Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107379, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762184

RESUMEN

Bacterial RecJ exhibits 5'→3' exonuclease activity that is specific to ssDNA; however, archaeal RecJs show 5' or 3' exonuclease activity. The hyperthermophilic archaea Methanocaldococcus jannaschii encodes the 5'-exonuclease MjRecJ1 and the 3'-exonuclease MjRecJ2. In addition to nuclease activity, archaeal RecJ interacts with GINS, a structural subcomplex of the replicative DNA helicase complex. However, MjRecJ1 and MjRecJ2 do not interact with MjGINS. Here, we report the structural basis for the inability of the MjRecJ2 homologous dimer to interact with MjGINS and its efficient 3' hydrolysis polarity for short dinucleotides. Based on the crystal structure of MjRecJ2, we propose that the interaction surface of the MjRecJ2 dimer overlaps the potential interaction surface for MjGINS and blocks the formation of the MjRecJ2-GINS complex. Exposing the interaction surface of the MjRecJ2 dimer restores its interaction with MjGINS. The cocrystal structures of MjRecJ2 with substrate dideoxynucleotides or product dCMP/CMP show that MjRecJ2 has a short substrate binding patch, which is perpendicular to the longer patch of bacterial RecJ. Our results provide new insights into the function and diversification of archaeal RecJ/Cdc45 proteins.


Asunto(s)
Proteínas Arqueales , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Cristalografía por Rayos X , Methanocaldococcus/enzimología , Methanocaldococcus/metabolismo , Unión Proteica , Multimerización de Proteína , ADN Helicasas/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , Modelos Moleculares , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética
2.
Arch Microbiol ; 206(1): 51, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175208

RESUMEN

Microbial biodegradation serves as an effective approach to treat oil pollution. However, the application of such methods for the degrading long-chain alkanes still encounters significant challenges. Comparative proteomics has extensively studied the intracellular proteins of bacteria that degrade short- and medium-chain alkanes, but the role and mechanism of extracellular proteins in many microorganism remain unclear. To enhance our understanding of the roles of extracellular proteins in the adaptation to long-chain alkanes, a label-free LC-MS/MS strategy was applied for the relative quantification of extracellular proteins of Pseudomonas aeruginosa SJTD-1-M (ProteomeXchange identifier PXD014638). 444 alkane-sentitive proteins were acquired and their cell localization analysis was performed using the Pseudomonas Genome Database. Among them, 111 proteins were found to be located in extracellular or Outer Membrane Vesicles (OMVs). The alkane-induced abundance of 11 extracellular or OMV target proteins was confirmed by parallel reaction monitoring (PRM). Furthermore, we observed that the expression levels of three proteins (Pra, PA2815, and FliC) were associated with the carbon chain length of the added alkane in the culture medium. The roles of these proteins in cell mobility, alkane emulsification, assimilation, and degradation were further discussed. OMVs were found to contain a number of enzymes involved in alkane metabolism, fatty acid beta-oxidation, and the TCA cycle, suggesting their potential as sites for facilitated alkane degradation. In this sense, this exoproteome analysis contributes to a better understanding of the role of extracellular proteins in the hydrocarbon treatment process.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Alcanos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Pseudomonas
3.
Protein Expr Purif ; 223: 106557, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39009198

RESUMEN

Nucleases play pivotal roles in DNA repair and apoptosis. Moreover, they have various applications in biotechnology and industry. Among nucleases, TatD has been characterized as an exonuclease with various biological functions in different organisms. Here, we biochemically characterized the potential TatD nuclease from Thermus thermophilus. The tatD gene from T. thermophilus was cloned, then the recombinant TatD nuclease was expressed and purified. Our results revealed that the TthTatD nuclease could degrade both single-stranded and double-stranded DNA, and its activity is dependent on the divalent metal ions Mg2+ and Mn2+. Remarkably, the activity of TthTatD nuclease is highest at 37 °C and decreases with increasing temperature. TthTatD is not a thermostable enzyme, even though it is from a thermophilic bacterium. Based on the sequence similarity and molecular docking of the DNA substrate into the modeled TthTatD structure, several key conserved residues were identified and their roles were confirmed by analyzing the enzymatic activities of the site-directed mutants. The residues E86 and H149 play key roles in binding metal ions, residues R124/K126 and K211/R212 had a critical role in binding DNA substrate. Our results confirm the enzymatic properties of TthTatD and provide a primary basis for its possible application in biotechnology.


Asunto(s)
Proteínas Bacterianas , Thermus thermophilus , Thermus thermophilus/enzimología , Thermus thermophilus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Simulación del Acoplamiento Molecular , Clonación Molecular , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo
4.
World J Microbiol Biotechnol ; 39(4): 90, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36752840

RESUMEN

Endonuclease V (EndoV), which is widespread in bacteria, eukarya and Archaea, can cleave hypoxanthine (Hx)-containing DNA or RNA strand, and play an essential role in Hx repair. However, our understanding on archaeal EndoV's function remains incomplete. The model archaeon Sulfolobus islandicus REY15A encodes a putative EndoV protein (Sis-EndoV). Herein, we probed the biochemical characteristics of Sis-EndoV and dissected the roles of its seven conserved residues. Our biochemical data demonstrate that Sis-EndoV displays maximum cleavage efficiency at above 60 °C and at pH 7.0-9.0, and the enzyme activity is dependent on a divalent metal ion, among which Mg2+ is optimal. Importantly, we first measured the activation energy for cleaving Hx-containing ssDNA by Sis-EndoV to be 9.6 ± 0.8 kcal/mol by kinetic analyses, suggesting that chemical catalysis might be a rate-limiting step for catalysis. Mutational analyses show that residue D38 in Sis-EndoV is essential for catalysis, but has no role in DNA binding. Furthermore, we first revealed that residues Y41 and D189 in Sis-EndoV are involved in both DNA cleavage and DNA binding, but residues F77, H103, K156 and F161 are only responsible for DNA binding.


Asunto(s)
Desoxirribonucleasa (Dímero de Pirimidina) , Sulfolobus , Desoxirribonucleasa (Dímero de Pirimidina)/química , Desoxirribonucleasa (Dímero de Pirimidina)/genética , Desoxirribonucleasa (Dímero de Pirimidina)/metabolismo , Sulfolobus/genética , Sulfolobus/metabolismo , Reparación del ADN , Daño del ADN , ADN
5.
Pak J Med Sci ; 39(3): 843-847, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250582

RESUMEN

Objective: To investigate the relationship between isocitrate dehydrogenase (IDH) 1/2 mutation, telomerase reverse transcriptase (TERT) gene promoter mutation and the prognosis of human glioma patients. Methods: One hundred fifteen patients with human glioma, treated surgically in The First Affiliated Hospital of Hebei North University from January 2019 to January 2020, were included. All patients were followed up until January 31, 2022. The mutations of IDH1/2 and TERT promoter were analyzed, and risk factors affecting survival of the patients with glioma were assessed. Results: IDH1 gene mutation occurred in 82 cases, IDH2 gene mutation occurred in five cases and TERT promoter mutation occurred in 54 cases. Univariate analysis showed that tumor WHO grade, resection range, preoperative Karnofsky performance status score, postoperative radiotherapy and chemotherapy, IDH1/2 gene and TERT promoter mutation influenced postoperative survival of patients with glioma (P<0.05). Kaplan-Meier survival curve showed that IDH1/2 gene and TERT promoter mutation were significantly different from those of wild-type patients (P<0.05). Conclusion: IDH1/2 gene and TERT promoter mutations are more frequent in patients with human glioma. These related factors can be used as molecular markers to aid in the prognosis of patients with glioma.

6.
Mol Cell Biochem ; 477(5): 1629-1643, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35229243

RESUMEN

Precise differentiation of glucokinase (GCK) monogenic diabetes from gestational diabetes mellitus (GDM) is critical for accurate management of the pregnancy outcome. We screened GCK-MODY complicating pregnancies in Chinese GDM patients, explored the pathogenesis of novel GCK mutations, and evaluated the patients' pregnancy outcome and management. The GCK gene from 411 GDM patients was screened with PCR-direct sequencing and multiplex ligation-dependent probe amplification (MLPA) and 15 GCK mutations were identified. We also retrospectively analyzed a total of 65 pregnancies from 21 GCK-MODY families, wherein 41 were from 15 maternal families and 24 were from six paternal families. Bioinformatic analysis and biochemical functional study were conducted to identify novel GCK mutations. In total, we identified 21 GCK mutations: 15 from the 411 GDM patients and six from 24 fathers. Of th Asp78Asn (GAC → AAC), Met87Arg (ATG → AGG), Leu451Val (CTT → GTT), Leu451Pro (CTG → CCG) and 1019 + 20G > A e mutations, five, i.e., were novel and deleterious, with markedly decreased enzyme activity and thermal stability. The unaffected offspring of GCK mutation-affected mothers were heavier than affected offspring (p < 0.001). Of 21 insulin-treated affected mothers, 10 had maternal hypoglycemia (47.6%) and seven had perinatal complications (33.3%), and the affected offspring of the insulin-treated affected mothers had significantly lower birth weights than that of the 20 diet-control affected mothers (p = 0.031). In this study, the prevalence of GCK-MODY complicating pregnancy in Chinese GDM patients was 3.6% (15/411). The defective GCK may contribute to the hyperglycemia in GCK-MODY. Insulin therapy is not beneficial for GCK-MODY complicating pregnancy and therefore should not be recommended.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Embarazo en Diabéticas , China , Diabetes Mellitus Tipo 2/genética , Diabetes Gestacional/genética , Femenino , Glucoquinasa/genética , Humanos , Insulina/genética , Mutación , Embarazo , Resultado del Embarazo , Embarazo en Diabéticas/epidemiología , Embarazo en Diabéticas/genética , Embarazo en Diabéticas/terapia , Estudios Retrospectivos
7.
Acta Biochim Biophys Sin (Shanghai) ; 54(5): 637-646, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35920197

RESUMEN

Apurinic/apyrimidic (AP) sites are severe DNA damages and strongly block DNA extension by major DNA polymerases. Y-family DNA polymerases possess a strong ability to bypass AP sites and continue the DNA synthesis reaction, which is called translesion synthesis (TLS) activity. To investigate the effect of the molecular structure of the AP site on the TLS efficiency of Dbh, a Y-family DNA polymerase from Sulfolobus acidocaldarius, a series of different AP site analogues (various spacers) are used to characterize the bypass efficiency. We find that not only the molecular structure and atomic composition but also the number and position of AP site analogues determine the TLS efficiency of Dbh. Increasing the spacer length decreases TLS activity. The TLS efficiency also decreases when more than one spacer exists on the DNA template. The position of the AP site analogues is also an important factor for TLS. When the spacer is opposite to the first incorporated dNTPs, the TLS efficiency is the lowest, suggesting that AP sites are largely harmful for the formation of hydrogen bonds. These results deepen our understanding of the TLS activity of Y-family DNA polymerases and provide a biochemical basis for elucidating the TLS mechanism in Sulfolobus acidocaldarius cells.


Asunto(s)
Sulfolobus acidocaldarius , ADN/química , Daño del ADN , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/metabolismo
8.
Int J Mol Sci ; 23(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269871

RESUMEN

The spontaneous depurination of genomic DNA occurs frequently and generates apurinic/pyrimidinic (AP) site damage that is mutagenic or lethal to cells. Error-prone DNA polymerases are specifically responsible for the translesion synthesis (TLS) of specific DNA damage, such as AP site damage, generally with relatively low fidelity. The Y-family DNA polymerases are the main error-prone DNA polymerases, and they employ three mechanisms to perform TLS, including template-skipping, dNTP-stabilized misalignment, and misincorporation-misalignment. The bypass mechanism of the dinB homolog (Dbh), an archaeal Y-family DNA polymerase from Sulfolobus acidocaldarius, is unclear and needs to be confirmed. In this study, we show that the Dbh primarily uses template skipping accompanied by dNTP-stabilized misalignment to bypass AP site analogs, and the incorporation of the first nucleotide across the AP site is the most difficult. Furthermore, based on the reported crystal structures, we confirmed that three conserved residues (Y249, R333, and I295) in the little finger (LF) domain and residue K78 in the palm subdomain of the catalytic core domain are very important for TLS. These results deepen our understanding of how archaeal Y-family DNA polymerases deal with intracellular AP site damage and provide a biochemical basis for elucidating the intracellular function of these polymerases.


Asunto(s)
ADN Polimerasa beta , Sulfolobus acidocaldarius , Daño del ADN , ADN Polimerasa beta/metabolismo , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Sulfolobus acidocaldarius/genética
9.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34281213

RESUMEN

3'-Phosphoadenosine 5'-monophosphate (pAp) is a byproduct of sulfate assimilation and coenzyme A metabolism. pAp can inhibit the activity of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) reductase and sulfotransferase and regulate gene expression under stress conditions by inhibiting XRN family of exoribonucleases. In metazoans, plants, yeast, and some bacteria, pAp can be converted into 5'-adenosine monophosphate (AMP) and inorganic phosphate by CysQ. In some bacteria and archaea, nanoRNases (Nrn) from the Asp-His-His (DHH) phosphoesterase superfamily are responsible for recycling pAp. In addition, histidinol phosphatase from the amidohydrolase superfamily can hydrolyze pAp. The bacterial enzymes for pAp turnover and their catalysis mechanism have been well studied, but these processes remain unclear in archaea. Pyrococcus yayanosii, an obligate piezophilic hyperthermophilic archaea, encodes a DHH family pApase homolog (PyapApase). Biochemical characterization showed that PyapApase can efficiently convert pAp into AMP and phosphate. The resolved crystal structure of apo-PyapApase is similar to that of bacterial nanoRNaseA (NrnA), but they are slightly different in the α-helix linker connecting the DHH and Asp-His-His associated 1 (DHHA1) domains. The longer α-helix of PyapApase leads to a narrower substrate-binding cleft between the DHH and DHHA1 domains than what is observed in bacterial NrnA. Through mutation analysis of conserved amino acid residues involved in coordinating metal ion and binding substrate pAp, it was confirmed that PyapApase has an ion coordination pattern similar to that of NrnA and slightly different substrate binding patterns. The results provide combined structural and functional insight into the enzymatic turnover of pAp, implying the potential function of sulfate assimilation in hyperthermophilic cells.


Asunto(s)
Pyrococcus/enzimología , Familia de Multigenes , Pyrococcus/genética , Especificidad por Sustrato , Sulfatos/metabolismo
10.
Nucleic Acids Res ; 46(17): 9027-9043, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30102394

RESUMEN

Nucleases play important roles in nucleic acid metabolism. Some archaea encode a conserved protein known as Hef-associated nuclease (HAN). In addition to its C-terminal DHH nuclease domain, HAN also has three N-terminal domains, including a DnaJ-Zinc-finger, ribosomal protein S1-like, and oligonucleotide/oligosaccharide-binding fold. To further understand HAN's function, we biochemically characterized the enzymatic properties of HAN from Pyrococcus furiosus (PfuHAN), solved the crystal structure of its DHH nuclease domain, and examined its role in DNA repair. Our results show that PfuHAN is a Mn2+-dependent 3'-exonuclease specific to ssDNA and ssRNA with no activity on blunt and 3'-recessive double-stranded DNA. Domain truncation confirmed that the intrinsic nuclease activity is dependent on the C-terminal DHH nuclease domain. The crystal structure of the DHH nuclease domain adopts a trimeric topology, with each subunit adopting a classical DHH phosphoesterase fold. Yeast two hybrid assay confirmed that the DHH domain interacts with the IDR peptide of Hef nuclease. Knockout of the han gene or its C-terminal DHH nuclease domain in Haloferax volcanii resulted in increased sensitivity to the DNA damage reagent MMS. Our results imply that HAN nuclease might be involved in repairing stalled replication forks in archaea.


Asunto(s)
Proteínas Arqueales/química , Reparación del ADN , ADN de Cadena Simple/química , Exonucleasas/química , Pyrococcus furiosus/enzimología , ARN de Archaea/química , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Cationes Bivalentes , Clonación Molecular , Cristalografía por Rayos X , Roturas del ADN de Cadena Simple , Daño del ADN , Replicación del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exonucleasas/genética , Exonucleasas/metabolismo , Expresión Génica , Haloferax volcanii/química , Haloferax volcanii/efectos de los fármacos , Haloferax volcanii/enzimología , Haloferax volcanii/genética , Cinética , Manganeso/química , Manganeso/metabolismo , Metilmetanosulfonato/farmacología , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Pyrococcus furiosus/química , Pyrococcus furiosus/efectos de los fármacos , Pyrococcus furiosus/genética , ARN de Archaea/genética , ARN de Archaea/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
11.
Biochem Biophys Res Commun ; 510(4): 573-579, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30739783

RESUMEN

A novel DNA polymerase found in the deep-sea vent phage NrS-1, was confirmed to have both DNA polymerase and primase activities. In this polymerase, the N-terminal residues 1-300 (referred to as N300) are the core region required for polymerizing DNA and catalyzing de novo DNA synthesis. Here, the crystal structure of N300 was solved at a resolution of 1.80 Å. The overall structure consists of a prim/pol domain and a helix bundle domain, which are separated by a 14-residue-long flexible tether (residues 177-190). Both the prim/pol domain of N300 and other primase-polymerases (prim-pol) encompass an analogous fold with conserved catalytic residues. Mutagenesis and enzymatic activity assays show that the acidic active-site residue E139 is required for both polymerase and primase activities. Functional assays confirm the essentiality of the helix bundle domain for primase activity. Furthermore, we identified a mutant (N300-Y261A) of the helix bundle domain, which probably plays an indispensable role in the primer initiation and recognition of template DNA.


Asunto(s)
Bacteriófagos/química , ADN Primasa/química , ADN Polimerasa Dirigida por ADN/química , Proteínas Virales/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Alineación de Secuencia
12.
Nucleic Acids Res ; 45(21): 12551-12564, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30053256

RESUMEN

RecJ nucleases specifically degrade single-stranded (ss) DNA in the 5' to 3' direction. Archaeal RecJ is different from bacterial RecJ in sequence, domain organization, and substrate specificity. The RecJ from archaea Pyrococcus furiosus (PfuRecJ) also hydrolyzes RNA strands in the 3' to 5' direction. Like eukaryotic Cdc45 protein, archaeal RecJ forms a complex with MCM helicase and GINS. Here, we report the crystal structures of PfuRecJ and the complex of PfuRecJ and two CMPs. PfuRecJ bind one or two divalent metal ions in its crystal structure. A channel consisting of several positively charged residues is identified in the complex structure, and might be responsible for binding substrate ssDNA and/or releasing single nucleotide products. The deletion of the complex interaction domain (CID) increases the values of kcat/Km of 5' exonuclease activity on ssDNA and 3' exonuclease activity on ssRNA by 5- and 4-fold, respectively, indicating that the CID functions as a regulator of enzymatic activity. The DHH domain of PfuRecJ interacts with the C-terminal beta-sheet domain of the GINS51 subunit in the tetrameric GINS complex. The relationship of archaeal and bacterial RecJs, as well as eukaryotic Cdc45, is discussed based on biochemical and structural results.


Asunto(s)
Proteínas Bacterianas/química , Exodesoxirribonucleasas/química , Pyrococcus furiosus/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/fisiología , Cationes , Proteínas de Ciclo Celular , Secuencia Conservada , Cristalografía por Rayos X , Reparación del ADN , Replicación del ADN , ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Exodesoxirribonucleasas/fisiología , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Fosfodiesterasa I/metabolismo , Unión Proteica , Conformación Proteica , Dominios Proteicos , Alineación de Secuencia , Homología de Secuencia de Aminoácido
13.
Int J Mol Sci ; 20(1)2018 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-30586940

RESUMEN

Endonuclease IV (EndoIV) is a DNA damage-specific endonuclease that mainly hydrolyzes the phosphodiester bond located at 5' of an apurinic/apyrimidinic (AP) site in DNA. EndoIV also possesses 3'-exonuclease activity for removing 3'-blocking groups and normal nucleotides. Here, we report that Thermococcus eurythermalis EndoIV (TeuendoIV) shows AP endonuclease and 3'-exonuclease activities. The effect of AP site structures, positions and clustered patterns on the activity was characterized. The AP endonuclease activity of TeuendoIV can incise DNA 5' to various AP site analogues, including the alkane chain Spacer and polyethylene glycol Spacer. However, the short Spacer C2 strongly inhibits the AP endonuclease activity. The kinetic parameters also support its preference to various AP site analogues. In addition, the efficient cleavage at AP sites requires ≥2 normal nucleotides existing at the 5'-terminus. The 3'-exonuclease activity of TeuendoIV can remove one or more consecutive AP sites at the 3'-terminus. Mutations on the residues for substrate recognition show that binding AP site-containing or complementary strand plays a key role for the hydrolysis of phosphodiester bonds. Our results provide a comprehensive biochemical characterization of the cleavage/removal of AP site analogues and some insight for repairing AP sites in hyperthermophile cells.


Asunto(s)
ADN de Cadena Simple/química , ADN/química , Desoxirribonucleasa IV (Fago T4-Inducido)/metabolismo , Thermococcus/enzimología , Secuencia de Aminoácidos , Sitios de Unión , ADN/metabolismo , División del ADN , Reparación del ADN , ADN de Cadena Simple/metabolismo , Desoxirribonucleasa IV (Fago T4-Inducido)/clasificación , Desoxirribonucleasa IV (Fago T4-Inducido)/genética , Cinética , Filogenia , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Especificidad por Sustrato
14.
Environ Toxicol ; 31(9): 1068-79, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25865073

RESUMEN

The environmental toxicant TCDD may elicit cytotoxic effects by inducing reactive oxygen species (ROS) generation. Autophagy is one of the first lines of defense against oxidative stress damage. Herein, we investigated whether autophagy played a regulatory role in TCDD-induced neurotoxicity. Here, we showed that TCDD exposure caused marked autophagy in SH-SY5Y cells, whose dose range was close to that inducing apoptosis. Electron microscopic and Western blot analyses revealed that TCDD induced autophagy at a starting dose of approximate 100 nM. Interestingly, 100-200 nM TCDD exposure resulted in obviously decreased cell viability and evident apoptotic phenotype. Furthermore, the levels of pro-apoptotic molecules, Bax and cleaved-PARP, increased significantly, whereas Bcl2 declined after exposed to 100 nM TCDD. In addition, the apoptosis was verified using flow cytometrical analysis. These data strongly suggested that TCDD induced both autophagy and apoptosis at a similar dose range in SH-SY5Y cells. Interestingly, pretreatment with ROS scavenger, N-acetyl-cysteine (NAC), could effectively block both TCDD-induced apoptosis and autophagy. More surprisingly, inhibition of autophagy with 3-methyladenine (3MA), remarkably augmented TCDD-induced apoptosis. The findings implicated that the onset of autophagy might serve as a protective mechanism to ameliorate ROS-triggered cytotoxic effects in human SH-SY5Y neuronal cells under TCDD exposure. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1068-1079, 2016.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Dibenzodioxinas Policloradas/toxicidad , Sustancias Protectoras/farmacología , Acetilcisteína/farmacología , Adenina/análogos & derivados , Adenina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo
15.
Nucleic Acids Res ; 41(11): 5817-26, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23605041

RESUMEN

Replicative DNA polymerases require an RNA primer for leading and lagging strand DNA synthesis, and primase is responsible for the de novo synthesis of this RNA primer. However, the archaeal primase from Pyrococcus furiosus (Pfu) frequently incorporates mismatched nucleoside monophosphate, which stops RNA synthesis. Pfu DNA polymerase (PolB) cannot elongate the resulting 3'-mismatched RNA primer because it cannot remove the 3'-mismatched ribonucleotide. This study demonstrates the potential role of a RecJ-like protein from P. furiosus (PfRecJ) in proofreading 3'-mismatched ribonucleotides. PfRecJ hydrolyzes single-stranded RNA and the RNA strand of RNA/DNA hybrids in the 3'-5' direction, and the kinetic parameters (Km and Kcat) of PfRecJ during RNA strand digestion are consistent with a role in proofreading 3'-mismatched RNA primers. Replication protein A, the single-stranded DNA-binding protein, stimulates the removal of 3'-mismatched ribonucleotides of the RNA strand in RNA/DNA hybrids, and Pfu DNA polymerase can extend the 3'-mismatched RNA primer after the 3'-mismatched ribonucleotide is removed by PfRecJ. Finally, we reconstituted the primer-proofreading reaction of a 3'-mismatched ribonucleotide RNA/DNA hybrid using PfRecJ, replication protein A, Proliferating cell nuclear antigen (PCNA) and PolB. Given that PfRecJ is associated with the GINS complex, a central nexus in archaeal DNA replication fork, we speculate that PfRecJ proofreads the RNA primer in vivo.


Asunto(s)
Proteínas Arqueales/metabolismo , Replicación del ADN , Exorribonucleasas/metabolismo , Pyrococcus furiosus/enzimología , ARN/metabolismo , Disparidad de Par Base , ADN/química , ADN/metabolismo , ADN Primasa/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Pyrococcus furiosus/genética , ARN/química
16.
J Appl Toxicol ; 35(7): 851-60, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25382668

RESUMEN

2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous environmental contaminant that could exert significant neurotoxicity in the human nervous system. Nevertheless, the molecular mechanism underlying TCDD-mediated neurotoxicity has not been clarified clearly. Herein, we investigated the potential role of TCDD in facilitating premature senescence in astrocytes and the underlying molecular mechanisms. Using the senescence-associated ß-galactosidase (SA-ß-Gal) assay, we demonstrated that TCDD exposure triggered significant premature senescence of astrocyte cells, which was accompanied by a marked activation of the Wingless and int (WNT)/ß-catenin signaling pathway. In addition, TCDD altered the expression of senescence marker proteins, such as p16, p21 and GFAP, which together have been reported to be upregulated in aging astrocytes, in both dose- and time-dependent manners. Further, TCDD led to cell-cycle arrest, F-actin reorganization and the accumulation of cellular reactive oxygen species (ROS). Moreover, the ROS scavenger N-acetylcysteine (NAC) markedly attenuated TCDD-induced ROS production, cellular oxidative damage and astrocyte senescence. Notably, the application of XAV939, an inhibitor of WNT/ß-catenin signaling pathway, ameliorated the effect of TCDD on cellular ß-catenin level, ROS production, cellular oxidative damage and premature senescence in astrocytes. In summary, our findings indicated that TCDD might induce astrocyte senescence via WNT/ß-catenin and ROS-dependent mechanisms.


Asunto(s)
Astrocitos/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Dioxinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Animales , Western Blotting , Ciclo Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Dioxinas/toxicidad , Técnica del Anticuerpo Fluorescente , Ratas , Ratas Sprague-Dawley
17.
Yi Chuan ; 37(4): 388-395, 2015 Apr.
Artículo en Zh | MEDLINE | ID: mdl-25881705

RESUMEN

With the development of functional genomics, gene-knockout is becoming an important tool to elucidate gene functions in vivo. As a good model strain for archaeal genetics, Haloferax volcanii has received more attention. Although several genetic manipulation systems have been developed for some halophilic archaea, it is time-consuming because of the low percentage of positive clones during the second-recombination selection. These classical gene knockout methods are based on DNA recombination between the genomic homologous sequence and the circular suicide plasmid, which carries a pyrE selection marker and two DNA fragments homologous to the upstream and downstream fragments of the target gene. Many wild-type clones are obtained through a reverse recombination between the plasmid and genome in the classic gene knockout method. Therefore, it is necessary to develop an efficient gene knockout system to increase the positive clone percentage. Here we report an improved gene knockout method using a linear DNA cassette consisting of upstream and downstream homologous fragments, and the pyrE marker. Gene deletions were subsequently detected by colony PCR analysis. We determined the efficiency of our knockout method by deleting the xpb2 gene from the H. volcanii genome, with the percentage of positive clones higher than 50%. Our method provides an efficient gene knockout strategy for halophilic archaea.


Asunto(s)
ADN de Archaea/genética , Técnicas de Inactivación de Genes/métodos , Haloferax volcanii/genética , Recombinación Homóloga , Eliminación de Gen , Plásmidos/genética
18.
Wei Sheng Wu Xue Bao ; 55(8): 1036-41, 2015 Aug 04.
Artículo en Zh | MEDLINE | ID: mdl-26665601

RESUMEN

OBJECTIVE: To characterize uracil-DNA glycosylase from acidophilic and thermophilic Sulfolobus acidocaldarius. METHODS: We cloned udgIV and udgV genes from S. acidocaldarius, expressed the two recombinant UDG proteins in E. coli species BL21 (DE3) Rosetta-pLysS, purified the recombinant UDGs and characterized the removal of dU by UDGs. RESULTS: We successfully expressed two S. acidocaldarius UDGs and found both UDGs having the activity of dU removal. In comparison to UDGV, UDGIV was more efficient in dU removal, with a 750-foldactivity. CONCLUSION: In comparison to UDGV, UDGIV from S. acidocaldarius was a more efficient enzyme responsible for the removal of dU from DNA in vitro.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/aislamiento & purificación , Clonación Molecular , Sulfolobus acidocaldarius/enzimología , Sulfolobus acidocaldarius/genética , Uracil-ADN Glicosidasa/química , Uracil-ADN Glicosidasa/aislamiento & purificación , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Estabilidad de Enzimas , Cinética , Sulfolobus acidocaldarius/química , Uracilo/metabolismo , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo
19.
Heliyon ; 10(10): e30317, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803966

RESUMEN

As a vital factor in technological innovation, patentee plays a significant role in the process of scientific and technological innovation, researching patentee has attracted the attention of experts and scholars. Previously, scholars have mainly quantified patent indicators or constructed homogeneous information networks to analyze patentees, but these methods cannot objectively measure the impact of patentees. Therefore, this study proposes a novel approach to assessing patentee impact based on a heterogeneous information network. The proposed method distinguishes the weight of different types of nodes using a weighted mechanism and extracts three types of fine-grained characteristics of network nodes. This approach results in the construction of a heterogeneous patent innovation network and the development of a new patentee impact assessment algorithm called CWAPN. Using Chinese green patents in the field of energy conservation and environmental protection as an example, experimental results show that the CWAPN algorithm can effectively assess the impact of patentees. Thereby identifying patentees who have made outstanding contributions to sustainable development in China.

20.
Microbiome ; 12(1): 57, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38494494

RESUMEN

BACKGROUND: Community-driven invasion, also known as community coalescence, occurs widely in natural ecosystems. Despite that, our knowledge about the process and mechanisms controlling community-driven invasion in soil ecosystems is lacking. Here, we performed a set of coalescence experiments in soil microcosms and assessed impacts up to 60 days after coalescence by quantifying multiple traits (compositional, functional, and metabolic) of the invasive and coalescent communities. RESULTS: Our results showed that coalescences significantly triggered changes in the resident community's succession trajectory and functionality (carbohydrate metabolism), even when the size of the invasive community is small (~ 5% of the resident density) and 99% of the invaders failed to survive. The invasion impact was mainly due to the high suppression of constant residents (65% on average), leading to a lose-lose situation where both invaders and residents suffered with coalescence. Our results showed that surviving residents could benefit from the coalescence, which supports the theory of "competition-driven niche segregation" at the microbial community level. Furthermore, the result showed that both short- and long-term coalescence effects were predicted by similarity and unevenness indexes of compositional, functional, and metabolic traits of invasive communities. This indicates the power of multi-level traits in monitoring microbial community succession. In contrast, the varied importance of different levels of traits suggests that competitive processes depend on the composition of the invasive community. CONCLUSIONS: Our results shed light on the process and consequence of community coalescences and highlight that resource competition between invaders and residents plays a critical role in soil microbial community coalescences. These findings provide valuable insights for understanding and predicting soil microbial community succession in frequently disturbed natural and agroecosystems. Video Abstract.


Asunto(s)
Microbiota , Suelo , Microbiología del Suelo , Bacterias/genética , Bacterias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA