Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.329
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 630(8017): 654-659, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839965

RESUMEN

Emissions reduction and greenhouse gas removal from the atmosphere are both necessary to achieve net-zero emissions and limit climate change1. There is thus a need for improved sorbents for the capture of carbon dioxide from the atmosphere, a process known as direct air capture. In particular, low-cost materials that can be regenerated at low temperatures would overcome the limitations of current technologies. In this work, we introduce a new class of designer sorbent materials known as 'charged-sorbents'. These materials are prepared through a battery-like charging process that accumulates ions in the pores of low-cost activated carbons, with the inserted ions then serving as sites for carbon dioxide adsorption. We use our charging process to accumulate reactive hydroxide ions in the pores of a carbon electrode, and find that the resulting sorbent material can rapidly capture carbon dioxide from ambient air by means of (bi)carbonate formation. Unlike traditional bulk carbonates, charged-sorbent regeneration can be achieved at low temperatures (90-100 °C) and the sorbent's conductive nature permits direct Joule heating regeneration2,3 using renewable electricity. Given their highly tailorable pore environments and low cost, we anticipate that charged-sorbents will find numerous potential applications in chemical separations, catalysis and beyond.


Asunto(s)
Dióxido de Carbono , Dióxido de Carbono/análisis , Dióxido de Carbono/química , Dióxido de Carbono/aislamiento & purificación , Adsorción , Electrodos , Hidróxidos/química , Atmósfera/química , Carbonatos/química , Aire , Temperatura , Carbón Orgánico/química , Porosidad , Carbono/química
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38600666

RESUMEN

Predicting the drug response of cancer cell lines is crucial for advancing personalized cancer treatment, yet remains challenging due to tumor heterogeneity and individual diversity. In this study, we present a deep learning-based framework named Deep neural network Integrating Prior Knowledge (DIPK) (DIPK), which adopts self-supervised techniques to integrate multiple valuable information, including gene interaction relationships, gene expression profiles and molecular topologies, to enhance prediction accuracy and robustness. We demonstrated the superior performance of DIPK compared to existing methods on both known and novel cells and drugs, underscoring the importance of gene interaction relationships in drug response prediction. In addition, DIPK extends its applicability to single-cell RNA sequencing data, showcasing its capability for single-cell-level response prediction and cell identification. Further, we assess the applicability of DIPK on clinical data. DIPK accurately predicted a higher response to paclitaxel in the pathological complete response (pCR) group compared to the residual disease group, affirming the better response of the pCR group to the chemotherapy compound. We believe that the integration of DIPK into clinical decision-making processes has the potential to enhance individualized treatment strategies for cancer patients.


Asunto(s)
Aprendizaje Profundo , Neoplasias , Humanos , Redes Neurales de la Computación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Línea Celular
3.
PLoS Pathog ; 20(1): e1011988, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38289966

RESUMEN

Autophagy and Cell wall integrity (CWI) signaling are critical stress-responsive processes during fungal infection of host plants. In the rice blast fungus Magnaporthe oryzae, autophagy-related (ATG) proteins phosphorylate CWI kinases to regulate virulence; however, how autophagy interplays with CWI signaling to coordinate such regulation remains unknown. Here, we have identified the phosphorylation of ATG protein MoAtg4 as an important process in the coordination between autophagy and CWI in M. oryzae. The ATG kinase MoAtg1 phosphorylates MoAtg4 to inhibit the deconjugation and recycling of the key ATG protein MoAtg8. At the same time, MoMkk1, a core kinase of CWI, also phosphorylates MoAtg4 to attenuate the C-terminal cleavage of MoAtg8. Significantly, these two phosphorylation events maintain proper autophagy levels to coordinate the development and pathogenicity of the rice blast fungus.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Fosforilación , Virulencia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Magnaporthe/metabolismo , Autofagia , Pared Celular/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Regulación Fúngica de la Expresión Génica
4.
Nucleic Acids Res ; 52(D1): D1355-D1364, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37930837

RESUMEN

The metabolic roadmap of drugs (MRD) is a comprehensive atlas for understanding the stepwise and sequential metabolism of certain drug in living organisms. It plays a vital role in lead optimization, personalized medication, and ADMET research. The MRD consists of three main components: (i) the sequential catalyses of drug and its metabolites by different drug-metabolizing enzymes (DMEs), (ii) a comprehensive collection of metabolic reactions along the entire MRD and (iii) a systematic description on efficacy & toxicity for all metabolites of a studied drug. However, there is no database available for describing the comprehensive metabolic roadmaps of drugs. Therefore, in this study, a major update of INTEDE was conducted, which provided the stepwise & sequential metabolic roadmaps for a total of 4701 drugs, and a total of 22 165 metabolic reactions containing 1088 DMEs and 18 882 drug metabolites. Additionally, the INTEDE 2.0 labeled the pharmacological properties (pharmacological activity or toxicity) of metabolites and provided their structural information. Furthermore, 3717 drug metabolism relationships were supplemented (from 7338 to 11 055). All in all, INTEDE 2.0 is highly expected to attract broad interests from related research community and serve as an essential supplement to existing pharmaceutical/biological/chemical databases. INTEDE 2.0 can now be accessible freely without any login requirement at: http://idrblab.org/intede/.


Asunto(s)
Bases de Datos de Compuestos Químicos , Bases de Datos Factuales , Inactivación Metabólica , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo
5.
PLoS Genet ; 19(5): e1010748, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37186579

RESUMEN

The rice blast fungus Magnaporthe oryzae forms specialized infectious structures called appressoria that breach host cells to initiate infection. Previous studies demonstrated that the regulator of G-protein signaling (RGS)-like protein MoRgs7 undergoes endocytosis upon fungal sensing of hydrophobic environmental cues to activate cAMP signaling required for appressorium formation. However, the mechanism by which MoRgs7 internalizes and its fate remains undetermined. We here show that MoSep1, a conserved protein kinase of Mitotic Exit Network (MEN), phosphorylates MoRgs7 to regulate its function. MoRgs7 phosphorylation determines its interaction with MoCrn1, a coronin-like actin-binding protein homolog that also modulates the internalization of MoRgs7. Importantly, the endocytic transport of MoRgs7 is critical for its GTPase-activating protein (GAP) function important in cAMP signaling. Together, our findings revealed a novel mechanism by which M. oryzae activates MoRgs7-mediated hydrophobic cue-sensing signal transduction involving protein phosphorylation and endocytic transport to govern appressorium formation and fungal pathogenicity.


Asunto(s)
Magnaporthe , Oryza , Humanos , Fosforilación , Señales (Psicología) , Magnaporthe/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Regulación Fúngica de la Expresión Génica
6.
PLoS Genet ; 19(9): e1010927, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37733784

RESUMEN

The emergence of fungicide resistance severely threatens crop production by limiting the availability and application of established fungicides. Therefore, it is urgent to identify new fungicidal targets for controlling plant diseases. Here, we characterized the function of a conserved homoserine O-acetyltransferase (HOA) from the rice blast fungus Magnaporthe oryzae that could serve as the candidate antifungal target. Deletion of the MoMET2 and MoCYS2 genes encoding HOAs perturbed the biosynthesis of methionine and S-adenyl methionine, a methyl group donor for epigenetic modifications, and severely attenuated the development and virulence of M. oryzae. The ∆Momet2 mutant is significantly increased in 5-methylcytosine (5mC) modification that represses the expression of genes required for pathogenicity, including MoGLIK and MoCDH-CYT. We further showed that host-induced gene silencing (HIGS) targeting MoMET2 and MoCYS2 effectively controls rice blasts. Our studies revealed the importance of HOA in the development and virulence of M. oryzae, which suggests the potential feasibility of HOA as new targets for novel anti-rice blast measurements.


Asunto(s)
Magnaporthe , Oryza , Virulencia/genética , Oryza/metabolismo , Metionina/genética , Expresión Génica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
7.
Dev Biol ; 515: 7-17, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942110

RESUMEN

In most mollusks (conchiferans), the early tissue responsible for shell development, namely, the shell field, shows a common process of invagination during morphogenesis. Moreover, lines of evidence indicated that shell field invagination is not an independent event, but an integrated output reflecting the overall state of shell field morphogenesis. Nevertheless, the underlying mechanisms of this conserved process remain largely unknown. We previously found that actomyosin networks (regularly organized filamentous actin (F-actin) and myosin) may play essential roles in this process by revealing the evident aggregation of F-actin in the invaginated region and demonstrating that nonmuscle myosin II (NM II) is required for invagination in the gastropod Lottia peitaihoensis (= Lottia goshimai). Here, we investigated the roles of the Rho family of small GTPases (RhoA, Rac1, and Cdc42) to explore the upstream regulators of actomyosin networks. Functional assays using small molecule inhibitors suggested that Cdc42 modulates key events of shell field morphogenesis, including invagination and cell rearrangements, while the roles of RhoA and Rac1 may be nonspecific or negligible. Further investigations revealed that the Cdc42 protein was concentrated on the apical side of shell field cells and colocalized with F-actin aggregation. The aggregation of these two molecules could be prevented by treatment with Cdc42 inhibitors. These findings suggest a possible regulatory cascade of shell field morphogenesis in which Cdc42 recruits F-actin (actomyosin networks) on the apical side of shell field cells, which then generates resultant mechanical forces that mediate correct shell field morphogenesis (cell shape changes, invagination and cell rearrangement). Our results emphasize the roles of the cytoskeleton in early shell development and provide new insights into molluscan shell evolution.

8.
PLoS Pathog ; 19(4): e1011251, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37011084

RESUMEN

Magnaporthe oryzae causes rice blasts posing serious threats to food security worldwide. During infection, M. oryzae utilizes several transmembrane receptor proteins that sense cell surface cues to induce highly specialized infectious structures called appressoria. However, little is known about the mechanisms of intracellular receptor tracking and their function. Here, we described that disrupting the coat protein complex II (COPII) cargo protein MoErv14 severely affects appressorium formation and pathogenicity as the ΔMoerv14 mutant is defective not only in cAMP production but also in the phosphorylation of the mitogen-activated protein kinase (MAPK) MoPmk1. Studies also showed that either externally supplementing cAMP or maintaining MoPmk1 phosphorylation suppresses the observed defects in the ΔMoerv14 strain. Importantly, MoErv14 is found to regulate the transport of MoPth11, a membrane receptor functioning upstream of G-protein/cAMP signaling, and MoWish and MoSho1 function upstream of the Pmk1-MAPK pathway. In summary, our studies elucidate the mechanism by which the COPII protein MoErv14 plays an important function in regulating the transport of receptors involved in the appressorium formation and virulence of the blast fungus.


Asunto(s)
Magnaporthe , Oryza , Virulencia , Magnaporthe/metabolismo , Transducción de Señal , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Membrana Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/metabolismo
9.
FASEB J ; 38(13): e23750, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38888878

RESUMEN

Kif16A, a member of the kinesin-3 family of motor proteins, has been shown to play crucial roles in inducing mitotic arrest, apoptosis, and mitotic cell death. However, its roles during oocyte meiotic maturation have not been fully defined. In this study, we report that Kif16A exhibits unique accumulation on the spindle apparatus and colocalizes with microtubule fibers during mouse oocyte meiotic maturation. Targeted depletion of Kif16A using gene-targeting siRNA disrupts the progression of the meiotic cell cycle. Furthermore, Kif16A depletion leads to aberrant spindle assembly and chromosome misalignment in oocytes. Our findings also indicate that Kif16A depletion reduces tubulin acetylation levels and compromises microtubule resistance to depolymerizing drugs, suggesting its crucial role in microtubule stability maintenance. Notably, we find that the depletion of Kif16A results in a notably elevated incidence of defective kinetochore-microtubule attachments and the absence of BubR1 localization at kinetochores, suggesting a critical role for Kif16A in the activation of the spindle assembly checkpoint (SAC) activity. Additionally, we observe that Kif16A is indispensable for proper actin filament distribution, thereby impacting spindle migration. In summary, our findings demonstrate that Kif16A plays a pivotal role in regulating microtubule and actin dynamics crucial for ensuring both spindle assembly and migration during mouse oocyte meiotic maturation.


Asunto(s)
Cinesinas , Meiosis , Microtúbulos , Oocitos , Huso Acromático , Animales , Cinesinas/metabolismo , Cinesinas/genética , Meiosis/fisiología , Oocitos/metabolismo , Microtúbulos/metabolismo , Ratones , Huso Acromático/metabolismo , Femenino , Actinas/metabolismo , Cinetocoros/metabolismo
10.
Cell Mol Life Sci ; 81(1): 92, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363375

RESUMEN

The maintenance of genome integrity in the germline is crucial for mammalian development. Long interspersed element type 1 (LINE-1, L1) is a mobile genetic element that makes up about 17% of the human genome and poses a threat to genome integrity. N6-methyl-adenosine (m6A) plays an essential role in regulating various biological processes. However, the function of m6A modification in L1 retrotransposons and human germline development remains largely unknown. Here we knocked out the m6A methyltransferase METTL3 or the m6A reader YTHDF2 in human embryonic stem cells (hESCs) and discovered that METTL3 and YTHDF2 are crucial for inducing human spermatogonial stem cells (hSSCs) from hESCs in vitro. The removal of METTL3 or YTHDF2 resulted in increased L1 retrotransposition and reduced the efficiency of SSC differentiation in vitro. Further analysis showed that YTHDF2 recognizes the METTL3-catalyzed m6A modification of L1 retrotransposons and degrades L1 mRNA through autophagy, thereby blocking L1 retrotransposition. Moreover, the study confirmed that m6A modification in human fetal germ cells promotes the degradation of L1 retrotransposon RNA, preventing the insertion of new L1 retrotransposons into the genome. Interestingly, L1 retrotransposon RNA was highly expressed while METTL3 was significantly downregulated in the seminal plasma of azoospermic patients with meiotic arrest compared to males with normal fertility. Additionally, we identified some potentially pathogenic variants in m6A-related genes in azoospermic men with meiotic arrest. In summary, our study suggests that m6A modification serves as a guardian of genome stability during human germline development and provides novel insights into the function and regulatory mechanisms of m6A modification in restricting L1 retrotransposition.


Asunto(s)
Azoospermia , Retroelementos , Masculino , Animales , Humanos , Retroelementos/genética , ARN , Azoospermia/genética , Diferenciación Celular/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Mensajero/genética , Mamíferos/metabolismo
11.
Cell Mol Life Sci ; 81(1): 49, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252317

RESUMEN

Intervertebral disc degeneration (IVDD) is one of the most prevalent spinal degenerative disorders and imposes places heavy medical and economic burdens on individuals and society. Mechanical overloading applied to the intervertebral disc (IVD) has been widely recognized as an important cause of IVDD. Mechanical overloading-induced chondrocyte ferroptosis was reported, but the potential association between ferroptosis and mechanical overloading remains to be illustrated in nucleus pulposus (NP) cells. In this study, we discovered that excessive mechanical loading induced ferroptosis and endoplasmic reticulum (ER) stress, which were detected by mitochondria and associated markers, by increasing the intracellular free Ca2+ level through the Piezo1 ion channel localized on the plasma membrane and ER membrane in NP cells. Besides, we proposed that intracellular free Ca2+ level elevation and the activation of ER stress are positive feedback processes that promote each other, consistent with the results that the level of ER stress in coccygeal discs of aged Piezo1-CKO mice were significantly lower than that of aged WT mice. Then, we confirmed that selenium supplementation decreased intracellular free Ca2+ level by mitigating ER stress through upregulating Selenoprotein K (SelK) expression. Besides, ferroptosis caused by the impaired production and function of Glutathione peroxidase 4 (GPX4) due to mechanical overloading-induced calcium overload could be improved by selenium supplementation through Se-GPX4 axis and Se-SelK axis in vivo and in vitro, eventually presenting the stabilization of the extracellular matrix (ECM). Our findings reveal the important role of ferroptosis in mechanical overloading-induced IVDD, and selenium supplementation promotes significance to attenuate ferroptosis and thus alleviates IVDD, which might provide insights into potential therapeutic interventions for IVDD.


Asunto(s)
Ferroptosis , Degeneración del Disco Intervertebral , Núcleo Pulposo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Selenio , Selenoproteínas , Animales , Humanos , Ratones , Membrana Celular , Canales Iónicos , Selenoproteínas/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo
12.
Nucleic Acids Res ; 51(D1): D280-D290, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36318264

RESUMEN

Super-enhancers (SEs) are cell-specific DNA cis-regulatory elements that can supervise the transcriptional regulation processes of downstream genes. SEdb 2.0 (http://www.licpathway.net/sedb) aims to provide a comprehensive SE resource and annotate their potential roles in gene transcriptions. Compared with SEdb 1.0, we have made the following improvements: (i) Newly added the mouse SEs and expanded the scale of human SEs. SEdb 2.0 contained 1 167 518 SEs from 1739 human H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) samples and 550 226 SEs from 931 mouse H3K27ac ChIP-seq samples, which was five times that of SEdb 1.0. (ii) Newly added transcription factor binding sites (TFBSs) in SEs identified by TF motifs and TF ChIP-seq data. (iii) Added comprehensive (epi)genetic annotations of SEs, including chromatin accessibility regions, methylation sites, chromatin interaction regions and topologically associating domains (TADs). (iv) Newly embedded and updated search and analysis tools, including 'Search SE by TF-based', 'Differential-Overlapping-SE analysis' and 'SE-based TF-Gene analysis'. (v) Newly provided quality control (QC) metrics for ChIP-seq processing. In summary, SEdb 2.0 is a comprehensive update of SEdb 1.0, which curates more SEs and annotation information than SEdb 1.0. SEdb 2.0 provides a friendly platform for researchers to more comprehensively clarify the important role of SEs in the biological process.


Asunto(s)
Bases de Datos Genéticas , Elementos de Facilitación Genéticos , Animales , Humanos , Ratones , Cromatina/genética , Regulación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
BMC Biol ; 22(1): 70, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519936

RESUMEN

BACKGROUND: Eriophyoid mites (Eriophyoidea) are among the largest groups in the Acariformes; they are strictly phytophagous. The higher-level phylogeny of eriophyoid mites, however, remains unresolved due to the limited number of available morphological characters-some of them are homoplastic. Nevertheless, the eriophyoid mites sequenced to date showed highly variable mitochondrial (mt) gene orders, which could potentially be useful for resolving the higher-level phylogenetic relationships. RESULTS: Here, we sequenced and compared the complete mt genomes of 153 eriophyoid mite species, which showed 54 patterns of rearranged mt gene orders relative to that of the hypothetical ancestor of arthropods. The shared derived mt gene clusters support the monophyly of eriophyoid mites (Eriophyoidea) as a whole and the monophylies of six clades within Eriophyoidea. These monophyletic groups and their relationships were largely supported in the phylogenetic trees inferred from mt genome sequences as well. Our molecular dating results showed that Eriophyoidea originated in the Triassic and diversified in the Cretaceous, coinciding with the diversification of angiosperms. CONCLUSIONS: This study reveals multiple molecular synapomorphies (i.e. shared derived mt gene clusters) at different levels (i.e. family, subfamily or tribe level) from the complete mt genomes of 153 eriophyoid mite species. We demonstrated the use of derived mt gene clusters in unveiling the higher-level phylogeny of eriophyoid mites, and underlines the origin of these mites and their co-diversification with angiosperms.


Asunto(s)
Genoma Mitocondrial , Magnoliopsida , Ácaros , Animales , Filogenia , Ácaros/genética , Genes Mitocondriales , Familia de Multigenes , Magnoliopsida/genética
14.
Am J Respir Cell Mol Biol ; 70(5): 351-363, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38271683

RESUMEN

N6-methyladenosine (m6A) plays a role in various diseases, but it has rarely been reported in acute lung injury (ALI). The FTO (fat mass and obesity-associated) protein can regulate mRNA metabolism by removing m6A residues. The aim of this study was to examine the role and mechanism of the m6A demethylase FTO in LPS-induced ALI. Lung epithelial FTO-knockout mice and FTO-knockdown/overexpression human alveolar epithelial (A549) cell lines were constructed to evaluate the effects of FTO on ALI. Bioinformatics analysis and a series of in vivo and in vitro assays were used to examine the mechanism of FTO regulation. Rescue assays were conducted to examine whether the impact of FTO on ALI depended on the TXNIP/NLRP3 pathway. In LPS-induced ALI, RNA m6A modification amounts were upregulated, and FTO expression was downregulated. In vivo, lung epithelial FTO knockout alleviated alveolar structure disorder, tissue edema, and pulmonary inflammation and improved the survival of ALI mice. In vitro, FTO knockdown reduced A549 cell damage and death induced by LPS, whereas FTO overexpression exacerbated cell damage and death. Mechanistically, bioinformatics analysis revealed that TXNIP was a downstream target of FTO. FTO deficiency mitigated pyroptosis in LPS-induced ALI via the TXNIP/NLRP3 pathway. Rescue assays confirmed that the impact of FTO on the TXNIP/NLRP3 pathway was significantly reversed by the TXNIP inhibitor SRI-37330. Deficiency of FTO alleviates LPS-induced ALI via TXNIP/NLRP3 pathway-mediated alveolar epithelial cell pyroptosis, which might be a novel therapeutic strategy for combating ALI.


Asunto(s)
Lesión Pulmonar Aguda , Adenosina/análogos & derivados , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Células Epiteliales Alveolares , Proteínas Portadoras , Lipopolisacáridos , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/genética , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Humanos , Lipopolisacáridos/farmacología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/patología , Piroptosis/efectos de los fármacos , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Ratones , Células A549 , Ratones Endogámicos C57BL , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Masculino , Transducción de Señal
15.
J Biol Chem ; 299(11): 105253, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37716704

RESUMEN

The kinesin-14 motor proteins play important roles in tumor development and drug resistance and have been reported as potential biomarkers or therapeutic targets for tumor treatment. However, kinesin family member C2 (KIFC2), one of the kinesin-14 motor family members, remains largely unknown in prostate cancer (PCa) progression. Here, we used the GEO and The Cancer Genome Atlas datasets, Western blotting, and immunohistochemistry analyses to detect KIFC2 expression in PCa tissues. Additionally, a series of in vivo and in vitro experiments were utilized to demonstrate the roles of KIFC2 in PCa cells. We found that KIFC2 was highly expressed and positively correlated with the clinicopathological characteristics in PCa. Functional experiments indicated that KIFC2 could promote PCa progression. Furthermore, we performed an analysis of the KEGG and GSEA databases, subcellular fractionation, and immunofluorescence to investigate the potential mechanisms of KIFC2 in PCa. We confirmed that KIFC2 could regulate the NF-κB pathway via mediating NF-κB p65 protein expression and nuclear translocation thereby promoting PCa progression and chemotherapeutic resistance. Together, our results suggest that KIFC2 is overexpressed in PCa. By regulating the NF-κB pathway, KIFC2 may play a crucial role in PCa.


Asunto(s)
Cinesinas , Neoplasias de la Próstata , Factor de Transcripción ReIA , Humanos , Masculino , Línea Celular Tumoral , Cinesinas/genética , Cinesinas/metabolismo , FN-kappa B/metabolismo , Neoplasias de la Próstata/metabolismo , Factor de Transcripción ReIA/metabolismo
16.
Mol Cancer ; 23(1): 52, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461272

RESUMEN

BACKGROUND: Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is one of the causes of tumor immune tolerance and failure of cancer immunotherapy. Here, we found that bladder cancer (BCa)-derived exosomal circRNA_0013936 could enhance the immunosuppressive activity of PMN-MDSCs by regulating the expression of fatty acid transporter protein 2 (FATP2) and receptor-interacting protein kinase 3 (RIPK3). However, the underlying mechanism remains largely unknown. METHODS: BCa-derived exosomes was isolated and used for a series of experiments. RNA sequencing was used to identify the differentially expressed circRNAs. Western blotting, immunohistochemistry, immunofluorescence, qRT-PCR, ELISA and Flow cytometry were performed to reveal the potential mechanism of circRNA_0013936 promoting the immunosuppressive activity of PMN-MDSC. RESULTS: CircRNA_0013936 enriched in BCa-derived exosomes could promote the expression of FATP2 and inhibit the expression of RIPK3 in PMN-MDSCs. Mechanistically, circRNA_0013936 promoted the expression of FATP2 and inhibited the expression of RIPK3 expression via sponging miR-320a and miR-301b, which directly targeted JAK2 and CREB1 respectively. Ultimately, circRNA_0013936 significantly inhibited the functions of CD8+ T cells by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway, and down-regulating RIPK3 through the circRNA_0013936/miR-301b/CREB1 pathway in PMN-MDSCs. CONCLUSIONS: BCa-derived exosomal circRNA_0013936 promotes suppressive immunity by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway and down-regulating RIPK3 through the circRNA_0013936/miR-301b-3p/CREB1 pathway in PMN-MDSCs. These findings help to find new targets for clinical treatment of human bladder cancer.


Asunto(s)
MicroARNs , Células Supresoras de Origen Mieloide , ARN Circular , Neoplasias de la Vejiga Urinaria , Humanos , Linfocitos T CD8-positivos/metabolismo , Ácidos Grasos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Proteínas Quinasas/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Exosomas/genética , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
17.
Int J Cancer ; 155(4): 742-755, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38647131

RESUMEN

Alteration of cell metabolism is one of the essential characteristics of tumor growth. Cancer stem cells (CSCs) are the initiating cells of tumorigenesis, proliferation, recurrence, and other processes, and play an important role in therapeutic resistance and metastasis. Thus, identification of the metabolic profiles in prostate cancer stem cells (PCSCs) is critical to understanding prostate cancer progression. Using untargeted metabolomics and lipidomics methods, we show distinct metabolic differences between prostate cancer cells and PCSCs. Urea cycle is the most significantly altered metabolic pathway in PCSCs, the key metabolites arginine and proline are evidently elevated. Proline promotes cancer stem-like characteristics via the JAK2/STAT3 signaling pathway. Meanwhile, the enzyme pyrroline-5-carboxylate reductase 1 (PYCR1), which catalyzes the conversion of pyrroline-5-carboxylic acid to proline, is highly expressed in PCSCs, and the inhibition of PYCR1 suppresses the stem-like characteristics of prostate cancer cells and tumor growth. In addition, carnitine and free fatty acid levels are significantly increased, indicating reprogramming of fatty acid metabolism in PCSCs. Reduced sphingolipid levels and increased triglyceride levels are also observed. Collectively, our data illustrate the comprehensive landscape of the metabolic reprogramming of PCSCs and provide potential therapeutic strategies for prostate cancer.


Asunto(s)
Células Madre Neoplásicas , Neoplasias de la Próstata , Pirrolina Carboxilato Reductasas , Urea , delta-1-Pirrolina-5-Carboxilato Reductasa , Masculino , Humanos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Pirrolina Carboxilato Reductasas/metabolismo , Urea/metabolismo , Animales , Ratones , Línea Celular Tumoral , Transducción de Señal , Janus Quinasa 2/metabolismo , Metabolómica/métodos , Prolina/metabolismo , Factor de Transcripción STAT3/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Proliferación Celular , Lipidómica/métodos
18.
Anal Chem ; 96(26): 10620-10629, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38888085

RESUMEN

Flexible surface-enhanced Raman scattering (SERS) substrates adaptable to strains enable effective sampling from irregular surfaces, but the preparation of highly stable and sensitive flexible SERS substrates is still challenging. This paper reports a method to fabricate a high-performance strain-adaptable SERS substrate by self-assembly of Au nanoparticles (AuNPs) on polydimethylsiloxane (PDMS) nanowrinkles. Nanowrinkles are created on prestrained PDMS slabs by plasma-induced oxidation followed by the release of the prestrain, and self-assembled AuNPs are transferred onto the nanowrinkles to construct the high-performance SERS substrate. The results show that the nanowrinkled structure can improve the surface roughness and enhance the SERS signals by ∼4 times compared to that of the SERS substrate prepared on flat PDMS substrates. The proposed SERS substrate also shows good adaptability to dynamic bending up to ∼|0.4| 1/cm with excellent testing reproducibility. Phenolic pollutants, including aniline and catechol, were quantitatively tested by the SERS substrate. The self-assembled flexible SERS substrate proposed here provides a powerful tool for chemical analysis in the fields of environmental monitoring and food safety inspection.

19.
Anal Chem ; 96(5): 2206-2216, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38253323

RESUMEN

Gut microbiota, widely populating the mammalian gastrointestinal tract, plays an important role in regulating diverse pathophysiological processes by producing bioactive molecules. Extensive detection of these molecules contributes to probing microbiota function but is limited by insufficient identification of existing analytical methods. In this study, a systematic strategy was proposed to detect and annotate gut microbiota-related metabolites on a large scale. A pentafluorophenyl (PFP) column-based liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method was first developed for high-coverage analysis of gut microbiota-related metabolites, which was verified to be stable and robust with a wide linearity range, high sensitivity, satisfactory recovery, and repeatability. Then, an informative database integrating 968 knowledge-based microbiota-related metabolites and 282 sample-sourced ones defined by germ-free (GF)/antibiotic-treated (ABX) models was constructed and subsequently used for targeted extraction and annotation in biological samples. Using pooled feces, plasma, and urine of mice for demonstration application, 672 microbiota-related metabolites were annotated, including 21% neglected by routine nontargeted peak detection. This strategy serves as a useful tool for the comprehensive capture of the intestinal flora metabolome, contributing to our deeper understanding of microbe-host interactions.


Asunto(s)
Microbioma Gastrointestinal , Metabolómica , Ratones , Animales , Metabolómica/métodos , Metaboloma , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Mamíferos
20.
Biochem Biophys Res Commun ; 704: 149661, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38417343

RESUMEN

To date only four recombinant growth factors, including Filgrastim (rhG-CSF), have been approved by FDA as radiomitigators to ameliorate hematopoietic acute radiation syndrome (H-ARS). These approved agents are not stable under room-temperature, needing to be stored at 2-8 °C, and would not be feasible in a mass casualty scenario where rapid and cost-effective intervention is crucial. Delta-tocotrienol (δ-T3H), the most potent G-CSF-inducing agent among vitamin E isoforms, exhibited efficiency and selectivity on G-CSF production in comparison with TLR and STING agonists in mice. Five-dose δ-T3H was utilized as the optimal therapeutic regimen due to long-term G-CSF production and the best peripheral blood (PB) recovery of irradiated mice. Comparable with rhG-CSF, sequential administration of δ-T3H post-irradiation improved hematologic recovery and accelerated the regeneration of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) in the bone marrow (BM) and spleen of 6.5Gy irradiated mice; and consistently enhanced repopulation of BM-HSCs. In 4.0Gy irradiated nonhuman primates, δ-T3H exhibited comparable efficacy as rhG-CSF to promote PB recovery and colony-formation of BM-HPCs. Altogether, we demonstrated that sequential administration of delta-tocotrienol ameliorates radiation-induced myelosuppression in mice and non-human primates through inducing G-CSF production, indicated δ-T3H as a promising radiomitigator for the management of H-ARS, particularly in a mass casualty scenario.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Vitamina E , Animales , Ratones , Médula Ósea/patología , Médula Ósea/efectos de la radiación , Factor Estimulante de Colonias de Granulocitos/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos/metabolismo , Primates , Proteínas Recombinantes/farmacología , Vitamina E/análogos & derivados , Vitamina E/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA