Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Phys Chem A ; 128(17): 3311-3320, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38654690

RESUMEN

Herein, we employed linear-response time-dependent functional theory nonadiabatic dynamic simulations to explore the photoinduced exciton dynamics of a chiral single-walled carbon nanotube CNT(6,5) covalently doped with a 4-nitrobenzyl group (CNT65-NO2). The results indicate that the introduction of a sp3 defect leads to the splitting of the degenerate VBM/VBM-1 and CBM/CBM+1 states. Both the VBM upshift and the CBM downshift are responsible for the experimentally observed redshifted E11* trapping state. The simulations reveal that the photoinduced exciton relaxation dynamics completes within 500 fs, which is consistent with the experimental work. On the other hand, we also conducted the nonadiabatic carrier (electron and hole) dynamic simulations, which completely ignore the excitonic effects. The comparison demonstrates that excitonic effects are indispensable. Deep analyses show that such effects induce several dark states, which play an important role in regulating the photoinduced dynamics of CNT65-NO2. The present work demonstrates the importance of including excitonic effects in simulating photoinduced processes of carbon nanotubes. In addition, it not only rationalizes previous experiments but also provides valuable insights that will help in the future rational design of novel covalently doped carbon nanotubes with superior photoluminescent properties.

2.
Angew Chem Int Ed Engl ; 63(5): e202315300, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38085965

RESUMEN

Photocatalytic CO2 reduction is one of the best solutions to solve the global energy crisis and to realize carbon neutralization. The tetradentate phosphine-bipyridine (bpy)-phosphine (PNNP)-type Ir(III) photocatalyst, Mes-IrPCY2, was reported with a high HCOOH selectivity but the photocatalytic mechanism remains elusive. Herein, we employ electronic structure methods in combination with radiative, nonradiative, and electron transfer rate calculations, to explore the entire photocatalytic cycle to either HCOOH or CO, based on which a new mechanistic scenario is proposed. The catalytic reduction reaction starts from the generation of the precursor metal-to-ligand charge transfer (3 MLCT) state. Subsequently, the divergence happens from the 3 MLCT state, the single electron transfer (SET) and deprotonation process lead to the formation of one-electron-reduced species and Ir(I) species, which initiate the reduction reaction to HCOOH and CO, respectively. Interestingly, the efficient occurrence of proton or electron transfer reduces barriers of critical steps. In addition, nonadiabatic transitions play a nonnegligible role in the cycle. We suggest a lower free-energy barrier in the reaction-limiting step and the very efficient SET in 3 MLCT are cooperatively responsible for a high HCOOH selectivity. The gained mechanistic insights could help chemists to understand, regulate, and design photocatalytic CO2 reduction reaction of similar function-integrated molecular photocatalyst.

3.
Small ; 19(49): e2303572, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37592111

RESUMEN

Cross-scale micro-nano structures play an important role in semiconductors, MEMS, chemistry, and cell biology. Positive photoresist is widely used in lithography due to the advantages of high resolution and environmental friendliness. However, cross-scale micro-nano structures of positive photoresist are difficult to flexibly pattern, and the feature resolution is limited by the optical diffraction. Here, cross-scale patterned micro-nano structures are achieved using the positive photoresist based on the femtosecond laser maskless optical projection lithography (MOPL) technique. The dependence between exposure dose and groove width is comprehensively analyzed, and a feature size of 112 nm is obtained at 110 µW. Furthermore, large-area topography considering cell size is efficiently fabricated by the MOPL technique, which enables the regulation of cell behavior. The proposed protocol of achieving cross-scale structures with the exact size by MOPL of positive photoresist would provide new avenues for potential applications in nanoelectronics and tissue engineering.


Asunto(s)
Rayos Láser , Impresión , Propiedades de Superficie , Tamaño de la Célula
4.
Phys Chem Chem Phys ; 25(41): 28452-28464, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37846460

RESUMEN

Herein, we have employed a combination of the optimally tuned screened range-separated hybrid (OT-SRSH) functional, the polarizable continuum model (PCM), and nonadiabatic dynamics (NAMD) simulations to investigate the photoinduced dynamics of directly linked donor-acceptor dyads formed using zinc phthalocyanine (ZnPc) and perylenediimide (PDI), in which ZnPc is the donor while PDI is the acceptor. Our simulations aim to analyze the behavior of these dyads upon local excitation of the ZnPc moiety in the gas phase and in benzonitrile. Our findings indicate that the presence of a solvent can significantly influence the excited state dynamics of ZnPc-PDI dyads. Specifically, the polar solvent benzonitrile effectively lowers the vertical excitation energies of the charge transfer (CT) state from ZnPc to PDI. As a result, the energetic order of the locally excited (LE) states of ZnPc and the CT states is reversed compared to the gas phase. Consequently, the photoinduced electron transfer (PET) dynamics from ZnPc to PDI, which is absent in the gas phase, takes place in benzonitrile with a time constant of 10.4 ps. Importantly, our present work not only qualitatively agrees with experimental results but also provides in-depth insights into the underlying mechanisms responsible for the photoinduced dynamics of ZnPc-PDI. Moreover, this study emphasizes the importance of appropriately considering solvent effects in NAMD simulation of organic donor-acceptor systems, taking into account the distinct excited state dynamics observed in the gas phase and benzonitrile. Furthermore, the combination of the OT-SRSH functional, the PCM solvent model, and nonadiabatic dynamics simulations shows promise as a strategy for investigating the complex excited state dynamics of organic donor-acceptor systems in solvents. These findings will be valuable for the future design of novel organic donor-acceptor structures with improved performance.

5.
J Chem Phys ; 158(5): 054108, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36754819

RESUMEN

Herein, we employed a developed linear response time dependent density functional theory-based nonadiabatic dynamics simulation method that explicitly takes into account the excitonic effects to investigate photoinduced excitation energy transfer dynamics of a double-walled carbon nanotube (CNT) model with different excitation energies. The E11 excitation of the outer CNT will generate a local excitation (LE) |out*〉 exciton due to its low energy, which does not induce any charge separation. In contrast, the E11 excitation of the inner CNT can generate four kinds of excitons with the LE exciton |in*〉 dominates. In the 500-fs dynamics simulation, the LE exciton |in*〉 and charge transfer (CT) excitons |out-in+〉 and |out+in-〉 are all gradually converted to the |out*〉 exciton, corresponding to a photoinduced excitation energy transfer, which is consistent with experimental studies. Finally, when the excitation energy is close to the E22 state of the outer CNT (∼1.05 eV), a mixed population of different excitons, with the |out*〉 exciton dominated, is generated. Then, photoinduced energy transfer from the outer to inner CNTs occurs in the first 50 fs, which is followed by an inner to outer excitation energy transfer that is completed in 400 fs. The present work not only sheds important light on the mechanistic details of wavelength-dependent excitation energy transfer of a double-walled CNT model but also demonstrates the roles and importance of CT excitons in photoinduced excitation energy transfer. It also emphasized that explicitly including the excitonic effects in electronic structure calculations and nonadiabatic dynamics simulations is significant for correct understanding/rational design of optoelectronic properties of periodically extended systems.

6.
Molecules ; 28(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37241962

RESUMEN

In this work, we implemented an approximate algorithm for calculating nonadiabatic coupling matrix elements (NACMEs) of a polyatomic system with ab initio methods and machine learning (ML) models. Utilizing this algorithm, one can calculate NACMEs using only the information of potential energy surfaces (PESs), i.e., energies, and gradients as well as Hessian matrix elements. We used a realistic system, namely CH2NH, to compare NACMEs calculated by this approximate PES-based algorithm and the accurate wavefunction-based algorithm. Our results show that this approximate PES-based algorithm can give very accurate results comparable to the wavefunction-based algorithm except at energetically degenerate points, i.e., conical intersections. We also tested a machine learning (ML)-trained model with this approximate PES-based algorithm, which also supplied similarly accurate NACMEs but more efficiently. The advantage of this PES-based algorithm is its significant potential to combine with electronic structure methods that do not implement wavefunction-based algorithms, low-scaling energy-based fragment methods, etc., and in particular efficient ML models, to compute NACMEs. The present work could encourage further research on nonadiabatic processes of large systems simulated by ab initio nonadiabatic dynamics simulation methods in which NACMEs are always required.

7.
Small ; 18(11): e2107196, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35060331

RESUMEN

Solid photothermal materials with favorable biocompatibility and modifiable mechanical properties demonstrate obvious superiority and growing demand. In this work, polydopamine (PDA) induced functionalization of regenerated silk fibroin (RSF) fibers has satisfactory photothermal conversion ability and flexibility. Based on multilevel engineering, RSF solution containing PDA nanoparticles is wet spun to PDA-incorporating RSF (PDA@RSF) fibers, and then the fibers are coated with PDA via oxidative self-polymerization of dopamine to form PDA@RSF-PDA (PRP) fibers. During the wet spinning process, PDA is to adjust the mechanical properties of RSF by affecting its hierarchical structure. Meanwhile, coated PDA gives the PRP fibers extensive absorption of near-infrared light and sunlight, which is further fabricated into PRP fibrous membranes. The temperature of PRP fibrous membranes can be adjusted and increases to about 50 °C within 360 s under 808 nm laser irradiation with a power density of 0.6 W cm-2 , and PRP fibrous membranes exhibit effective photothermal cytotoxicity both in vitro and in vivo. Under the simulated sunlight, the temperature of PRP fiber increases to more than 200 °C from room temperature and the material can generate 4.5 V voltage when assembled with a differential thermal battery, which means that the material also has the potential for flexible wearable electronic devices.


Asunto(s)
Fibroínas , Fibroínas/química , Indoles/química , Polímeros/química , Ingeniería de Tejidos
8.
Opt Express ; 30(20): 36791-36801, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36258601

RESUMEN

Maskless lithography technologies have been developed and played an important role in the fabrication of functional micronano devices for microelectronics, biochips and photonics. Optical projection lithography based on digital micromirror device (DMD) is an efficient maskless lithography technology that can rapidly fabricate complex structures. The precise modulation of gap width by DMD maskless optical projection lithography (MOPL) using femtosecond laser becomes important for achieving micronano structures. Herein, we have investigated the relationship between the structure morphology and the light intensity distribution at the image plane by multi-slit diffraction model and Abbe imaging principle, and optimized the gap width more accurately by modulating exposure energy. The aperture diameter of the objective lens has a substantial effect on the pattern consistency. The continuously adjustable structural gap widths of 2144 nm, 2158 nm and 1703 nm corresponding to 6, 12, 24 pixels are obtained by varying the exposure energy in the home-built MOPL system. However, the ideal gap structure cannot be obtained only by adjusting the exposure energy when the gap width is small, such as 1 or 2 pixels. Furthermore, we have proposed an alternative way to achieve fine gap structures through the structural decomposition design and precise control of exposure energy in different regions without changing the MOPL optical system. This study would provide a promising protocol for fabricating gap microstructures with controllable configuration using MOPL technique.

9.
Chemistry ; 28(39): e202200756, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35415853

RESUMEN

Fluorene is a classic three-membered polycyclic aromatic hydrocarbon, and it has been widely used in optoelectronic devices. Here we explore a simple and efficient strategy for the derivatization at the 2- and 3- positions in fluorene unit. By introducing different types of substituents, we design two pairs of 2,3-disubstituted fluorene isomers and use them as host materials for phosphorescent organic light-emitting diodes (PHOLEDs). The green PHOLEDs hosted by these fluorene derivatives realize high external quantum efficiencies (EQE) over 20 % with low efficiency roll-off. Particularly, the devices hosted by 2TRz3TPA and 2TPA3TRz achieve nearly 24 % EQE and 104 lm W-1 power efficiency. These results clearly demonstrate that the 2,3-disubstituted fluorene platforms are potentially useful for constructing host materials.

10.
Phys Chem Chem Phys ; 24(44): 27173-27183, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36321450

RESUMEN

Herein, we have employed linear-response time dependent density functional theory (LR-TDDFT)-based nonadiabatic dynamics simulations to investigate the ultrafast charge transfer in a nonfullerene all-small-molecule donor-acceptor (D-A) system formed by a porphyrin small-molecule donor ZnP and a recently developed nonfullerene small-molecule acceptor 6TIC, during which the optimally tuned range-separated hybrid (OT-RSH) functional was adopted. In combination with static electronic structure calculations, several important conclusions were drawn. Firstly, the ZnP and 6TIC are more likely combined together non-covalently in parallel rather than in perpendicular to form ZnP-6TIC due to the much larger adsorption energies, i.e. -44.6 kcal mol-1vs. -25.2 kcal mol-1. Secondly, the excited state properties obtained by OT-RSH functionals seem more consistent with the experimental results compared to their untuned versions. Specifically, the energy of the lowest charge transfer (CT) state was predicted to be smaller than the lowest lying local excitation (LE) states using the OT-RSH functional-based LR-TDDFT calculations, which is beneficial for the charge transfer process that might be crucial for the high power conversion efficiency (PCE) achieved experimentally. In contrast, the untuned RS functionals all predict higher CT state energies, which is contradictory to the high PCE obtained in the experiment. Moreover, strong hybridization upon excitation between these states was revealed, which might be one of the reasons responsible for the high PCE observed in the experiment. Finally, ultrafast excited state relaxation can be completed within 500 fs due to the small energy gaps and the strong nonadiabatic couplings between these states, which is accompanied by ultrafast photoinduced electron transfer from ZnP to 6TIC and photoinduced hole transfer the other way around. The efficient charge transfer processes and the involvement of two charge generation channels might be another cause resulting in the excellent photovoltaic performance of ZnP-6TIC based OSCs. Our present work not only provides solid evidence for elucidating the underlying mechanism observed in previous experiments, but also suggests that the combination of OT-RSH functionals and LR-TDDFT-based nonadiabatic dynamics simulations might be a powerful tool for investigating the excited state dynamics of organic D-A systems, which is crucial for the theoretical design of novel OSCs with better performances in the future.

11.
Phys Chem Chem Phys ; 24(12): 7293-7302, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35262152

RESUMEN

Unraveling the photogenerated exciton dynamics of π-stacked molecular aggregates is of great importance for both fundamental studies and industrial applications. Among various π-stacked molecular aggregates, perylene tetracarboxylic acid bisimide (PBI) based aggregates are regarded as one of the prototypes due to their inherent high fluorescence quantum yield and excellent photostability and flexibility in controlling intermolecular forces via chemical modifications. However, the exciton dynamics of these PBI based aggregates remain elusive up to now. In this work, we have first employed LR-TDDFT-based nonadiabatic dynamics simulations and static electronic structure calculations to investigate the ultrafast exciton dynamics of a newly synthesized perylene bisimide quadruple (PBQ) π-stack. Upon photoexcitation, the S6 to S10 states are the most likely populated excited states, which can be regarded as a combination of local excited (LE) excitons and charge transfer (CT) excitons of those four PBI chromophores. Then, the excited PBQ π-stack relaxes ultrafast to the lowest lying excited S1 state within 500 fs, which is accompanied by the complicated exciton conversion as well as exciton localization/delocalization dynamics. In short, the initially populated hybrid LE and CT excitons convert to the LE excitons of B/C and A/D, in which the LE excitons of B/C contribute the most (∼0.44) while the LE excitons of A/D also have minor contributions (0.21), indicating the formation of the localized excimer state. We use the notations A/B/C/D here to represent the four PBI fragments of PBQ π-stacks along the direction perpendicular to the PBI molecular plane. Additionally, using a recently defined root mean square deviation (RMSD) of electron and hole spatial distributions along three Cartesian coordinates, we could investigate the exciton localization/delocalization dynamics in a quantitative way. Our simulation results indicate that the photoinduced electrons and holes of the PBQ π-stack exhibit an ultrafast localization(∼10 fs)-delocalization(∼60 fs)-localization(∼200 fs) dynamics, during which both LE and CT excitons play crucial roles. Our present work is not only consistent with previous experimental studies, but also provides more detailed insights into the relevant processes, which might be useful for the future design of PBI based optoelectronic devices with improved performances.

12.
J Phys Chem A ; 126(11): 1789-1804, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35266391

RESUMEN

Nonadiabatic dynamics simulation has become a powerful tool to describe nonadiabatic effects involved in photophysical processes and photochemical reactions. In the past decade, our group has developed generalized trajectory-based ab initio surface-hopping (GTSH) dynamics simulation methods, which can be used to describe a series of nonadiabatic processes, such as internal conversion, intersystem crossing, excitation energy transfer and charge transfer of molecular systems, and photoinduced nonadiabatic carrier dynamics of extended systems with and without spin-orbit couplings. In this contribution, we will first give a brief introduction to our recently developed methods and related numerical implementations at different computational levels. Later, we will present some of our latest applications in realistic systems, which cover organic molecules, biological proteins, organometallic compounds, periodic organic and inorganic materials, etc. Final discussion is given to challenges and outlooks of ab initio nonadiabatic dynamics simulations.


Asunto(s)
Simulación de Dinámica Molecular , Teoría Cuántica , Transferencia de Energía
13.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1824-1830, 2022 Apr.
Artículo en Zh | MEDLINE | ID: mdl-35534252

RESUMEN

Leaf blight outbroke in Rehmannia glutinosa plantation in Wenxian county, Henan province in 2019. R. glutinosa plants with diseased leaves were collected from the plantation, and three strains were isolated from the diseased leaf samples. Pathogenicity test, morphological observation, and phylogenetic analysis of ITS, EF1-α, and Tub suggested that they were respectively Fusarium proliferatum, F. oxysporum, and F.acuminatum. Among them, F. acuminatum, as a pathogen of R. glutinosa leaf disease, had never been reported. To clarify the biological characteristics of F. acuminatum, this study tested the influence of light, pH, temperature, medium, carbon source, and nitrogen source on the mycelial growth rate of the pathogen during a 5-day culture period, and explored the lethal temperature. The results showed that the mycelia grew well under the photoperiod of 12 h light/12 h darkness, at 5-40 ℃(optimal temperature: 25 ℃), at pH 4-11(optimal pH: 7.0), on a variety of media(optimal medium: oatmeal agar), and in the presence of diverse carbon and nitrogen sources(optimal carbon source: soluble starch; optimal nitrogen source: sodium nitrate). The lethal temperature was verified to be 51 ℃(10 min). The conclusion is expected to lay a scientific basis for diagnosis and control of R. glutinosa leaf diseases caused by F. acuminatum.


Asunto(s)
Rehmannia , Carbono , Nitrógeno , Filogenia
14.
Chemistry ; 27(12): 4159-4167, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33372312

RESUMEN

Whether chemical bonding can regulate the excited-state and optoelectronic properties of donor-acceptor dyads has been largely elusive. In this work, we used electronic structure and nonadiabatic dynamics methods to explore the excited-state properties of covalently bonded zinc phthalocyanine (ZnPc)-fullerene (C60 ) dyads with a 6-6 (or 5-6) bonding configuration in which ZnPc is bonded to two carbon atoms shared by the two hexagonal rings (or a pentagonal and a hexagonal ring) in C60 . In both cases, the locally excited (LE) states on ZnPc are spectroscopically bright. However, their different chemical bonding differentiates the electronic interactions between ZnPc and C60 . In the 5-6 bonding configuration, the LE states on ZnPc are much higher in energy than the LE states on C60 . Thus, the excitation energy transfer from ZnPc to C60 is thermodynamically favorable. On the other hand, in the 6-6 bonding configuration, such a process is inhibited because the LE states on ZnPc are the lowest ones. More detailed mechanisms are elucidated from nonadiabatic dynamics simulations. In the 6-6 bonding configuration, no excitation energy transfer was observed. In contrast, in the 5-6 bonding configuration, several LE and charge-transfer (CT) excitons were shown to participate in the energy-transfer process. Further analysis reveals that the photoinduced energy transfer is mediated by a CT exciton, such that electron- and hole-transfer processes take place in a concerted but asynchronous manner in the excitation energy transfer. It is also found that high-level electronic structure methods including exciton effects are indispensable to accurately describe photoinduced energy- and electron-transfer processes. Furthermore, this work opens up new avenues for regulating the excited-state properties of molecular donor-acceptor dyads by means of chemical bonding.

15.
Biomacromolecules ; 22(12): 5319-5326, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34793132

RESUMEN

Microneedles (MNs) have attracted considerable attention in the pharmaceutical field as a minimally invasive delivery alternative to hypodermic needles. Current material systems of MNs have gradually shifted from metals, ceramics, and silicon to polymer in consideration of toughness and drug loading capacity. Silk fibroin (SF) is considered one of the most promising alternatives because it combines the ability to maintain the activity of biomolecules, adjustable mechanical strength, and excellent biocompatibility. However, the strength and hardness of SF MNs need to be carefully optimized to ensure skin epidermis penetration and controlled drug release, which are rarely explored in reported works. Here, the synergistic effect of glutaraldehyde-based cross-linking and water vapor annealing post-treatment is presented as an effective method to promote the formation of SF molecular networks and the mechanical strength of SF MNs. Moreover, the reinforced MN substrate is coated with a drug-loaded SF layer with low crystallinity. The drug release experiments demonstrate the successful controlled release of rhodamine B, horseradish peroxidase, and tetracycline, which suggests the great potential in the application of vaccine, antibiosis, cosmetology, and so forth.


Asunto(s)
Agujas , Seda , Administración Cutánea , Sistemas de Liberación de Medicamentos , Piel
16.
Nanotechnology ; 32(19): 19LT01, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33540394

RESUMEN

Wool and silk fiber are the most extensive resources of protein fibers and have been used in the textile field for many years. The extracted biocompatible proteins are more and more widely used in flexible devices, sensors, tissue engineering, etc. Here, a fully biomaterial based flexible humidity sensor has been successfully fabricated for the first time. Interdigital electrodes of humidity sensor are printed on a transparent sensor substrate made of silk protein by inkjet printing. The humidity sensitive material is gold nanoparticles hosted nitrogen doped carbon (AuNPs@NC), which is fabricated by in situ dispersion of gold nanoparticles in a wool keratin assisted porous carbon precursor. The best treatment condition of the sensitive materials is obtained by comparing the sensitivity of humidity response. Moreover, the as-prepared biocompatible flexible sensor was successfully used to detect human respiration.


Asunto(s)
Humedad , Nanopartículas del Metal/química , Monitoreo Fisiológico/instrumentación , Respiración , Seda/química , Animales , Materiales Biocompatibles/química , Capacidad Eléctrica , Diseño de Equipo , Oro/química , Humanos , Monitoreo Fisiológico/métodos , Nanotubos de Carbono/química , Nitrógeno/química , Docilidad , Fibra de Lana
17.
Nanotechnology ; 32(6): 065502, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33086215

RESUMEN

Catalytic and electrocatalytic applications of supported metal nanoparticles are hindered due to an aggregation of metal nanoparticles and catalytic leaching under harsh operations. Hence, stable and leaching free catalysts with high surface area are extremely desirable but also challenging. Here we report a gold nanoparticles-hosted mesoporous nitrogen doped carbon matrix, which is prepared using bovine serum albumin (BSA) through calcination. BSA plays three roles in this process as a reducing agent, capping agent and carbon precursor, hence the protocol exhibits economic and sustainable. Gold nanoparticles at N-doped BSA carbon (AuNPs@NBSAC)-modified three-electrode strip-based flexible sensor system has been developed, which displayed effective, sensitive and selective for simultaneous detection of uric acid (UA) and dopamine (DA). The AuNPs@NBSAC-modified sensor showed an excellent response toward DA with a linear response throughout the concentration range from 1 to 50 µM and a detection limit of 0.05 µM. It also exhibited an excellent response toward UA, with a wide detection range from 5 to 200 µM as well as a detection limit of 0.1 µM. The findings suggest that the AuNPs@NBSAC nanohybrid reveals promising applications and can be considered as potential electrode materials for development of electrochemical biosensors.

18.
Phys Chem Chem Phys ; 23(3): 2097-2104, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33434254

RESUMEN

Nonfullerene organic solar cells have received much attention in recent years due to their low cost, high absorption coefficient and excellent synthetic flexibility. However, the microscopic photoinduced dynamics at corresponding donor-acceptor interfaces remains unclear. In this work, we have firstly employed state-of-the-art TDDFT-based nonadiabatic dynamics simulations in combination with static electronic structure calculations to explore the ultrafast photoinduced dynamics at a typical nonfullerene donor-acceptor PTB7:PDI interface using a minimal model system (172 atoms). Upon excitation with specific wavelength of light, both PTB7 and PDI can be locally excited to generate |PTB7* and |PDI* excitons due to their high absorption ability and significant overlap in absorption spectrum. After that, these localized excitons gradually convert to charge transfer exciton |PTB7+PDI-, while another |PTB7-PDI+ charge transfer exciton is not involved in the whole process. Along with the exciton conversion, electron transfer from PTB7 to PDI (channel I charge generation) and the hole transfer from PDI to PTB7 (channel II charge generation) occurs simultaneously with time constants of 643 fs and 549 fs respectively. In the same time, D index that measures the centroid distance of electron and hole increases from 1.0 Å to 4.0 Å, which clearly reflects a charge transfer process at the interface. Our present work provides solid evidence that both channel I and channel II charge generation processes play important roles at PTB7:PDI interface, which could be helpful for the design of novel nonfullerene solar cells with better photovoltaic performance.

19.
Phys Chem Chem Phys ; 23(24): 13503-13511, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34120157

RESUMEN

Carbon nanomaterials play important roles in modern scientific research. Integrating different carbon-based building blocks into nano-hybrid architectures not only takes full advantage of each component, but also brings in novel interfacial properties. Herein, we have employed density functional theory (DFT) calculations to investigate the effects of polymerization degree of coronene molecules encapsulated in single-walled carbon nanotubes (SWNTs) (19,0) on their interfacial properties. The present results reveal that the interfacial properties of the formed heterojunctions are remarkably regulated by the polymerization degree. For example, monomer- and dimer-encapsulated SWNTs are type-I heterojunctions in which interfacial excitation energy transfer is preferred, whereas interfacial charge carrier transfer is favorable in trimer- and polymer-encapsulated SWNTs because they are type-II heterojunctions. On the other hand, we have employed the time-domain nonadiabatic dynamics simulation approach to explore the interfacial carrier dynamics in type-II polymer-encapsulated SWNT heterojunctions. It is found that the electron and hole transfer processes are asymmetric and occur in opposite directions and at different rates. The former takes place from polymers to SWNTs in an ultrafast way (ca. 370 fs), whereas the latter occurs slowly from SWNTs to polymers (ca. 24 ps). A closer analysis uncovers the fact that the different carrier transfer rates mainly originate from the different densities of the acceptor states, energy differences and inter-state couplings between the donor and acceptor states. Finally, the present work demonstrates that the polymerization degree could act as a new regulating strategy to tune the interfacial properties of molecule-encapsulated SWNT heterojunctions.

20.
Phys Chem Chem Phys ; 23(48): 27124-27149, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34849517

RESUMEN

Photophysics and photochemistry are basic subjects in the study of light-matter interactions and are ubiquitous in diverse fields such as biology, energy, materials, and environment. A full understanding of mechanistic photophysics and photochemistry underpins many recent advances and applications. This contribution first provides a short discussion on the theoretical calculation methods we have used in relevant studies, then we introduce our latest progress on the mechanistic photophysics and photochemistry of two classes of molecular systems, namely unnatural bases and sunscreens. For unnatural bases, we disclose the intrinsic driving forces for the ultrafast population to reactive triplet states, impacts of the position and degree of chalcogen substitutions, and the effects of complex environments. For sunscreen molecules, we reveal the photoprotection mechanisms that dissipate excess photon energy to the surroundings by ultrafast internal conversion to the ground state. Finally, relevant theoretical challenges and outlooks are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA