Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202407118, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849318

RESUMEN

Cross-electrophile coupling (XEC) between aryl halides and alkyl halides is a streamlined approach for C(sp2)-C(sp3) bond construction, which is highly valuable in medicinal chemistry. Based on a key NiII aryl amido intermediate, we developed a highly selective and scalable Ni-catalyzed electrochemical XEC reaction between (hetero)aryl halides and primary and secondary alkyl halides. Experimental and computational mechanistic studies indicate that an amine secondary ligand slows down the oxidative addition process of the Ni-polypyridine catalyst to the aryl bromide and a NiII aryl amido intermediate is formed in-situ during the reaction process. The relatively slow oxidative addition is beneficial for enhancing the selectivity of the XEC reaction. The NiII aryl amido intermediate stabilizes the NiII-aryl species to prevent the aryl-aryl homo-coupling side reactions and acts as a catalyst to activate the alkyl bromide substrates. This electrosynthesis system provides a facile, practical, and scalable platform for the formation of (hetero)aryl-alkyl bonds using standard Ni catalysts under mild conditions. The mechanistic insights from this work could serve as a great foundation for future studies on Ni-catalyzed cross-couplings.

2.
Small ; 19(18): e2206067, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36720012

RESUMEN

It is essential but still challenging to design and construct inexpensive, highly active bifunctional oxygen electrocatalysts for the development of high power density zinc-air batteries (ZABs). Herein, a CoFe-S@3D-S-NCNT electrocatalyst with a 3D hierarchical structure of carbon nanotubes growing on leaf-like carbon microplates is designed and prepared through chemical vapour deposition pyrolysis of CoFe-MOF and subsequent hydrothermal sulfurization. Its 3D hierarchical structure shows excellent hydrophobicity, which facilitates the diffusion of oxygen and thus accelerates the oxygen reduction reaction (ORR) kinetic process. Alloying and sulfurization strategies obviously enrich the catalytic species in the catalyst, including cobalt or cobalt ferroalloy sulfides, their heterojunction, core-shell structure, and S, N-doped carbon, which simultaneously improve the ORR/OER catalytic activity with a small potential gap (ΔE = 0.71 V). Benefiting from these characteristics, the corresponding liquid ZABs show high peak power density (223 mW cm-2 ), superior specific capacity (815 mA h gZn -1 ), and excellent stability at 5 mA cm-2 for ≈900 h. The quasi-solid-state ZABs also exhibit a very high peak power density of 490 mW cm-2 and an excellent voltage round-trip efficiency of more than 64%. This work highlights that simultaneous composition optimization and microstructure design of catalysts can effectively improve the performance of ZABs.

3.
Angew Chem Int Ed Engl ; 58(21): 6967-6971, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30834664

RESUMEN

Mg batteries are a promising energy storage system because of the physicochemical merits of Mg as an anode material. However, the lack of electrochemically and chemically stable Mg electrolytes impedes the development of Mg batteries. In this study, a newly designed chloride-free Mg perfluorinated pinacolatoborate, Mg[B(O2 C2 (CF3 )4 )2 ]2 (abbreviated as Mg-FPB), was synthesized by a convenient method from commercially available reagents and fully characterized. The Mg-FPB electrolyte delivered outstanding electrochemical performance, specifically, 95 % Coulombic efficiency and 197 mV overpotential, enabling reversible Mg deposition, and an anodic stability of up to 4.0 V vs. Mg. The Mg-FPB electrolyte was applied to assemble a high voltage, rechargeable Mg/MnO2 battery with a discharge capacity of 150 mAh g-1 .

4.
Angew Chem Int Ed Engl ; 57(1): 231-235, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29181865

RESUMEN

Extending the conjugation of viologen by a planar thiazolo[5,4-d]thiazole (TTz) framework and functionalizing the pyridinium with hydrophilic ammonium groups yielded a highly water-soluble π-conjugation extended viologen, 4,4'-(thiazolo[5,4-d]thiazole-2,5-diyl)bis(1-(3-(trimethylammonio)propyl)pyridin-1-ium) tetrachloride, [(NPr)2 TTz]Cl4 , as a novel two-electron storage anolyte for aqueous organic redox flow battery (AORFB) applications. Its physical and electrochemical properties were systematically investigated. Paired with 4-trimethylammonium-TEMPO (NMe -TEMPO) as catholyte, [(NPr)2 TTz]Cl4 enables a 1.44 V AORFB with a theoretical energy density of 53.7 Wh L-1 . A demonstrated [(NPr)2 TTz]Cl4 /NMe -TEMPO AORFB delivered an energy efficiency of 70 % and 99.97 % capacity retention per cycle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA