Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 632(8025): 536-542, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925147

RESUMEN

Perovskite solar cells with an inverted architecture provide a key pathway for commercializing this emerging photovoltaic technology because of the better power conversion efficiency and operational stability compared with the normal device structure. Specifically, power conversion efficiencies of the inverted perovskite solar cells have exceeded 25% owing to the development of improved self-assembled molecules1-5 and passivation strategies6-8. However, poor wettability and agglomeration of self-assembled molecules9-12 cause interfacial losses, impeding further improvement in the power conversion efficiency and stability. Here we report a molecular hybrid at the buried interface in inverted perovskite solar cells that co-assembled the popular self-assembled molecule [4-(3,6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid (Me-4PACz) with the multiple aromatic carboxylic acid 4,4',4″-nitrilotribenzoic acid (NA) to improve the heterojunction interface. The molecular hybrid of Me-4PACz with NA could substantially improve the interfacial characteristics. The resulting inverted perovskite solar cells demonstrated a record certified steady-state efficiency of 26.54%. Crucially, this strategy aligns seamlessly with large-scale manufacturing, achieving one of the highest certified power conversion efficiencies for inverted mini-modules at 22.74% (aperture area 11.1 cm2). Our device also maintained 96.1% of its initial power conversion efficiency after more than 2,400 h of 1-sun operation in ambient air.

2.
Small ; 19(25): e2207950, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36929201

RESUMEN

Lead halide-based perovskites solar cells (PSCs) are intriguing candidates for photovoltaic technology due to their high efficiency, low cost, and simple fabrication processes. Currently, PSCs with efficiencies of >25% are mainly based on methylammonium (MA)-free and bromide (Br) free, formamide lead iodide (FAPbI3 )-based perovskites, because MA is thermally unstable due to its volatile nature and Br incorporation will induce blue shift in the absorption spectrum. Therefore, MA-free, Br-free formamidine-based perovskites are drawing huge research attention in recent years. The hole transporting layer (HTL) is crucial in fabricating highly efficient and stable inverted p-i-n structured PSCs by enhancing charge extraction, lowering interfacial recombination, and altering band alignment, etc. Here, this work employs a NiOx /PTAA bi-layer HTL combined with GuHCl (guanidinium hydrochloride) additive engineering and PEAI (phenylethylammonium iodide) passivation strategy to optimize the charge carrier dynamics and tune defects chemistry in the MA-free, Br-free RbCsFAPbI3 -based perovskite absorber, which boosts the device efficiency up to 22.78%. Additionally, the device retains 95% of its initial performance under continuous 1 sun equivalent LED light illumination at 45 °C for up to 500 h.

3.
Small Methods ; : e2400067, 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38494754

RESUMEN

Wide-bandgap (WBG) perovskite solar cells (PSCs) have been widely used as the top cell of tandem solar cells. However, photoinduced phase segregation and high open-circuit voltage loss pose significant obstacles to the development of WBG PSCs. Here, a two-step small-size A-site and large-size X-site incorporation strategy is reported to modulate the lattice distortion and improve the film quality of WBG formamidinium-methylammonium (FAMA) perovskite films for photostable PSCs based on two-step deposition method. First, CsI with content of 0-20% is introduced to tune the lattice distortion and film quality of FAMA perovskite with a bandgap of 1.70 eV. Then, 4% RbI is incorporated to further modulate the perovskite growth and lattice distortion, leading to the suppression of photoinduced phase segregation in the resultant RbCsFAMA quadruple cation perovskites. As a result, the 20%CsI/4%RbI-doped device obtains a promising efficiency of 20.6%, and the corresponding perovskite film shows good photothermal stability. Even without encapsulation, the device can maintain 92% of its initial efficiency after 1000 h of continuous operation under 1 sun equivalent white light-emitting diode illumination.

4.
Nat Commun ; 15(1): 7335, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187539

RESUMEN

All-perovskite tandem solar cells have shown great promise in breaking the Shockley-Queisser limit of single-junction solar cells. However, the efficiency improvement of all-perovskite tandem solar cells is largely hindered by the surface defects induced non-radiative recombination loss in Sn-Pb mixed narrow bandgap perovskite films. Here, we report a surface reconstruction strategy utilizing a surface polishing agent, 1,4-butanediamine, together with a surface passivator, ethylenediammonium diiodide, to eliminate Sn-related defects and passivate organic cation and halide vacancy defects on the surface of Sn-Pb mixed perovskite films. Our strategy not only delivers high-quality Sn-Pb mixed perovskite films with a close-to-ideal stoichiometric ratio surface but also minimizes the non-radiative energy loss at the perovskite/electron transport layer interface. As a result, our Sn-Pb mixed perovskite solar cells with bandgaps of 1.32 and 1.25 eV realize power conversion efficiencies of 22.65% and 23.32%, respectively. Additionally, we further obtain a certified power conversion efficiency of 28.49% of two-junction all-perovskite tandem solar cells.

5.
Nat Commun ; 14(1): 6120, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777526

RESUMEN

The long-term stability of perovskite solar cells remains one of the most important challenges for the commercialization of this emerging photovoltaic technology. Here, we adopt a non-noble metal/metal oxide/polymer multiple-barrier to suppress the halide consumption and gaseous perovskite decomposition products release with the chemically inert bismuth electrode and Al2O3/parylene thin-film encapsulation, as well as the tightly closed system created by the multiple-barrier to jointly suppress the degradation of perovskite solar cells, allowing the corresponding decomposition reactions to reach benign equilibria. The resulting encapsulated formamidinium cesium-based perovskite solar cells with multiple-barrier maintain 90% of their initial efficiencies after continuous operation at 45 °C for 5200 h and 93% of their initial efficiency after continuous operation at 75 °C for 1000 h under 1 sun equivalent white-light LED illumination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA