Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Gut ; 73(8): 1302-1312, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38724219

RESUMEN

OBJECTIVE: The remodelling of gut mycobiome (ie, fungi) during pregnancy and its potential influence on host metabolism and pregnancy health remains largely unexplored. Here, we aim to examine the characteristics of gut fungi in pregnant women, and reveal the associations between gut mycobiome, host metabolome and pregnancy health. DESIGN: Based on a prospective birth cohort in central China (2017 to 2020): Tongji-Huaxi-Shuangliu Birth Cohort, we included 4800 participants who had available ITS2 sequencing data, dietary information and clinical records during their pregnancy. Additionally, we established a subcohort of 1059 participants, which included 514 women who gave birth to preterm, low birthweight or macrosomia infants, as well as 545 randomly selected controls. In this subcohort, a total of 750, 748 and 709 participants had ITS2 sequencing data, 16S sequencing data and serum metabolome data available, respectively, across all trimesters. RESULTS: The composition of gut fungi changes dramatically from early to late pregnancy, exhibiting a greater degree of variability and individuality compared with changes observed in gut bacteria. The multiomics data provide a landscape of the networks among gut mycobiome, biological functionality, serum metabolites and pregnancy health, pinpointing the link between Mucor and adverse pregnancy outcomes. The prepregnancy overweight status is a key factor influencing both gut mycobiome compositional alteration and the pattern of metabolic remodelling during pregnancy. CONCLUSION: This study provides a landscape of gut mycobiome dynamics during pregnancy and its relationship with host metabolism and pregnancy health, which lays the foundation of the future gut mycobiome investigation for healthy pregnancy.


Asunto(s)
Microbioma Gastrointestinal , Micobioma , Humanos , Femenino , Embarazo , Microbioma Gastrointestinal/fisiología , Adulto , Estudios Prospectivos , China , Metaboloma , Hongos/aislamiento & purificación , Recién Nacido
2.
Anal Chem ; 96(19): 7772-7779, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38698542

RESUMEN

There is growing attention focused toward the problems of ecological sustainability and food safety raised from the abuse of herbicides, which underscores the need for the development of a portable and reliable sensor for simple, rapid, and user-friendly on-site analysis of herbicide residues. Herein, a novel multifunctional hydrogel composite is explored to serve as a portable and flexible sensor for the facile and efficient analysis of atrazine (ATZ) residues. The hydrogel electrode is fabricated by doping graphite-phase carbon nitride (g-C3N4) into the aramid nanofiber reinforced poly(vinyl alcohol) hydrogel via a simple solution-casting procedure. Benefiting from the excellent electroactivity and large specific surface area of the solid nanoscale component, the prepared hydrogel sensor is capable of simple, rapid, and sensitive detection of ATZ with a detection limit down to 0.002 ng/mL and per test time less than 1 min. After combination with a smartphone-controlled portable electrochemical analyzer, the flexible sensor exhibited satisfactory analytical performance for the ATZ assay. We further demonstrated the applications of the sensor in the evaluation of the ATZ residues in real water and soil samples as well as the user-friendly on-site point-of-need detection of ATZ residues on various agricultural products. We envision that this flexible and portable sensor will open a new avenue on the development of next-generation analytical tools for herbicide monitoring in the environment and agricultural products.


Asunto(s)
Atrazina , Técnicas Electroquímicas , Herbicidas , Hidrogeles , Atrazina/análisis , Herbicidas/análisis , Hidrogeles/química , Técnicas Electroquímicas/instrumentación , Grafito/química , Electrodos , Límite de Detección , Nitrilos/química , Nitrilos/análisis , Nanofibras/química , Contaminantes Químicos del Agua/análisis
3.
BMC Plant Biol ; 24(1): 40, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195389

RESUMEN

NAC transcription factors are widely distributed in the plant kingdom and play an important role in the response to various abiotic stresses in plant species. Tritipyrum, an octoploid derived from hybridization of Triticum aestivum (AABBDD) and Thinopyrum elongatum (EE), is an important genetic resource for integrating the desirable traits of Th. elongatum into wheat. In this study, we investigated the tissue distribution and expression of Tritipyrum NAC genes in the whole genomes of T. aestivum and Th. elongatum after obtaining their complete genome sequences. Based on phylogenetic relationships, conserved motifs, gene synthesis, evolutionary analysis, and expression patterns, we identified and characterized 732 Tritipyrum NAC genes. These genes were divided into six main groups (A, B, C, D, E, and G) based on phylogenetic relationships and evolutionary studies, with members of these groups sharing the same motif composition. The 732 TtNAC genes are widely distributed across 28 chromosomes and include 110 duplicated genes. Gene synthesis analysis indicated that the NAC gene family may have a common ancestor. Transcriptome data and quantitative polymerase chain reaction (qPCR) expression profiles showed 68 TtNAC genes to be highly expressed in response to various salt stress and recovery treatments. Tel3E01T644900 (TtNAC477) was particularly sensitive to salt stress and belongs to the same clade as the salt tolerance genes ANAC019 and ANAC055 in Arabidopsis. Pearson correlation analysis identified 751 genes that correlated positively with expression of TtNAC477, and these genes are enriched in metabolic activities, cellular processes, stimulus responses, and biological regulation. TtNAC477 was found to be highly expressed in roots, stems, and leaves in response to salt stress, as confirmed by real-time PCR. These findings suggest that TtNAC477 is associated with salt tolerance in plants and might serve as a valuable exogenous gene for enhancing salt tolerance in wheat.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tolerancia a la Sal/genética , Filogenia , Estrés Salino/genética , Evolución Biológica , Poaceae , Triticum/genética , Factores de Transcripción/genética
4.
New Phytol ; 243(3): 1205-1219, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38855965

RESUMEN

Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems. Using 11 tree-diversity experiments, we tested tree species richness-community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal-associated tree species in these relationships. Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees. Our study provides novel explanations for variations in diversity-productivity relationships by suggesting that tree-mycorrhiza interactions can shape productivity in mixed-species forest ecosystems.


Asunto(s)
Biodiversidad , Micorrizas , Árboles , Micorrizas/fisiología , Árboles/microbiología , Especificidad de la Especie
5.
Hum Reprod ; 39(8): 1778-1793, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38915267

RESUMEN

STUDY QUESTION: What is the pathological mechanism involved in a thin endometrium, particularly under ischaemic conditions? SUMMARY ANSWER: Endometrial dysfunction in patients with thin endometrium primarily results from remodelling in cytoskeletons and cellular junctions of endometrial epithelial cells under ischemic conditions. WHAT IS KNOWN ALREADY: A healthy endometrium is essential for successful embryo implantation and subsequent pregnancy; ischemic conditions in a thin endometrium compromise fertility outcomes. STUDY DESIGN, SIZE, DURATION: We recruited 10 patients with thin endometrium and 15 patients with healthy endometrium. Doppler ultrasound and immunohistochemical results confirmed the presence of insufficient endometrial blood perfusion in patients with thin endometrium. Organoids were constructed using healthy endometrial tissue and cultured under oxygen-glucose deprivation (OGD) conditions for 24 h. The morphological, transcriptomic, protein expression, and signaling pathway changes in the OGD organoids were observed. These findings were validated in both thin endometrial tissue and healthy endometrial tissue samples. PARTICIPANTS/MATERIALS, SETTING, METHODS: Endometrial thickness and blood flow were measured during the late follicular phase using transvaginal Doppler ultrasound. Endometrial tissue was obtained via hysteroscopy. Fresh endometrial tissues were used for the generation and culture of human endometrial organoids. Organoids were cultured in an appropriate medium and subjected to OGD to simulate ischemic conditions. Apoptosis and cell death were assessed using Annexin-V/propidium iodide staining. Immunofluorescence analysis, RNA sequencing, western blotting, simple westerns, immunohistochemistry, and electron microscopy were conducted to evaluate cellular and molecular changes. MAIN RESULTS AND THE ROLE OF CHANCE: Patients with thin endometrium showed significantly reduced endometrial thickness and altered blood flow patterns compared to those with healthy endometrium. Immunohistochemical staining revealed fewer CD34-positive blood vessels and glands in the thin endometrium group. Organoids cultured under OGD conditions exhibited significant morphological changes, increased apoptosis, and cell death. RNA-seq identified differentially expressed genes related to cytoskeletal remodeling and stress responses. OGD induced a strong cytoskeletal reorganization, mediated by the RhoA/ROCK signaling pathway. Additionally, electron microscopy indicated compromised epithelial integrity and abnormal cell junctions in thin endometrial tissues. Upregulation of hypoxia markers (HIF-1α and HIF-2α) and activation of the RhoA/ROCK pathway were also observed in thin endometrial tissues, suggesting ischemia and hypoxia as underlying mechanisms. LARGE SCALE DATA: none. LIMITATIONS AND REASONS FOR CAUTION: The study was conducted in an in vitro model, which may not fully replicate the complexity of in vivo conditions. WIDER IMPLICATIONS OF THE FINDINGS: This research provides a new three-dimensional in vitro model of thin endometrium, as well as novel insights into the pathophysiological mechanisms of endometrial ischaemia in thin endometrium, offering potential avenues for identifying therapeutic targets for treating fertility issues related to thin endometrium. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Natural Science Foundation of China (81925013); National Key Research and Development Project of China (2022YFC2702500, 2021YFC2700303, 2021YFC2700601); the Capital Health Research and Development Project (SF2022-1-4092); the National Natural Science Foundation of China (82288102, 81925013, 82225019, 82192873); Special Project on Capital Clinical Diagnosis and Treatment Technology Research and Transformation Application (Z211100002921054); the Frontiers Medical Center, Tianfu Jincheng Laboratory Foundation(TFJC2023010001). The authors declare that no competing interests exist.


Asunto(s)
Endometrio , Glucosa , Organoides , Oxígeno , Humanos , Femenino , Endometrio/metabolismo , Endometrio/irrigación sanguínea , Endometrio/patología , Organoides/metabolismo , Adulto , Glucosa/metabolismo , Oxígeno/metabolismo , Citoesqueleto/metabolismo , Apoptosis
6.
Anal Biochem ; 694: 115613, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39002744

RESUMEN

RNA G4, as an integral branch of G4 structure, possesses distinct interactions with ligands compared to the common DNA G4, thus the investigation of RNA G4/ligand interactions might be considered as a fresh breakthrough to improve the biosensing performance of G4/ligand system. In this study, we comparatively explored the structural and functional mechanisms of RNA G4 and DNA G4 in the interaction with ligands, hemin and thioflavin T (ThT), utilizing the classical PS2.M sequence as a model. We found that although the catalytic performance of RNA G4/hemin system was lower than DNA G4/hemin, RNA G4/ThT fluorescence system exhibited a significant improvement (2∼3-fold) compared to DNA G4/ThT, and adenine modification could further enhance the signaling. Further, by exploring the interaction between RNA G4 and ThT, we deemed that RNA G4 and ThT were stacked in a bimolecular mode compared to single-molecule binding of DNA G4/ThT, thus more strongly limiting the structural spin in ThT excited state. Further, RNA G4/ThT displayed higher environmental tolerance and lower ion dependence than DNA G4/ThT. Finally, we employed RNA G4/ThT as a highly sensitive label-free fluorescent signal output system for in situ imaging of isoforms BCR-ABL e13a2 and e14a2. Overall, this study successfully screened a high-performance RNA G4 biosensing system through systematic RNA G4/ligands interaction studies, which was expected to provide a promising reference for subsequent G4/ligand research.


Asunto(s)
Benzotiazoles , G-Cuádruplex , ARN , Ligandos , ARN/química , ARN/metabolismo , Benzotiazoles/química , Humanos , Hemina/química , Hemina/metabolismo
7.
Inorg Chem ; 63(21): 10031-10041, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38752590

RESUMEN

Ferroelectric materials, leveraging an inherent built-in electric field, are excellent in suppressing electron-hole recombination. However, the reliance solely on bulk polarization remains insufficient in enhancing carriers' separation and migration, limiting their practical application in photocatalytic overall water splitting (POWS). To address this, we incorporated cations with ns2 lone pairs (P3+, As3+, Sb3+, and Bi3+) into ferroelectric semiconductors, successfully constructing 44 ß-AIBIIIO2 photocatalysts with dual polarization. Through rigorous first-principles calculations and screenings for stability, band characteristics, and polarization, we identified four promising candidates: ß-LiSbO2, ß-NaSbO2, ß-LiBiO2, and ß-TlBiO2. Within these materials, lone pairs induce local polarization in the xy-plane. Additionally, out of the plane, there is robust bulk polarization along the z-direction. This synergistic effect of the combined local and bulk polarization significantly improves the separation efficiency of electron-hole pairs. Explicitly, the electron mobility of the four candidates ranges from 105 to 106 cm2 s-1 V-1, while the hole mobility also increases significantly compared to single-phase polarized materials, up to 106 cm2 s-1 V-1. Notably, ß-TlBiO2 is predicted to achieve a solar-to-hydrogen (STH) efficiency of 17.2%. This study not only offers insights for water-splitting catalyst screening but also pioneers a path for electron-hole separation through the dual polarization strategy.

8.
BMC Public Health ; 24(1): 1696, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918768

RESUMEN

BACKGROUND: Extensive evidence indicates that both lifestyle factors and air pollution are strongly associated with all-cause mortality. However, little studies in this field have integrated these two factors in order to examine their relationship with mortality and explore potential interactions. METHODS: A cohort of 271,075 participants from the UK Biobank underwent analysis. Lifestyles in terms of five modifiable factors, namely smoking, alcohol consumption, physical activity, diet, and sleep quality, were classified as unhealthy (0-1 score), general (2-3 score), and healthy (4-5 score). Air pollution, including particle matter with a diameter ≤ 2.5 µm (PM2.5), particulate matter with a diameter ≤ 10 µm (PM10), particulate matter with a diameter 2.5-10 µm (PM2.5-10), nitrogen dioxide (NO2), and nitrogen oxides (NOx), was divided into three levels (high, moderate, and low) using Latent Profile Analysis (LPA). Cox proportional hazard regression analysis was performed to examine the links between lifestyle, air pollution, and all-cause mortality before and after adjustment for potential confounders. Restricted cubic spline curves featuring three knots were incorporated to determine nonlinear relationships. The robustness of the findings was assessed via subgroup and sensitivity analyses. RESULTS: With unhealthy lifestyles have a significantly enhanced risk of death compared to people with general lifestyles (HR = 1.315, 95% CI, 1.277-1.355), while people with healthy lifestyles have a significantly lower risk of death (HR = 0.821, 95% CI, 0.785-0.858). Notably, the difference in risk between moderate air pollution and mortality risk remained insignificant (HR = 0.993, 95% CI, 0.945-1.044). High air pollution, on the other hand, was independently linked to increased mortality risk as compared to low air pollution (HR = 1.162, 95% CI, 1.124-1.201). The relationship between NOx, PM10, and PM2.5-10 and all-cause mortality was found to be nonlinear (p for nonlinearity < 0.05). Furthermore, no significant interaction was identified between lifestyle and air pollution with respect to all-cause mortality. CONCLUSIONS: Exposure to ambient air pollution elevated the likelihood of mortality from any cause, which was impacted by individual lifestyles. To alleviate this hazard, it is crucial for authorities to escalate environmental interventions, while individuals should proactively embrace and sustain healthy lifestyles.


Asunto(s)
Contaminación del Aire , Bancos de Muestras Biológicas , Estilo de Vida , Humanos , Reino Unido/epidemiología , Masculino , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Femenino , Persona de Mediana Edad , Anciano , Estudios de Cohortes , Mortalidad/tendencias , Material Particulado/análisis , Material Particulado/efectos adversos , Adulto , Causas de Muerte , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Biobanco del Reino Unido
9.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38928338

RESUMEN

The flavonoids in citrus fruits are crucial physiological regulators and natural bioactive products of high pharmaceutical value. Melatonin is a pleiotropic hormone that can regulate plant morphogenesis and stress resistance and alter the accumulation of flavonoids in these processes. However, the direct effect of melatonin on citrus flavonoids remains unclear. In this study, nontargeted metabolomics and transcriptomics were utilized to reveal how exogenous melatonin affects flavonoid biosynthesis in "Bingtangcheng" citrus fruits. The melatonin treatment at 0.1 mmol L-1 significantly increased the contents of seven polymethoxylated flavones (PMFs) and up-regulated a series of flavonoid pathway genes, including 4CL (4-coumaroyl CoA ligase), FNS (flavone synthase), and FHs (flavonoid hydroxylases). Meanwhile, CHS (chalcone synthase) was down-regulated, causing a decrease in the content of most flavonoid glycosides. Pearson correlation analysis obtained 21 transcription factors co-expressed with differentially accumulated flavonoids, among which the AP2/EREBP members were the most numerous. Additionally, circadian rhythm and photosynthesis pathways were enriched in the DEG (differentially expressed gene) analysis, suggesting that melatonin might also mediate changes in the flavonoid biosynthesis pathway by affecting the fruit's circadian rhythm. These results provide valuable information for further exploration of the molecular mechanisms through which melatonin regulates citrus fruit metabolism.


Asunto(s)
Citrus , Flavonoides , Frutas , Regulación de la Expresión Génica de las Plantas , Melatonina , Metabolómica , Citrus/metabolismo , Citrus/efectos de los fármacos , Citrus/genética , Melatonina/farmacología , Melatonina/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Frutas/metabolismo , Frutas/efectos de los fármacos , Frutas/genética , Metabolómica/métodos , Perfilación de la Expresión Génica , Transcriptoma , Metaboloma/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
11.
Methods Mol Biol ; 2776: 185-196, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502505

RESUMEN

Diatoms such as Phaeodactylum tricornutum arose through a process termed secondary endosymbiosis, in which red alga-derived plastids are surrounded by a complicated membrane system. Subcellular marker proteins provide defined localizations on the compartmental and even sub-compartmental levels in the complex plastids of diatoms. Here we introduce how to use subcellular marker proteins and in vivo co-localization in the diatom P. tricornutum by presenting a step-by-step method allowing the determination of subcellular localization of proteins in different membranes of the secondary plastid. This chapter describes the materials required and the procedures of transformation and microscopic observation.


Asunto(s)
Diatomeas , Diatomeas/metabolismo , Proteínas/metabolismo , Membranas , Simbiosis , Plastidios/metabolismo
12.
Mar Environ Res ; 199: 106625, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38959781

RESUMEN

Diatom has evolved response mechanisms to cope with multiple environmental stresses. Heat shock protein 40 (HSP40) plays a key role in these response mechanisms. HSP40 gene family in higher plants has been well-studied. However, the HSP40 gene family has not been systematically investigated in marine diatom. In this study, the bioinformatic characteristics, phylogenetic relationship, conserved motifs, gene structure, chromosome distribution and the transcriptional response of PtHSP40 to different environmental stresses were analyzed in the diatom Phaeodactylum tricornutum, and quantitative real-time PCR was conducted. Totally, 55 putative PtHSP40 genes are distributed to 21 chromosomes. All PtHSP40 proteins can be divided into four groups based on their evolutionary relationship, and 54 of them contain a conserved HPD (histidine-proline-aspartic acid tripeptide) motif. Additionally, six, eleven, ten and four PtHSP40 genes were significantly upregulated under the treatments of nitrogen starvation, phosphorus deprivation, 2,2',4,4'-tetrabrominated biphenyl ether (BDE-47) and ocean acidification, respectively. More interestingly, the expression level of 9 PtHSP40 genes was obviously upregulated in response to nickel stress, suggesting the sensitive to metal stress. The different expression models of PtHSP40 genes to environmental stresses imply the specificity of PtHSP40 proteins under different stresses. This study provides a systematic understanding of the PtHSP40 gene family in P. tricornutum and a comprehensive cognition in its functions and response mechanisms to environmental stresses.


Asunto(s)
Diatomeas , Diatomeas/genética , Diatomeas/efectos de los fármacos , Familia de Multigenes , Filogenia , Estrés Fisiológico/genética
13.
Oncol Lett ; 28(2): 398, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38979551

RESUMEN

The mediator complex (MED) family is a contributing factor in the regulation of transcription and proliferation of cells, and is closely associated with the development of various types of cancer. However, the significance of the expression levels and prognostic value of MED genes in kidney renal clear cell carcinoma (KIRC) have rarely been reported. The present study analyzed the expression and prognostic potential of MED genes in KIRC. The Search Tool for the Retrieval of Interacting Genes/Proteins was used to construct the protein-protein interaction network (PPI), the Assistant for Clinical Bioinformatics database was used to perform correlation analysis, GEPIA 2 was utilized to draw the Kaplan-Meier plot and analyze prognostic significance and the Tumor Immune Estimation Resource was used to assess the association of MED genes with the infiltration of immune cells in patients with KIRC. A total of 30 MED genes were identified, and among these genes, 11 were selected for the creation of a prognostic gene signature based on the results of a LASSO Cox regression analysis. Furthermore, according to univariate and multivariate analyses, MED7, MED16, MED21, MED25 and MED29 may be valuable independent predictive biomarkers for the prognosis of individuals with KIRC. Furthermore, there were significant differences in the expression levels of MED7, MED21 and MED25 in KIRC among different tumor grades. Additionally, patients with KIRC with high transcription levels of MED7, MED21 and MED29 had considerably longer overall survival times. The expression levels of MED genes were also linked to the infiltration of several immune cells. Overall, MED genes may have potential significance in predicting the prognosis of patients with KIRC.

14.
Carbohydr Polym ; 327: 121652, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171655

RESUMEN

Laminaran is a major storage of carbohydrate in marine algae. Its high content and potential functions draw increasing attention. However, our understanding of its metabolisms and functions is still fragmented. After reviewing, marine algae exhibit a spectacular capacity of laminaran accumulation especially in the diatom Odontella aurita (65 % DW). Marine particulate organic carbon (POC) also has high contents of laminaran (42 ± 21 % DW). Laminaran shows a diel variation trend in marine algae, the content of which increases in the day but decreases at night. Laminaran also significantly accumulates in the stationary phase of algal growth. Furthermore, the metabolic pathway of laminaran and the remolding carbon mechanism in response to marine nitrogen limitation are proposed and comprehensively discussed. Laminaran production in marine phytoplankton is predicted to increase in future warmer and CO2-enriched oceans. Laminaran has diverse biological functions, including antioxidant, antimicrobial, anti-cancer, immunomodulatory, wound healing, and prebiotics. In addition, laminaran is also a major carbon storage compound in marine algae, suggesting its significant ecological function in marine carbon cycle. This study provides new insight into algal laminaran functions and its response mechanisms to environmental and climate changes.


Asunto(s)
Diatomeas , Glucanos , Fitoplancton/fisiología , Compuestos Orgánicos , Carbono
15.
ACS Appl Mater Interfaces ; 16(27): 34988-34996, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38920133

RESUMEN

The high performance of intermediate-to-low temperature solid oxide fuel cells (ILT-SOFCs) closely depends on the catalytic activity of the cathode material. However, most high-activity perovskite cathodes are rich in Sr and will arise from Sr segregation during the long-term working, resulting in the decay of activity and stability. Herein, by regulating the calcined way and temperature, a type of self-assembled nanocomposite perovskite cathode is developed, the stoichiometric SrCo0.7Fe0.2Sc0.1O3-δ (SCFSc) powder self-separates into a cubic phase (Pm3̅m, Sc-rich) and a tetragonal phase (P4/mmm, Sc-fewer). Meanwhile, a single cubic phase is prepared with the same formula via calcining the SCFSc pellet. It is found that the nanocomposite cathode shows better oxygen reduction reaction catalytic activity than single cubic SCFSc, caused by lower impedance of oxygen surface exchange and bulk diffusion. Particularly, the nanocomposite SCFSc cathode with the self-assembled heterointerfaces mitigates the Sr segregation and shows a peak power density of 1.17 W cm-2 at 700 °C and excellent stability for ∼101 h at 600 °C. This work provides a strategy for the development of nanocomposite cathodes to mitigate cation segregation and improve catalytic activity and stability.

16.
Mult Scler Relat Disord ; 88: 105750, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986172

RESUMEN

BACKGROUND: The choroid plexus (CP) is suggested to be closely associated with the neuroinflammation of multiple sclerosis (MS). Segmentation based on deep learning (DL) could facilitate rapid and reproducible volume assessment of the CP, which is crucial for elucidating its role in MS. PURPOSE: To develop a reliable DL model for the automatic segmentation of CP, and further validate its clinical significance in MS. METHODS: The 3D UX-Net model (3D U-Net used for comparison) was trained and validated on T1-weighted MRI from a cohort of 216 relapsing-remitting MS (RRMS) patients and 75 healthy subjects. Among these, 53 RRMS with baseline and 2-year follow-up scans formed an internal test set (dataset1b). Another 58 RRMS from multi-center data served as an external test set (dataset2). Dice coefficient was computed to assess segmentation performance. Compare the correlation of CP volume obtained through automatic and manual segmentation with clinical outcomes in MS. Disability and cognitive function of patients were assessed using the Expanded Disability Status Scale (EDSS) and Symbol Digit Modalities Test (SDMT). RESULTS: The 3D UX-Net model achieved Dice coefficients of 0.875 ± 0.030 and 0.870 ± 0.044 for CP segmentation on dataset1b and dataset2, respectively, outperforming 3D U-Net's scores of 0.809 ± 0.098 and 0.601 ± 0.226. Furthermore, CP volumes segmented by the 3D UX-Net model aligned consistently with clinical outcomes compared to manual segmentation. In dataset1b, both manual and automatic segmentation revealed a significant positive correlation between normalized CP volume (nCPV) and EDSS scores at baseline (manual: r = 0.285, p = 0.045; automatic: r = 0.287, p = 0.044) and a negative correlation with SDMT scores (manual: r = -0.331, p = 0.020; automatic: r = -0.329, p = 0.021). In dataset2, similar correlations were found with EDSS scores (manual: r = 0.337, p = 0.021; automatic: r = 0.346, p = 0.017). Meanwhile, in dataset1b, both manual and automatic segmentation revealed a significant increase in nCPV from baseline to follow-up (p < 0.05). The increase of nCPV was more pronounced in patients with disability worsened than stable patients (manual: p = 0.023; automatic: p = 0.018). Patients receiving disease-modifying therapy (DMT) exhibited a significantly lower nCPV increase than untreated patients (manual: p = 0.004; automatic: p = 0.004). CONCLUSION: The 3D UX-Net model demonstrated strong segmentation performance for the CP, and the automatic segmented CP can be directly used in MS clinical practice. CP volume can serve as a surrogate imaging biomarker for monitoring disease progression and DMT response in MS patients.


Asunto(s)
Plexo Coroideo , Aprendizaje Profundo , Progresión de la Enfermedad , Imagen por Resonancia Magnética , Esclerosis Múltiple Recurrente-Remitente , Humanos , Femenino , Masculino , Adulto , Plexo Coroideo/diagnóstico por imagen , Plexo Coroideo/patología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/fisiopatología , Esclerosis Múltiple Recurrente-Remitente/patología , Persona de Mediana Edad , Imagenología Tridimensional
17.
Plant Sci ; 347: 112184, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38996874

RESUMEN

Nervonic acid (C24:1) is a very-long-chain fatty acid that plays an imperative role in human brain development and other health benefits. In plants, 3-ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme for C24:1 biosynthesis. Xanthoceras sorbifolium is a valuable oil-producing economic woody species with abundant C24:1 in seed oils, but the key KCS gene responsible for C24:1 accumulation remains unknown. In this work, a correlation analysis between the transcript profiles of KCS and dynamic change of C24:1 content in developing seeds of X. sorbifolium were conducted to screen out three members of KCS, namely XsKCS4, XsKCS7 and XsKCS8, potentially involved in C24:1 biosynthesis. Of which, the XsKCS7 was highly expressed in developing seeds, while XsKCS4 and XsKCS8 displayed the highest expression in fruits and flowers, respectively. Overexpression of XsKCS4, XsKCS7 and XsKCS8 in yeast Saccharomyces cerevisiae and plant Arabidopsis thaliana indicated that only XsKCS7 possessed the ability to facilitate the biosynthesis of C24:1. These findings collectively suggested that XsKCS7 played a crucial role in specific regulation of C24:1 biosynthesis in X. sorbifolium seeds.


Asunto(s)
Ácidos Grasos Monoinsaturados , Proteínas de Plantas , Sapindaceae , Semillas , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sapindaceae/genética , Sapindaceae/metabolismo , Sapindaceae/enzimología , Sapindaceae/crecimiento & desarrollo , Ácidos Grasos Monoinsaturados/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/enzimología , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
18.
Front Immunol ; 15: 1382092, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487539

RESUMEN

[This corrects the article DOI: 10.3389/fimmu.2023.1285951.].

19.
Front Immunol ; 15: 1403324, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694498

RESUMEN

[This corrects the article DOI: 10.3389/fimmu.2023.1254532.].

20.
Antioxidants (Basel) ; 13(2)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38397841

RESUMEN

Citrus is an important type of fruit, with antioxidant bioactivity. However, the variations in the antioxidant ability of different tissues in citrus and its metabolic and molecular basis remain unclear. Here, we assessed the antioxidant capacities of 12 tissues from Citrus reticulata 'Ponkan', finding that young leaves and root exhibited the strongest antioxidant capacity. Secondary metabolites accumulated differentially in parts of the citrus plant, of which flavonoids were enriched in stem, leaf, and flavedo; phenolic acids were enriched in the albedo, while coumarins were enriched in the root, potentially explaining the higher antioxidant capacities of these tissues. The spatially specific accumulation of metabolites was related to the expression levels of biosynthesis-related genes such as chalcone synthase (CHS), chalcone isomerase (CHI), flavone synthase (FNS), O-methyltransferase (OMT), flavonoid-3'-hydroxylase (F3'H), flavonoid-6/8-hydroxylase (F6/8H), p-coumaroyl CoA 2'-hydroxylase (C2'H), and prenyltransferase (PT), among others, in the phenylpropane pathway. Weighted gene co-expression network analysis (WGCNA) identified modules associated with flavonoids and coumarin content, among which we identified an OMT involved in coumarin O-methylation, and related transcription factors were predicted. Our study identifies key genes and metabolites influencing the antioxidant capacity of citrus, which could contribute to the enhanced understanding and utilization of bioactive citrus components.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA