Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 201(12): 3731-3740, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30397035

RESUMEN

Humoral alloimmunity negatively impacts both short- and long-term cell and solid organ transplant survival. We previously reported that alloantibody-mediated rejection of transplanted hepatocytes is critically dependent on host macrophages. However, the effector mechanism(s) of macrophage-mediated injury to allogeneic liver parenchymal cells is not known. We hypothesized that macrophage-mediated destruction of allogeneic hepatocytes occurs by cell-cell interactions requiring FcγRs. To examine this, alloantibody-dependent hepatocyte rejection in CD8-depleted wild-type (WT) and Fcγ-chain knockout (KO; lacking all functional FcγR) transplant recipients was evaluated. Alloantibody-mediated hepatocellular allograft rejection was abrogated in recipients lacking FcγR compared with WT recipients. We also investigated anti-FcγRI mAb, anti-FcγRIII mAb, and inhibitors of intracellular signaling (to block phagocytosis, cytokines, and reactive oxygen species [ROS]) in an in vitro alloantibody-dependent, macrophage-mediated hepatocytoxicity assay. Results showed that in vitro alloantibody-dependent, macrophage-mediated hepatocytotoxicity was critically dependent on FcγRs and ROS. The adoptive transfer of WT macrophages into CD8-depleted FcγR-deficient recipients was sufficient to induce alloantibody-mediated rejection, whereas adoptive transfer of macrophages from Fcγ-chain KO mice or ROS-deficient (p47 KO) macrophages was not. These results provide the first evidence, to our knowledge, that alloantibody-dependent hepatocellular allograft rejection is mediated by host macrophages through FcγR signaling and ROS cytotoxic effector mechanisms. These results support the investigation of novel immunotherapeutic strategies targeting macrophages, FcγRs, and/or downstream molecules, including ROS, to inhibit humoral immune damage of transplanted hepatocytes and perhaps other cell and solid organ transplants.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Rechazo de Injerto/inmunología , Hepatocitos/inmunología , Macrófagos/inmunología , Receptores de IgG/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Animales , Células Cultivadas , Citotoxicidad Inmunológica , ADN Helicasas/genética , Humanos , Isoanticuerpos/metabolismo , Trasplante de Hígado , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Receptores de IgG/genética , Transducción de Señal
2.
Immun Inflamm Dis ; 9(3): 746-757, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33835721

RESUMEN

Titanium has been widely used in prosthetic valves, but they are associated with serious defects in titanium-based prosthetic valves, such as thrombosis, calcification, and decay. Therefore, it is very important to biofunctionalize titanium-based valves to reduce inflammation and accelerate endothelialization of stents and antithrombosis. The titanium dioxide nanotubes were prepared from pure titanium (Ti) by anodic oxidation method in this study. The effects of titanium dioxide nanotubes on the metabolism of macrophages and the inflammatory reaction as implants were studied in vitro. The polarization state of macrophages and the ability to accelerate endothelialization were analyzed. The results demonstrated that titanium nanotubes promote M2 polarization of macrophages by inhibiting glycolysis and activating the Adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. In general, biofunctionalization titanium with nanotube could inhibit macrophage glycolysis, reduce inflammatory factor release and promote M2 polarization by activating the AMPK signaling pathway. And endothelialization was accelerated in vitro. Our result demonstrated that titanium nanotube could act as a potential approach to biofunctionlize titanium-based prosthetic valves for endothelialization.


Asunto(s)
Nanotubos , Titanio , Glucólisis , Macrófagos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA