Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 79(6): 963-977.e3, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32735772

RESUMEN

Autophagic degradation of the endoplasmic reticulum (ER-phagy) is triggered by ER stress in diverse organisms. However, molecular mechanisms governing ER stress-induced ER-phagy remain insufficiently understood. Here we report that ER stress-induced ER-phagy in the fission yeast Schizosaccharomyces pombe requires Epr1, a soluble Atg8-interacting ER-phagy receptor. Epr1 localizes to the ER through interacting with integral ER membrane proteins VAPs. Bridging an Atg8-VAP association is the main ER-phagy role of Epr1, as it can be bypassed by an artificial Atg8-VAP tether. VAPs contribute to ER-phagy not only by tethering Atg8 to the ER membrane, but also by maintaining the ER-plasma membrane contact. Epr1 is upregulated during ER stress by the unfolded protein response (UPR) regulator Ire1. Loss of Epr1 reduces survival against ER stress. Conversely, increasing Epr1 expression suppresses the ER-phagy defect and ER stress sensitivity of cells lacking Ire1. Our findings expand and deepen the molecular understanding of ER-phagy.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Endorribonucleasas/genética , Proteínas R-SNARE/genética , Autofagosomas/metabolismo , Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Retículo Endoplásmico/genética , Regulación Fúngica de la Expresión Génica/genética , Proteolisis , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Respuesta de Proteína Desplegada/genética
2.
EMBO J ; 40(15): e107497, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34169534

RESUMEN

In selective autophagy, cargo selectivity is determined by autophagy receptors. However, it remains scarcely understood how autophagy receptors recognize specific protein cargos. In the fission yeast Schizosaccharomyces pombe, a selective autophagy pathway termed Nbr1-mediated vacuolar targeting (NVT) employs Nbr1, an autophagy receptor conserved across eukaryotes including humans, to target cytosolic hydrolases into the vacuole. Here, we identify two new NVT cargos, the mannosidase Ams1 and the aminopeptidase Ape4, that bind competitively to the first ZZ domain of Nbr1 (Nbr1-ZZ1). High-resolution cryo-EM analyses reveal how a single ZZ domain recognizes two distinct protein cargos. Nbr1-ZZ1 not only recognizes the N-termini of cargos via a conserved acidic pocket, similar to other characterized ZZ domains, but also engages additional parts of cargos in a cargo-specific manner. Our findings unveil a single-domain bispecific mechanism of autophagy cargo recognition, elucidate its underlying structural basis, and expand the understanding of ZZ domain-mediated protein-protein interactions.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Dominios Proteicos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
3.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34649994

RESUMEN

Selfish, non-long terminal repeat (non-LTR) retroelements and mobile group II introns encode reverse transcriptases (RTs) that can initiate DNA synthesis without substantial base pairing of primer and template. Biochemical characterization of these enzymes has been limited by recombinant expression challenges, hampering understanding of their properties and the possible exploitation of their properties for research and biotechnology. We investigated the activities of representative RTs using a modified non-LTR RT from Bombyx mori and a group II intron RT from Eubacterium rectale Only the non-LTR RT supported robust and serial template jumping, producing one complementary DNA (cDNA) from several templates each copied end to end. We also discovered an unexpected terminal deoxynucleotidyl transferase activity of the RTs that adds nucleotide(s) of choice to 3' ends of single- and/or double-stranded RNA or DNA. Combining these two types of activity with additional insights about nontemplated nucleotide additions to duplexed cDNA product, we developed a streamlined protocol for fusion of next-generation sequencing adaptors to both cDNA ends in a single RT reaction. When benchmarked using a reference pool of microRNAs (miRNAs), library production by Ordered Two-Template Relay (OTTR) using recombinant non-LTR retroelement RT outperformed all commercially available kits and rivaled the low bias of technically demanding home-brew protocols. We applied OTTR to inventory RNAs purified from extracellular vesicles, identifying miRNAs as well as myriad other noncoding RNAs (ncRNAs) and ncRNA fragments. Our results establish the utility of OTTR for automation-friendly, low-bias, end-to-end RNA sequence inventories of complex ncRNA samples.


Asunto(s)
ARN no Traducido/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Retroelementos , Moldes Genéticos
4.
Antimicrob Agents Chemother ; 67(5): e0172122, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37022169

RESUMEN

Data on the distribution of voriconazole (VRC) in the human peritoneal cavity are sparse. This prospective study aimed to describe the pharmacokinetics of intravenous VRC in the peritoneal fluid of critically ill patients. A total of 19 patients were included. Individual pharmacokinetic curves, drawn after single (first dose on day 1) and multiple (steady-state) doses, displayed a slower rise and lower fluctuation of VRC concentrations in peritoneal fluid than in plasma. Good but variable penetration of VRC into the peritoneal cavity was observed, and the median (range) peritoneal fluid/plasma ratios of the area under the concentration-time curve (AUC) were 0.54 (0.34 to 0.73) and 0.67 (0.63 to 0.94) for single and multiple doses, respectively. Approximately 81% (13/16) of the VRC steady-state trough concentrations (Cmin,ss) in plasma were within the therapeutic range (1 to 5.5 µg/mL), and the corresponding Cmin,ss (median [range]) in peritoneal fluid was 2.12 (1.39 to 3.72) µg/mL. Based on the recent 3-year (2019 to 2021) surveillance of the antifungal susceptibilities for Candida species isolated from peritoneal fluid in our center, the aforementioned 13 Cmin,ss in peritoneal fluid exceeded the MIC90 of C. albicans, C. glabrata, and C. parapsilosis (0.06, 1.00, and 0.25 µg/mL, respectively), which supported VRC as a reasonable choice for initial empirical therapies against intraabdominal candidiasis caused by these three Candida species, prior to the receipt of susceptibility testing results.


Asunto(s)
Líquido Ascítico , Enfermedad Crítica , Humanos , Voriconazol/farmacocinética , Estudios Prospectivos , Antifúngicos/farmacocinética , Candida glabrata , Pruebas de Sensibilidad Microbiana
5.
J Cell Sci ; 134(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34499173

RESUMEN

Protein-protein interactions are vital for executing nearly all cellular processes. To facilitate the detection of protein-protein interactions in living cells of the fission yeast Schizosaccharomyces pombe, here we present an efficient and convenient method termed the Pil1 co-tethering assay. In its basic form, we tether a bait protein to mCherry-tagged Pil1, which forms cortical filamentary structures, and examine whether a GFP-tagged prey protein colocalizes with the bait. We demonstrate that this assay is capable of detecting pairwise protein-protein interactions of cytosolic proteins and nuclear proteins. Furthermore, we show that this assay can be used for detecting not only binary protein-protein interactions, but also ternary and quaternary protein-protein interactions. Using this assay, we systematically characterized the protein-protein interactions in the Atg1 complex and in the phosphatidylinositol 3-kinase (PtdIns3K) complexes and found that Atg38 is incorporated into the PtdIns3K complex I via an Atg38-Vps34 interaction. Our data show that this assay is a useful and versatile tool and should be added to the routine toolbox of fission yeast researchers. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Citoesqueleto , Humanos , Proteínas Nucleares , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
6.
Nat Methods ; 17(11): 1167, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33067594

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Nat Methods ; 17(9): 937-946, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32778831

RESUMEN

Genetically encoded tags for single-molecule imaging in electron microscopy (EM) are long-awaited. Here, we report an approach for directly synthesizing EM-visible gold nanoparticles (AuNPs) on cysteine-rich tags for single-molecule visualization in cells. We first uncovered an auto-nucleation suppression mechanism that allows specific synthesis of AuNPs on isolated tags. Next, we exploited this mechanism to develop approaches for single-molecule detection of proteins in prokaryotic cells and achieved an unprecedented labeling efficiency. We then expanded it to more complicated eukaryotic cells and successfully detected the proteins targeted to various organelles, including the membranes of endoplasmic reticulum (ER) and nuclear envelope, ER lumen, nuclear pores, spindle pole bodies and mitochondrial matrices. We further implemented cysteine-rich tag-antibody fusion proteins as new immuno-EM probes. Thus, our approaches should allow biologists to address a wide range of biological questions at the single-molecule level in cellular ultrastructural contexts.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Microscopía Electrónica/métodos , Sistema Libre de Células , Células HeLa , Humanos , Microscopía Fluorescente , Schizosaccharomyces , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
Mol Cell ; 59(6): 1035-42, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26365378

RESUMEN

Autophagy transports cytosolic materials into lysosomes/vacuoles either in bulk or selectively. Selective autophagy requires cargo receptor proteins, which usually link cargos to the macroautophagy machinery composed of core autophagy-related (Atg) proteins. Here, we show that fission yeast Nbr1, a homolog of mammalian autophagy receptor NBR1, interacts with and facilitates the transport of two cytosolic hydrolases into vacuoles, in a way reminiscent of the budding yeast cytoplasm-to-vacuole targeting (Cvt) pathway, a prototype of selective autophagy. We term this pathway Nbr1-mediated vacuolar targeting (NVT). Surprisingly, unlike the Cvt pathway, the NVT pathway does not require core Atg proteins. Instead, it depends on the endosomal sorting complexes required for transport (ESCRTs). NVT components colocalize with ESCRTs at multivesicular bodies (MVBs) and rely on ubiquitination for their transport. Our findings demonstrate the ability of ESCRTs to mediate highly selective autophagy of soluble cargos, and suggest an unexpected mechanistic versatility of autophagy receptors.


Asunto(s)
Autofagia , Proteínas Cromosómicas no Histona/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factores de Transcripción/metabolismo , Vacuolas/metabolismo , Aminopeptidasas/metabolismo , Proteínas Relacionadas con la Autofagia , Transporte de Proteínas , Solubilidad , Ubiquitinación
9.
Eur J Cancer Care (Engl) ; 30(2): e13382, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33277772

RESUMEN

OBJECTIVE: To quantitatively examine the relationship between social support and suicidal ideation (SI) among patients with cancer and identify the moderators that influence the magnitude of this association. METHODS: Publications were searched in PubMed, PsycINFO, EMBASE, Cochrane Library and Chinese National Knowledge Infrastructure from database inception to May, 2020. Correlation coefficients (r) were chosen as the effect size with a random model to evaluate the overall effect size between social support and SI in patients with cancer. To assess statistical heterogeneity, we examined potential moderator variables on the social support and SI. RESULTS: A total of 881 studies were identified in initial search, and twelve studies were eligible. A negative, small but significant correlation (r = -0.22, 95% CIs: -0.30,-0.14, p < 0.001) was observed between social support and SI in patients with cancer, with a significant heterogeneity (I2  = 95.24%, Q = 231.27, p < 0.001). Moderator analyses indicated that race/ethnicity (Q(1) = 8.4, p < 0.05) and measurements of social support (Q(3) = 9.78, p < 0.05) and SI (Q(3) = 9.69, p < 0.05) significantly moderate the effect size between social support and SI. CONCLUSION: Taken together, we found a negative yet significant association between social support and SI in patients with cancer, which supported the importance of social support for the prevention of SI in patients with cancer.


Asunto(s)
Neoplasias , Ideación Suicida , Bases de Datos Factuales , Etnicidad , Humanos , Apoyo Social
10.
Reprod Domest Anim ; 56(4): 642-657, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33496347

RESUMEN

The faithful execution of molecular programme underlying oocyte maturation and meiosis is vital to generate competent haploid gametes for efficient mammalian reproduction. However, the organization and principle of molecular circuits and modules for oocyte meiosis remain obscure. Here, we employed the recently developed single-cell RNA-seq technique to profile the transcriptomes of germinal vesicle (GV) and metaphase II (MII) oocytes, aiming to discover the dynamic changes of mRNAs and long non-coding RNAs (lncRNAs) during oocyte in vitro meiotic maturation. During the transition from GV to MII, total number of detected RNAs (mRNAs and lncRNAs) in oocytes decreased. Moreover, 1,807 (602 up- and 1,205 down-regulated) mRNAs and 313 (177 up- and 136 down-regulated) lncRNAs were significantly differentially expressed (DE), i.e., more mRNAs down-regulated, but more lncRNAs up-regulated. During maturation of pig oocytes, mitochondrial mRNAs were actively transcribed, eight of which (ND6, ND5, CYTB, ND1, ND2, COX1, COX2 and COX3) were significantly up-regulated. Both DE mRNAs and targets of DE lncRNAs were enriched in multiple biological and signal pathways potentially associated with oocyte meiosis. Highly abundantly expressed mRNAs (including DNMT1, UHRF2, PCNA, ARMC1, BTG4, ASNS and SEP11) and lncRNAs were also discovered. Weighted gene co-expression network analysis (WGCNA) revealed 20 hub mRNAs in three modules to be important for oocyte meiosis and maturation. Taken together, our findings provide insights and resources for further functional investigation of mRNAs/lncRNAs in in vitro meiotic maturation of pig oocytes.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos/fisiología , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Meiosis , ARN Largo no Codificante/genética , ARN Mensajero/genética , RNA-Seq/veterinaria , Transducción de Señal , Porcinos
11.
J Cell Physiol ; 235(11): 8304-8318, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32239703

RESUMEN

Long noncoding RNAs (lncRNAs) regulate a variety of physiological and pathological processes. However, the biological function of lncRNAs in mammalian germ cells remains largely unexplored. Here we identified one novel lncRNA (lncRNA2193) from single-cell RNA sequencing performed on porcine oocytes and investigated its function in oocyte meiosis. During in vitro maturation (IVM), from germinal vesicle (GV, 0 hr), GV breakdown (GVBD, 24 hr), to metaphase II stage (MII, 44 hr), the transcriptional abundance of lncRNA2193 remained stable and high. LncRNA2193 interference by small interfering RNA microinjection into porcine GV oocytes could significantly inhibit rates of GVBD and the first polar body extrusion, but enhance the rates of oocytes with a nuclear abnormality. Moreover, lncRNA2193 knockdown disturbed cytoskeletal organization (F-actin and spindle), and decreased DNA 5-methylcytosine (5mC) and histone trimethylation (H3K4me3, H3K9me3, H3K27me3, and H3K36me3) levels. The lncRNA2193 downregulation induced a decrease of 5mC level could be partially due to the reduction of DNA methyltransferase 3A and 3B, and the elevation of 5mC-hydroxylase ten-11 translocation 2 (TET2). After parthenogenetic activation of MII oocytes, parthenotes exhibited higher fragmentation but lower cleavage rates in the lncRNA2193 downregulated group. However, lncRNA2193 interference performed on mature MII oocytes and parthenotes at 1-cell stage did not affect the cleavage and blasctocyst rates of pathenotes. Taken together, lncRNA2193 plays an important role in porcine oocyte maturation, providing more insights for relevant investigations on mammalian germ cells.


Asunto(s)
Metilación de ADN/genética , Meiosis/genética , Oocitos/metabolismo , Oogénesis/genética , ARN Largo no Codificante/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Desarrollo Embrionario/genética , Femenino , Porcinos
12.
J Biol Chem ; 293(5): 1767-1780, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29222335

RESUMEN

The brilliant cresyl blue (BCB) test is used in both basic biological research and assisted reproduction to identify oocytes likely to be developmentally competent. However, the underlying molecular mechanism targeted by the BCB test is still unclear. To explore this question, we first confirmed that BCB-positive porcine oocytes had higher rates of meiotic maturation, better rates of cleavage and development into blastocysts, and lower death rates. Subsequent single-cell transcriptome sequencing on porcine germinal vesicle (GV)-stage oocytes identified 155 genes that were significantly differentially expressed between BCB-negative and BCB-positive oocytes. These included genes such as cdc5l, ldha, spata22, rgs2, paip1, wee1b, and hsp27, which are enriched in functionally important signaling pathways including cell cycle regulation, oocyte meiosis, spliceosome formation, and nucleotide excision repair. In BCB-positive GV oocytes that additionally had a lower frequency of DNA double-strand breaks, the CDC5L protein was significantly more abundant. cdc5l/CDC5L inhibition by short interference (si)RNA or antibody microinjection significantly impaired porcine oocyte meiotic maturation and subsequent parthenote development. Taken together, our single-oocyte sequencing data point to a potential new role for CDC5L in porcine oocyte meiosis and early embryo development, and supports further analysis of this protein in the context of the BCB test.


Asunto(s)
Proteínas de Ciclo Celular , Secuenciación de Nucleótidos de Alto Rendimiento , Meiosis/fisiología , Oocitos/metabolismo , Transcriptoma/fisiología , Animales , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Femenino , Oocitos/citología , Porcinos
13.
J Cell Sci ; 129(22): 4289-4304, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27737912

RESUMEN

Autophagy cargos include not only soluble cytosolic materials but also bulky organelles, such as ER and mitochondria. In budding yeast, two proteins that contain the PX domain and the BAR domain, Atg20 and Atg24 (also known as Snx42 and Snx4, respectively) are required for organelle autophagy and contribute to general autophagy in a way that can be masked by compensatory mechanisms. It remains unclear why these proteins are important for organelle autophagy. Here, we show that in a distantly related fungal organism, the fission yeast Schizosaccharomyces pombe, autophagy of ER and mitochondria is induced by nitrogen starvation and is promoted by three Atg20- and Atg24-family proteins - Atg20, Atg24 and SPBC1711.11 (named here as Atg24b). These proteins localize at the pre-autophagosomal structure, or phagophore assembly site (PAS), during starvation. S. pombe Atg24 forms a homo-oligomer and acts redundantly with Atg20 and Atg24b, and the latter two proteins can form a hetero-oligomer. The organelle autophagy defect caused by the loss of these proteins is associated with a reduction of autophagosome size and a decrease in Atg8 accumulation at the PAS. These results provide new insights into the autophagic function of Atg20- and Atg24-family proteins.


Asunto(s)
Autofagia , Orgánulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Mutación/genética , Nitrógeno/deficiencia , Multimerización de Proteína , Schizosaccharomyces/ultraestructura , Fracciones Subcelulares/metabolismo
14.
Mol Hum Reprod ; 23(10): 698-707, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28961951

RESUMEN

STUDY QUESTION: What is the physiological function of Yes-associated protein-1 (Yap1), a susceptibility gene for polycystic ovary syndrome (PCOS), in ovarian granulosa cells (GCs)? SUMMARY ANSWER: Physiologically, steroid sex hormones stimulate follicle growth by activating YAP1; however, the preovulatory inhibition of YAP1 activity in GCs is a prerequisite of LH actions. WHAT IS KNOWN ALREADY: PCOS is a common gynecologic and endocrine disease with multiple short and long-term consequences. Many PCOS patients suffer anovulation caused by hyperandrogenism, but its etiology remains unclear. STUDY DESIGN, SIZE, DURATION: To study the effect of acute hyperandrogenism on ovulation, we injected pregnant mare serum gonadotrophin (PMSG)-primed (44 h) pubertal mice with dihydrotestosterone (DHT), the major biologically active form of androgen, in a superovulation assay. We investigated if YAP1 is regulated by testosterone and if it is potentially involved in follicle development and ovulation. Cultured primary GCs were subjected to Yap1 depletion by RNA interference and Yap1 overexpression by adenoviral infections. PARTICIPANTS/MATERIALS, SETTING, METHODS: Female mice at postnatal day (PD)-21~23 were analyzed to avoid the complexity of ovarian functions associated with estrous cycles and endogenous surges of gonadotropins. Immature mice were injected intraperitoneally with five IU PMSG to stimulate preovulatory follicle development followed 44 h later with five IU hCG to stimulate ovulation. For DHT treatments, female mice at PD23 were injected intraperitoneally with five IU PMSG followed 44 h later with five IU hCG alone (as control) or five IU hCG plus 100 µg DHT, which was dissolved in 0.1 ml DMSO. Methods of gene expression detection used include immunohistochemistry, immunofluorescence, Western blotting and quantitative PCR. More than three biological and technical replicates were included in each experiments. MAIN RESULTS AND THE ROLE OF CHANCE: we provide novel evidence in a mouse model that YAP1 is required for proliferation of ovarian GCs, but is down-regulated by LH through the extracellular-regulated kinase-1/2 (ERK1/2) cascade. Acute hyperandrogenism blocks LH actions and causes oligo-ovulation by activating YAP1. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Results shown were obtained only in mouse, and need to be further confirmed in human samples. WIDER IMPLICATIONS OF THE FINDINGS: These findings not only elucidated the role of YAP1 in maintaining normal ovarian functions, but also link the YAP1 deregulation to the pathogenesis of PCOS. STUDY FUNDING AND COMPETING INTEREST(S): This study is funded by the National Key Research and Development Program of China (2016YFC1000600 and 2017YFSF1001500) and National Natural Science Foundation of China (31528016, 31371449 and 31671558). The authors have no competing interests.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Gonadotropina Coriónica/farmacología , Dihidrotestosterona/farmacología , Células de la Granulosa/efectos de los fármacos , Hiperandrogenismo/genética , Fosfoproteínas/genética , Síndrome del Ovario Poliquístico/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Gonadotropinas Equinas/farmacología , Células de la Granulosa/citología , Células de la Granulosa/metabolismo , Caballos , Humanos , Hiperandrogenismo/metabolismo , Hiperandrogenismo/patología , Hormona Luteinizante/genética , Hormona Luteinizante/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Ovario/citología , Ovario/efectos de los fármacos , Ovario/metabolismo , Ovulación/efectos de los fármacos , Fosfoproteínas/metabolismo , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología , Cultivo Primario de Células , Transducción de Señal , Proteínas Señalizadoras YAP
15.
PLoS Biol ; 12(9): e1001946, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25203555

RESUMEN

Structure-specific nucleases play crucial roles in many DNA repair pathways. They must be precisely controlled to ensure optimal repair outcomes; however, mechanisms of their regulation are not fully understood. Here, we report a fission yeast protein, Pxd1, that binds to and regulates two structure-specific nucleases: Rad16XPF-Swi10ERCC1 and Dna2-Cdc24. Strikingly, Pxd1 influences the activities of these two nucleases in opposite ways: It activates the 3' endonuclease activity of Rad16-Swi10 but inhibits the RPA-mediated activation of the 5' endonuclease activity of Dna2. Pxd1 is required for Rad16-Swi10 to function in single-strand annealing, mating-type switching, and the removal of Top1-DNA adducts. Meanwhile, Pxd1 attenuates DNA end resection mediated by the Rqh1-Dna2 pathway. Disabling the Dna2-inhibitory activity of Pxd1 results in enhanced use of a break-distal repeat sequence in single-strand annealing and a greater loss of genetic information. We propose that Pxd1 promotes proper DNA repair by differentially regulating two structure-specific nucleases.


Asunto(s)
Reparación del ADN , ADN de Hongos/genética , Endonucleasas de ADN Solapado/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas de ADN Solapado/antagonistas & inhibidores , Endonucleasas de ADN Solapado/metabolismo , Unión Proteica , Schizosaccharomyces/enzimología , Proteínas de Schizosaccharomyces pombe/agonistas , Proteínas de Schizosaccharomyces pombe/antagonistas & inhibidores , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal
16.
Hum Reprod ; 31(1): 169-82, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26621853

RESUMEN

STUDY QUESTION: Does a novel long-acting recombinant human FSH, KN015, a heterodimer composed of FSHα and FSHß-Fc/Fc, offer a potential FSH alternative? SUMMARY ANSWER: KN015 had in vitro activity and superior in vivo bioactivity than recombinant human FSH (rhFSH), suggesting KN015 could serve as a potential FSH agonist for clinical therapy. WHAT IS KNOWN ALREADY: rhFSH has very short half-life so that repeat injections are needed, resulting in discomfort and inconvenience for patients. The longest-acting rhFSH available in clinics is corifollitropin alpha (FSH-CTP), but its half-life is not long enough to sustain the whole therapy period, and additional injections of rhFSH are needed. STUDY DESIGN, SIZE, DURATION: Plasmids containing FSHα, FSHß-Fc and Fc cDNA were transfected into Chinese hamster ovary (CHO) cells for KN015 production. The pharmacokinetics of KN015 was investigated in 6-week-old SD rats (n = 6/group) and healthy Cynomolgus monkeys in two different dose groups (n = 2/group). A series of experiments were designed for in vitro and in vivo characterization of the bioactivity of KN015 relative to rhFSH. PARTICIPANTS/MATERIALS, SETTING, METHODS: The purity and molecular weight of KN015 were determined by reducing and non-reducing SDS-PAGE. To measure KN015 half-life, sera were collected at increasing time points and the remaining FSH concentration was measured by enzyme-linked immunosorbent assay. To assess the bioactivity of KN015 versus rhFSH in vitro, firstly cAMP production was assessed in CHO cells expressing FSH receptor (FSHR) with the treatment of Fc/Fc, rhFSH or KN015 at eight different doses (0.03, 0.09, 0.28, 0.83, 2.5, 7.5, 22.5, 67.5 nM), and secondly cumulus oocyte complexes (COCs; n = 20/group) of ICR mice (primed-PMSG 44 h before sacrificed) were collected and cultured in medium containing 1.25 pM Fc/Fc, rhFSH or KN015 at 37°C and then germinal vesicle breakdown (GVBD) and COC expansion were observed at 4 and 16 h, respectively. The in vivo activity of KN015 was compared with rhFSH by ovary weight gain and ovulation assays. In the former, ovary weight gains in 21-day-old female SD rats, after a single subcutaneous injection of KN015, were compared with those after several injections of rhFSH over a range of doses (n = 8/group). Sera were harvested for estradiol (E2) analysis, and the ovaries were processed for hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), TdT (terminal deoxynucleotidyl transferase)-mediated dUDP nick-end labeling (TUNEL), RT-PCR and western blot. In the latter, 26-day-old female SD rats (n = 8/group) were injected with different doses of KN015 or rhFSH, and were sacrificed at 24 h after an injection of hCG (20 IU/rat). Moreover, the molecular responses stimulated by KN015 or rhFSH in the ovary were also analyzed through detecting expression of the FSH target genes (Cyp19a1, Fshr and Lhcgr) and phosphatidylinositide 3-kinase (PI3K) pathway activation. MAIN RESULTS AND THE ROLE OF CHANCE: KN015 has a molecular weight of 82 kD and its half-life is 84 h in SD rats (10-fold longer than that of rhFSH) and 215 h in Cynomolgus monkeys. The EC50 value of the cAMP induction in CHO cells (KN015 versus rhFSH, 1.84 versus 0.87 nM), COC expansion and oocyte maturation assays showed KN015 had approximately half of rhFSH's activity in vitro. A single dose of KN015 (1.5 pmol/rat, 166.1 ± 19.7 mg, P < 0.01) stimulated significantly larger ovary weight gain than several injections of rhFSH (1.5 pmol/rat, 59.3 ± 28.1 mg, P < 0.01). The serum E2 level in the KN015 group was significantly higher than that in rhFSH group. The number of oocytes obtained by ovulation induction was comparable with or higher in the KN015 group than in the rhFSH group. KN015 was more effective than rhFSH in inducing FSH target genes (Cyp19a1, Fshr, Lhcgr) or activating the PI3K pathway in vivo. Moreover, a single injection of KN015 promoted granulosa cell proliferation and prevented follicle atresia to the same extent as several injections of rhFSH. LIMITATIONS, REASONS FOR CAUTION: All assays in this study were operated only in animals and clinical trials are needed to confirm they can be extrapolated to humans. WIDER IMPLICATIONS OF THE FINDINGS: KN015 is a valuable alternative to FSH and may have great potential for therapeutic applications. STUDY FUNDING/COMPETING INTERESTS: This study was supported by National Basic Research Program of China (2011|CB944504, 2012CB944403) and National Natural Science Foundation of China (81172473, 31371449). The authors have no conflicts of interest to declare.


Asunto(s)
Hormona Folículo Estimulante/agonistas , Ovario/efectos de los fármacos , Ovulación/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/farmacocinética , Animales , Cricetinae , Femenino , Hormona Folículo Estimulante de Subunidad beta , Macaca fascicularis , Ratones , Ratones Endogámicos ICR , Fragmentos de Péptidos , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/administración & dosificación
17.
Acta Pharmacol Sin ; 37(9): 1251-8, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27498776

RESUMEN

AIM: Cytochrome P450 oxidoreductase (POR) is the only flavoprotein that donates electrons to all microsomal P450 enzymes (CYP), and several POR SNPs have been shown to be important contributors to altered CYP activity or CYP-mediated drug metabolism. In this study we examined the association between 6 POR SNPs and tacrolimus concentrations in Chinese renal transplant recipients. METHODS: A total of 154 renal transplant recipients were enrolled. Genotyping of CYP3A5*3 and 6 POR SNPs was performed. All patients received a triple immunosuppressive regimen comprising tacrolimus, mycophenolate mofetil and prednisone. Dose-adjusted tacrolimus trough concentrations were obtained on d 7 (C0D7/D) after transplantation when steady-state concentration of tacrolimus was achieved (dosage had been unchanged for more than 3 d). RESULTS: Tacrolimus C0D7/D in CYP3A5*3/*3/ POR rs1057868-rs2868177 GC-GT diplotype carriers was 1.62- and 2.72-fold higher than those in CYP3A5*3/*3/ POR rs1057868-rs2868177 GC-GT diplotype non-carriers and CYP3A5*1 carriers (220.17±48.09 vs 135.69±6.86 and 80.84±5.27 ng/mL/mg/kg, respectively, P<0.0001). Of CYP3A5*3/*3/ POR rs1057868-rs2868177GC-GT diplotype carriers, 85.71% exceeded the upper limit of the target range (8 ng/mL), which was also significantly higher compared with the latter two groups (14.29% and 0.00%, respectively, P<0.0001). The CYP3A5*3 and POR rs1057868-rs2868177 GC-GT diplotype explained 31.7% and 5.7%, respectively, of the inter-individual variability of tacrolimus C0D7/D, whereas the POR rs1057868-rs2868177 GC-GT diplotype could explain 10.9% of the inter-individual variability of tacrolimus C0D7/D in CYP3A5 non-expressers. CONCLUSION: The CYP3A5*3 and POR rs1057868-rs2868177 GC-GT diplotype accounted for the inter-individual variation of tacrolimus C0D7/D. Genotyping of POR rs1057868-rs2868177 diplotypes would help to differentiate initial tacrolimus dose requirements and to achieve early target C0 ranges in Chinese renal transplant recipients.


Asunto(s)
Citocromo P-450 CYP3A/genética , Diploidia , Inmunosupresores/sangre , Trasplante de Riñón , Polimorfismo de Nucleótido Simple , Tacrolimus/sangre , Adolescente , Adulto , Anciano , China , Estudios de Cohortes , Femenino , Humanos , Inmunosupresores/administración & dosificación , Inmunosupresores/uso terapéutico , Masculino , Registros Médicos , Persona de Mediana Edad , Pruebas de Farmacogenómica , Análisis de Regresión , Tacrolimus/administración & dosificación , Tacrolimus/uso terapéutico , Adulto Joven
18.
PLoS Genet ; 9(8): e1003715, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23950735

RESUMEN

Macroautophagy (autophagy) is crucial for cell survival during starvation and plays important roles in animal development and human diseases. Molecular understanding of autophagy has mainly come from the budding yeast Saccharomyces cerevisiae, and it remains unclear to what extent the mechanisms are the same in other organisms. Here, through screening the mating phenotype of a genome-wide deletion collection of the fission yeast Schizosaccharomyces pombe, we obtained a comprehensive catalog of autophagy genes in this highly tractable organism, including genes encoding three heretofore unidentified core Atg proteins, Atg10, Atg14, and Atg16, and two novel factors, Ctl1 and Fsc1. We systematically examined the subcellular localization of fission yeast autophagy factors for the first time and characterized the phenotypes of their mutants, thereby uncovering both similarities and differences between the two yeasts. Unlike budding yeast, all three Atg18/WIPI proteins in fission yeast are essential for autophagy, and we found that they play different roles, with Atg18a uniquely required for the targeting of the Atg12-Atg5·Atg16 complex. Our investigation of the two novel factors revealed unforeseen autophagy mechanisms. The choline transporter-like protein Ctl1 interacts with Atg9 and is required for autophagosome formation. The fasciclin domain protein Fsc1 localizes to the vacuole membrane and is required for autophagosome-vacuole fusion but not other vacuolar fusion events. Our study sheds new light on the evolutionary diversity of the autophagy machinery and establishes the fission yeast as a useful model for dissecting the mechanisms of autophagy.


Asunto(s)
Autofagia/genética , Proteínas de la Membrana/genética , Péptidos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Proteínas Relacionadas con la Autofagia , Citoplasma/genética , Citoplasma/metabolismo , Proteínas de Unión al ADN , Genoma Fúngico , Proteínas Asociadas a Microtúbulos/metabolismo , Fagosomas/metabolismo , Saccharomyces cerevisiae , Eliminación de Secuencia , Vacuolas
19.
Biomed Environ Sci ; 29(9): 678-682, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27806750

RESUMEN

This study proposes a new framework as job burden-capital model for comprehensive assessment on occupational stress. 1618 valid samples were recruited from electronic manufacturing service industry in Hunan province by self-rated questionnaires after written consent. Structural equation model analysis was employed to verify the model by the data collected. The final fitting model has satisfactory fitting goodness (CMIN/DF=5.78, AGFI=0.937, NNFI=0.960, IFI=0.968, RMSEA=0.054). Both of the measurement model and structural model have acceptable path loadings. Job burden and capital could either directly affect occupational outcomes or indirectly influence them through personality. Multi-group structural equation model analyses indicate general applicability of the model to the basic features of such population. The job burden-capital model opens up new horizons for more in-depth study on occupational stress.


Asunto(s)
Ocupaciones/economía , Estrés Psicológico/economía , Estrés Psicológico/psicología , Adulto , Conducta Exploratoria , Femenino , Humanos , Masculino , Modelos Teóricos , Encuestas y Cuestionarios
20.
Yao Xue Xue Bao ; 51(1): 80-5, 2016 Jan.
Artículo en Zh | MEDLINE | ID: mdl-27405166

RESUMEN

This study aims to investigate the function of two SNPs (rs8904C > T and rs696G >A) in 3' untranslated region (3'UTR) of NFKBIA gene by constructing luciferase reporter gene. A patient's genomic DNA with rs8904 CC and rs696 GA genotype was used as the PCR template. Full-length 3'UTR of NFKBIA gene was amplified by different primers. After sequencing validation, these fragments were inserted to the luciferase reporter vector, pGL3-promoter to construct recombinant plasmids containing four kinds of haplotypes, pGL3-rs8904C/rs696G, pGL3-rs8904C/rs696A, pGL3-rs8904T/rs696G and pGL3-rs8904T/rs696A. Then these plasmids were transfected into LS174T cells and the luciferase activity was detected. Compared with pGL3-vector transfected cells (negative control), the luciferase activity of the four kinds of recombinant plasmids was significantly decreased (P < 0.001). For rs696G > A, the luciferase activity of the recombinant plasmids containing A allele (pGL3-rs8904C/rs696A and pGL3-rs8904T/rs696A) was about 45.1% (P < 0.05) and 56.1% (P < 0.001) lower than those containing G allele (pGL3-rs8904C/rs696G and pGL3-rs8904T/rs696G), respectively. For rs8904C > T, there were no significant differences in the luciferase activity between the recombinant plasmids containing T allele and those with C allele. Together, the luciferase reporter gene vectors containing SNPs in NFKBIA gene 3'UTR were constructed successfully and rs696G > A could decrease the luciferase activity while rs8904C >T didn't have much effect on the luciferase activity.


Asunto(s)
Genes Reporteros , Vectores Genéticos , Proteínas I-kappa B/genética , Luciferasas , Polimorfismo de Nucleótido Simple , Regiones no Traducidas 3' , Humanos , Inhibidor NF-kappaB alfa , Plásmidos , Regiones Promotoras Genéticas , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA