinson/inmunología , Memoria Espacial , alfa-Sinucleína/inmunología , Animales , Autoanticuerpos/aislamiento & purificación , Encéfalo/patología , Modelos Animales de Enfermedad , Inmunización Pasiva , Inmunoglobulinas Intravenosas/aislamiento & purificación , Ratones Transgénicos , Microglía/inmunología , Enfermedad de Parkinson/patología , Agregación Patológica de Proteínas/inmunología
9.
Neural Regen Res ; 19(7): 1446-1453, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38051886

RESUMEN

ABSTRACT: Neuronal injury, aging, and cerebrovascular and neurodegenerative diseases such as cerebral infarction, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis, and Huntington's disease are characterized by significant neuronal loss. Unfortunately, the neurons of most mammals including humans do not possess the ability to self-regenerate. Replenishment of lost neurons becomes an appealing therapeutic strategy to reverse the disease phenotype. Transplantation of pluripotent neural stem cells can supplement the missing neurons in the brain, but it carries the risk of causing gene mutation, tumorigenesis, severe inflammation, and obstructive hydrocephalus induced by brain edema. Conversion of neural or non-neural lineage cells into functional neurons is a promising strategy for the diseases involving neuron loss, which may overcome the above-mentioned disadvantages of neural stem cell therapy. Thus far, many strategies to transform astrocytes, fibroblasts, microglia, Müller glia, NG2 cells, and other glial cells to mature and functional neurons, or for the conversion between neuronal subtypes have been developed through the regulation of transcription factors, polypyrimidine tract binding protein 1 (PTBP1), and small chemical molecules or are based on a combination of several factors and the location in the central nervous system. However, some recent papers did not obtain expected results, and discrepancies exist. Therefore, in this review, we discuss the history of neuronal transdifferentiation, summarize the strategies for neuronal replenishment and conversion from glia, especially astrocytes, and point out that biosafety, new strategies, and the accurate origin of the truly converted neurons in vivo should be focused upon in future studies. It also arises the attention of replenishing the lost neurons from glia by gene therapies such as up-regulation of some transcription factors or down-regulation of PTBP1 or drug interference therapies.

10.
Acta Neuropathol Commun ; 12(1): 66, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654316

RESUMEN

The elderly frequently present impaired blood-brain barrier which is closely associated with various neurodegenerative diseases. However, how the albumin, the most abundant protein in the plasma, leaking through the disrupted BBB, contributes to the neuropathology remains poorly understood. We here demonstrated that mouse serum albumin-activated microglia induced astrocytes to A1 phenotype to remarkably increase levels of Elovl1, an astrocytic synthase for very long-chain saturated fatty acids, significantly promoting VLSFAs secretion and causing neuronal lippoapoptosis through endoplasmic reticulum stress response pathway. Moreover, MSA-activated microglia triggered remarkable tau phosphorylation at multiple sites through NLRP3 inflammasome pathway. Intracerebroventricular injection of MSA into the brains of C57BL/6J mice to a similar concentration as in patient brains induced neuronal apoptosis, neuroinflammation, increased tau phosphorylation, and decreased the spatial learning and memory abilities, while Elovl1 knockdown significantly prevented the deleterious effect of MSA. Overall, our study here revealed that MSA induced tau phosphorylation and neuron apoptosis based on MSA-activated microglia and astrocytes, respectively, showing the critical roles of MSA in initiating the occurrence of tauopathies and cognitive decline, and providing potential therapeutic targets for MSA-induced neuropathology in multiple neurodegenerative disorders.


Asunto(s)
Apoptosis , Ratones Endogámicos C57BL , Neuronas , Albúmina Sérica , Tauopatías , Animales , Humanos , Masculino , Ratones , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Astrocitos/metabolismo , Astrocitos/patología , Astrocitos/efectos de los fármacos , Elongasas de Ácidos Grasos/metabolismo , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Neuronas/metabolismo , Neuronas/patología , Neuronas/efectos de los fármacos , Albúmina Sérica/metabolismo , Albúmina Sérica/farmacología , Proteínas tau/metabolismo , Tauopatías/patología , Tauopatías/metabolismo
11.
Eur J Pharmacol ; 970: 176491, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38503399

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disease with the hallmark of aggregation of beta-amyloid (Aß) into extracellular fibrillar deposition. Accumulating evidence suggests that soluble toxic Aß oligomers exert diverse roles in neuronal cell death, oxidative stress, neuroinflammation, and the eventual pathogenesis of AD. Aß is derived from the sequential cleavage of amyloid-ß precursor protein (APP) by ß-secretase (BACE1) and γ-secretase. The current effect of single targeting is not ideal for the treatment of AD. Therefore, developing multipotent agents with multiple properties, including anti-Aß generation and anti-Aß aggregation, is attracting more attention for AD treatment. Previous studies indicated that Quercetin was able to attenuate the effects of several pathogenetic factors in AD. Here, we showed that naturally synthesized Quercetin-3-O-glc-1-3-rham-1-6-glucoside (YCC31) could inhibit Aß production by reducing ß-secretase activity. Further investigations indicated that YCC31 could suppress toxic Aß oligomer formation by directly binding to Aß. Moreover, YCC31 could attenuate Aß-mediated neuronal death, ROS and NO production, and pro-inflammatory cytokines release. Taken together, YCC31 targeting multiple pathogenetic factors deserves further investigation for drug development of AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Quercetina/farmacología , Quercetina/uso terapéutico , Citocinas , Ácido Aspártico Endopeptidasas/metabolismo , Ácido Aspártico Endopeptidasas/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Glucósidos/uso terapéutico
12.
Transl Neurodegener ; 13(1): 39, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095921

RESUMEN

BACKGROUND: Deoxyribonuclease 2 (DNase II) plays a key role in clearing cytoplasmic double-stranded DNA (dsDNA). Deficiency of DNase II leads to DNA accumulation in the cytoplasm. Persistent dsDNA in neurons is an early pathological hallmark of senescence and neurodegenerative diseases including Alzheimer's disease (AD). However, it is not clear how DNase II and neuronal cytoplasmic dsDNA influence neuropathogenesis. Tau hyperphosphorylation is a key factor for the pathogenesis of AD. The effect of DNase II and neuronal cytoplasmic dsDNA on neuronal tau hyperphosphorylation remains unclarified. METHODS: The levels of neuronal DNase II and dsDNA in WT and Tau-P301S mice of different ages were measured by immunohistochemistry and immunolabeling, and the levels of DNase II in the plasma of AD patients were measured by ELISA. To investigate the impact of DNase II on tauopathy, the levels of phosphorylated tau, phosphokinase, phosphatase, synaptic proteins, gliosis and proinflammatory cytokines in the brains of neuronal DNase II-deficient WT mice, neuronal DNase II-deficient Tau-P301S mice and neuronal DNase II-overexpressing Tau-P301S mice were evaluated by immunolabeling, immunoblotting or ELISA. Cognitive performance was determined using the Morris water maze test, Y-maze test, novel object recognition test and open field test. RESULTS: The levels of DNase II were significantly decreased in the brains and the plasma of AD patients. DNase II also decreased age-dependently in the neurons of WT and Tau-P301S mice, along with increased dsDNA accumulation in the cytoplasm. The DNA accumulation induced by neuronal DNase II deficiency drove tau phosphorylation by upregulating cyclin-dependent-like kinase-5 (CDK5) and calcium/calmodulin activated protein kinase II (CaMKII) and downregulating phosphatase protein phosphatase 2A (PP2A). Moreover, DNase II knockdown induced and significantly exacerbated neuron loss, neuroinflammation and cognitive deficits in WT and Tau-P301S mice, respectively, while overexpression of neuronal DNase II exhibited therapeutic benefits. CONCLUSIONS: DNase II deficiency and cytoplasmic dsDNA accumulation can initiate tau phosphorylation, suggesting DNase II as a potential therapeutic target for tau-associated disorders.


Asunto(s)
Enfermedad de Alzheimer , Endodesoxirribonucleasas , Neuronas , Proteínas tau , Animales , Proteínas tau/metabolismo , Proteínas tau/genética , Fosforilación , Ratones , Neuronas/metabolismo , Neuronas/patología , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Enfermedad de Alzheimer/patología , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/deficiencia , Endodesoxirribonucleasas/metabolismo , Ratones Transgénicos , ADN/genética , Masculino , Femenino , Encéfalo/metabolismo , Encéfalo/patología , Ratones Endogámicos C57BL
13.
Cell Death Discov ; 10(1): 167, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589400

RESUMEN

The neurotoxic α-synuclein (α-syn) oligomers play an important role in the occurrence and development of Parkinson's disease (PD), but the factors affecting α-syn generation and neurotoxicity remain unclear. We here first found that thrombomodulin (TM) significantly decreased in the plasma of PD patients and brains of A53T α-syn mice, and the increased TM in primary neurons reduced α-syn generation by inhibiting transcription factor p-c-jun production through Erk1/2 signaling pathway. Moreover, TM decreased α-syn neurotoxicity by reducing the levels of oxidative stress and inhibiting PAR1-p53-Bax signaling pathway. In contrast, TM downregulation increased the expression and neurotoxicity of α-syn in primary neurons. When TM plasmids were specifically delivered to neurons in the brains of A53T α-syn mice by adeno-associated virus (AAV), TM significantly reduced α-syn expression and deposition, and ameliorated the neuronal apoptosis, oxidative stress, gliosis and motor deficits in the mouse models, whereas TM knockdown exacerbated these neuropathology and motor dysfunction. Our present findings demonstrate that TM plays a neuroprotective role in PD pathology and symptoms, and it could be a novel therapeutic target in efforts to combat PD. Schematic representation of signaling pathways of TM involved in the expression and neurotoxicity of α-syn. A TM decreased RAGE, and resulting in the lowered production of p-Erk1/2 and p-c-Jun, and finally reduce α-syn generation. α-syn oligomers which formed from monomers increase the expression of p-p38, p53, C-caspase9, C-caspase3 and Bax, decrease the level of Bcl-2, cause mitochondrial damage and lead to oxidative stress, thus inducing neuronal apoptosis. TM can reduce intracellular oxidative stress and inhibit p53-Bax signaling by activating APC and PAR-1. B The binding of α-syn oligomers to TLR4 may induce the expression of IL-1ß, which is subsequently secreted into the extracellular space. This secreted IL-1ß then binds to its receptor, prompting p65 to translocate from the cytoplasm into the nucleus. This translocation downregulates the expression of KLF2, ultimately leading to the suppression of TM expression. By Figdraw.

14.
Theranostics ; 14(10): 3945-3962, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994035

RESUMEN

Rationale: NLRP3 inflammasome is critical in the development and progression of many metabolic diseases driven by chronic inflammation, but its effect on the pathology of postmenopausal osteoporosis (PMOP) remains poorly understood. Methods: We here firstly examined the levels of NLRP3 inflammasome in PMOP patients by ELISA. Then we investigated the possible mechanisms underlying the effect of NLRP3 inflammasome on PMOP by RNA sequencing of osteoblasts treated with NLRP3 siRNA and qPCR. Lastly, we accessed the effect of decreased NLRP3 levels on ovariectomized (OVX) rats. To specifically deliver NLRP3 siRNA to osteoblasts, we constructed NLRP3 siRNA wrapping osteoblast-specific aptamer (CH6)-functionalized lipid nanoparticles (termed as CH6-LNPs-siNLRP3). Results: We found that the levels of NLRP3 inflammasome were significantly increased in patients with PMOP, and were negatively correlated with estradiol levels. NLRP3 knock-down influenced signal pathways including immune system process, interferon signal pathway. Notably, of the top ten up-regulated genes in NLRP3-reduced osteoblasts, nine genes (except Mx2) were enriched in immune system process, and five genes were related to interferon signal pathway. The in vitro results showed that CH6-LNPs-siNLRP3 was relatively uniform with a dimeter of 96.64 ± 16.83 nm and zeta potential of 38.37 ± 1.86 mV. CH6-LNPs-siNLRP3 did not show obvious cytotoxicity and selectively delivered siRNA to bone tissue. Moreover, CH6-LNPs-siNLRP3 stimulated osteoblast differentiation by activating ALP and enhancing osteoblast matrix mineralization. When administrated to OVX rats, CH6-LNPs-siNLRP3 promoted bone formation and bone mass, improved bone microarchitecture and mechanical properties by decreasing the levels of NLRP3, IL-1ß and IL-18 and increasing the levels of OCN and Runx2. Conclusion: NLRP3 inflammasome may be a new biomarker for PMOP diagnosis and plays a key role in the pathology of PMOP. CH6-LNPs-siNLRP3 has potential application for the treatment of PMOP.


Asunto(s)
Inflamasomas , Liposomas , Proteína con Dominio Pirina 3 de la Familia NLR , Nanopartículas , Osteoblastos , Osteoporosis Posmenopáusica , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Femenino , Humanos , Ratas , Inflamasomas/metabolismo , Nanopartículas/química , Osteoporosis Posmenopáusica/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Ratas Sprague-Dawley , ARN Interferente Pequeño/administración & dosificación , Aptámeros de Nucleótidos/farmacología , Aptámeros de Nucleótidos/administración & dosificación , Modelos Animales de Enfermedad , Persona de Mediana Edad , Ovariectomía
15.
J Control Release ; 354: 770-783, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36702259

RESUMEN

The poor cancer immunotherapy outcome has been closely related to immunosuppressive tumor microenvironment (TME), which usually inactivates the antitumor immune cells and leads to immune tolerance. Metalloimmunotherapy by supplementing nutritional metal ions into TME has emerged as a potential strategy to activate the tumor-resident immune cells. Herein, we engineered a magnesium-contained nano-aluminum adjuvant (NanoAlum) through hydrolyzing a mixture of Mg(OH)2 and Al(OH)3, which has highly similar components to commercial Imject Alum. Peritumoral injection of NanoAlum effectively neutralized the acidic TME while releasing Mg2+ to activate the tumor-resident T cells. Meanwhile, NanoAlum also blocked the autophagy pathway in tumor cells and subsequently induced cell apoptosis. The in vivo studies showed that merely peritumoral injection of NanoAlum successfully inhibited the growth of solid tumors in mice. On this basis, NanoAlum combined with chemical drug methotrexate or immunomodulatory adjuvant CpG further induced potent antigen-specific antitumor immunity. Overall, our study first provides a rational design for engineering tumor-targeted nanomodulator from clinical adjuvants to achieve effective cancer metalloimmunotherapy against solid tumors.


Asunto(s)
Aluminio , Neoplasias , Animales , Ratones , Aluminio/farmacología , Aluminio/uso terapéutico , Adyuvantes Inmunológicos/farmacología , Neoplasias/tratamiento farmacológico , Inmunoterapia , Linfocitos T , Adyuvantes Farmacéuticos/farmacología , Microambiente Tumoral
16.
Front Immunol ; 14: 1171445, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266442

RESUMEN

Background: Idiopathic pulmonary fibrosis (IPF) has attracted considerable attention worldwide and is challenging to diagnose. Cuproptosis is a new form of cell death that seems to be associated with various diseases. However, whether cuproptosis-related genes (CRGs) play a role in regulating IPF disease is unknown. This study aims to analyze the effect of CRGs on the progression of IPF and identify possible biomarkers. Methods: Based on the GSE38958 dataset, we systematically evaluated the differentially expressed CRGs and immune characteristics of IPF disease. We then explored the cuproptosis-related molecular clusters, the related immune cell infiltration, and the biological characteristics analysis. Subsequently, a weighted gene co-expression network analysis (WGCNA) was performed to identify cluster-specific differentially expressed genes. Lastly, the eXtreme Gradient Boosting (XGB) machine-learning model was chosen for the analysis of prediction and external datasets validated the predictive efficiency. Results: Nine differentially expressed CRGs were identified between healthy and IPF patients. IPF patients showed higher monocytes and monophages M0 infiltration and lower naive B cells and memory resting T CD4 cells infiltration than healthy individuals. A positive relationship was found between activated dendritic cells and CRGs of LIPT1, LIAS, GLS, and DBT. We also identified cuproptosis subtypes in IPF patients. Go and KEGG pathways analysis demonstrated that cluster-specific differentially expressed genes in Cluster 2 were closely related to monocyte aggregation, ubiquitin ligase complex, and ubiquitin-mediated proteolysis, among others. We also constructed an XGB machine model to diagnose IPF, presenting the best performance with a relatively lower residual and higher area under the curve (AUC= 0.700) and validated by external validation datasets (GSE33566, AUC = 0.700). The analysis of the nomogram model demonstrated that XKR6, MLLT3, CD40LG, and HK3 might be used to diagnose IPF disease. Further analysis revealed that CD40LG was significantly associated with IPF. Conclusion: Our study systematically illustrated the complicated relationship between cuproptosis and IPF disease, and constructed an effective model for the diagnosis of IPF disease patients.


Asunto(s)
Apoptosis , Linfocitos B , Fibrosis Pulmonar Idiopática , Humanos , Ligando de CD40 , Adhesión Celular , Fibrosis Pulmonar Idiopática/genética , Ubiquitinas , Cobre
17.
Brain Res Bull ; 200: 110685, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37330021

RESUMEN

Human tauopathies, including Alzheimer's disease (AD), are a major class of neurodegenerative diseases characterized by intracellular deposition of pathological hyperphosphorylated forms of Tau protein. Complement system is composed of many proteins, which form a complex regulatory network to modulate the immune activity in the brain. Emerging studies have demonstrated a critical role of complement C3a receptor (C3aR) in the development of tauopathy and AD. The underlying mechanisms by which C3aR activation mediates tau hyperphosphorylation in tauopathies, however, remains largely unknown. Here, we observed that the expression of C3aR is upregulated in the brains of P301S mice - a mouse model of tauopathy and AD. Pharmacologic blockade of C3aR ameliorates synaptic integrity and reduced tau hyperphosphorylation in P301S mice. Besides, the administration of C3aR antagonist (C3aRA: SB 290157) improved spatial memory as tested in the Morris water maze. Moreover, C3a receptor antagonist inhibited tau hyperphosphorylation by regulating p35/CDK5 signaling. In summary, results suggest that the C3aR plays an essential role in the accumulation of hyperphosphorylated Tau and behavioral deficits in P301S mice. C3aR could be a feasible therapeutic target for the treatment of tauopathy disorders, including AD.


Asunto(s)
Enfermedad de Alzheimer , Trastornos del Conocimiento , Tauopatías , Ratones , Humanos , Animales , Ratones Transgénicos , Proteínas tau/metabolismo , Tauopatías/tratamiento farmacológico , Tauopatías/patología , Enfermedad de Alzheimer/metabolismo , Cognición , Modelos Animales de Enfermedad
18.
Signal Transduct Target Ther ; 8(1): 30, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36693826

RESUMEN

Passive immunotherapy is one of the most promising interventions for Alzheimer's disease (AD). However, almost all immune-modulating strategies fail in clinical trials with unclear causes although they attenuate neuropathology and cognitive deficits in AD animal models. Here, we showed that Aß-targeting antibodies including their lgG1 and lgG4 subtypes induced microglial engulfment of neuronal synapses by activating CR3 or FcγRIIb via the complex of Aß, antibody, and complement. Notably, anti-Aß antibodies without Fc fragment, or with blockage of CR3 or FcγRIIb, did not exert these adverse effects. Consistently, Aß-targeting antibodies, but not their Fab fragments, significantly induced acute microglial synapse removal and rapidly exacerbated cognitive deficits and neuroinflammation in APP/PS1 mice post-treatment, whereas the memory impairments in mice were gradually rescued thereafter. Since the recovery rate of synapses in humans is much lower than that in mice, our findings may clarify the variances in the preclinical and clinical studies assessing AD immunotherapies. Therefore, Aß-targeting antibodies lack of Fc fragment, or with reduced Fc effector function, may not induce microglial synaptic pruning, providing a safer and more efficient therapeutic alternative for passive immunotherapy for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Humanos , Animales , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Disfunción Cognitiva/patología , Sinapsis/patología , Anticuerpos/uso terapéutico , Cognición
19.
MedComm (2020) ; 4(5): e371, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37750090

RESUMEN

Aged male patients are more vulnerable to severe or critical symptoms of COVID-19, but the underlying mechanism remains elusive. In this study, we analyzed previously published scRNA-seq data from a large cohort of COVID-19 patients, castrated and regenerated mice, and bulk RNA-seq of a RNAi library of 400 genes, and revealed that both immunity and OXPHOS displayed cell-type-, sex-, and age-related variation in the severe or critical COVID-19 patients during disease progression, with a more prominent increase in immunity and decrease in OXPHOS in myeloid cells in the males relative to the females (60-69 years old). Male severe or critical patients above 70 years old were an exception in that the compromised negative correlation between OXPHOS and immunity in these patients was associated with its disordered transcriptional regulation. Finally, the expression levels of OXPHOS and androgens were revealed to be positively correlated, and the responses of macrophages to android fluctuation were more striking than other types of detected immune cells in the castrated mice model. Therefore, the interplay of OXPHOS and immunity displayed a cell-type-specific, age-related, and sex-biased pattern, and the underlying potential regulatory role of the hormonal milieu should not be neglected.

20.
Cell Rep ; 42(6): 112624, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37302068

RESUMEN

Amyloid-ß (Aß) plays an important role in the neuropathology of Alzheimer's disease (AD), but some factors promoting Aß generation and Aß oligomer (Aßo) neurotoxicity remain unclear. We here find that the levels of ArhGAP11A, a Ras homology GTPase-activating protein, significantly increase in patients with AD and amyloid precursor protein (APP)/presenilin-1 (PS1) mice. Reducing the ArhGAP11A level in neurons not only inhibits Aß generation by decreasing the expression of APP, PS1, and ß-secretase (BACE1) through the RhoA/ROCK/Erk signaling pathway but also reduces Aßo neurotoxicity by decreasing the expressions of apoptosis-related p53 target genes. In APP/PS1 mice, specific reduction of the ArhGAP11A level in neurons significantly reduces Aß production and plaque deposition and ameliorates neuronal damage, neuroinflammation, and cognitive deficits. Moreover, Aßos enhance ArhGAP11A expression in neurons by activating E2F1, which thus forms a deleterious cycle. Our results demonstrate that ArhGAP11A may be involved in AD pathogenesis and that decreasing ArhGAP11A expression may be a promising therapeutic strategy for AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Proteínas Activadoras de GTPasa , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Modelos Animales de Enfermedad , Ratones Transgénicos , Presenilina-1/metabolismo , Proteínas Activadoras de GTPasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA