Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 187(13): 3427-3444.e21, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38733990

RESUMEN

Many behaviors require the coordinated actions of somatic and autonomic functions. However, the underlying mechanisms remain elusive. By opto-stimulating different populations of descending spinal projecting neurons (SPNs) in anesthetized mice, we show that stimulation of excitatory SPNs in the rostral ventromedial medulla (rVMM) resulted in a simultaneous increase in somatomotor and sympathetic activities. Conversely, opto-stimulation of rVMM inhibitory SPNs decreased both activities. Anatomically, these SPNs innervate both sympathetic preganglionic neurons and motor-related regions in the spinal cord. Fiber-photometry recording indicated that the activities of rVMM SPNs correlate with different levels of muscle and sympathetic tone during distinct arousal states. Inhibiting rVMM excitatory SPNs reduced basal muscle and sympathetic tone, impairing locomotion initiation and high-speed performance. In contrast, silencing the inhibitory population abolished muscle atonia and sympathetic hypoactivity during rapid eye movement (REM) sleep. Together, these results identify rVMM SPNs as descending spinal projecting pathways controlling the tone of both the somatomotor and sympathetic systems.


Asunto(s)
Bulbo Raquídeo , Médula Espinal , Sistema Nervioso Simpático , Animales , Masculino , Ratones , Locomoción/fisiología , Bulbo Raquídeo/fisiología , Ratones Endogámicos C57BL , Neuronas Motoras/fisiología , Neuronas/fisiología , Sueño REM/fisiología , Médula Espinal/fisiología , Sistema Nervioso Simpático/fisiología , Conducta Animal , Recuento de Células , Músculo Esquelético
2.
Nat Mater ; 23(4): 570-576, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38297141

RESUMEN

Soft building blocks, such as micelles, cells or soap bubbles, tend to adopt near-spherical geometry when densely packed together. As a result, their packing structures do not extend beyond those discovered in metallic glasses, quasicrystals and crystals. Here we report the emergence of two Frank-Kasper phases from the self-assembly of five-fold symmetric molecular pentagons. The µ phase, an important intermediate in superalloys, is indexed in soft matter, whereas the ϕ phase exhibits a structure distinct from known Frank-Kasper phases in metallic systems. We find a broad size and shape distribution of self-assembled mesoatoms formed by molecular pentagons while approaching equilibrium that contribute to the unique packing structures. This work provides insight into the manipulation of soft building blocks that deviate from the typical spherical geometry and opens avenues for the fabrication of 'soft alloy' structures that were previously unattainable in metal alloys.

3.
Proc Natl Acad Sci U S A ; 119(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35022240

RESUMEN

The quasiperiodic structures in metal alloys have been known to depend on the existence of icosahedral order in the melt. Among different phases observed in intermetallics, decagonal quasicrystal (DQC) structures have been identified in many glass-forming alloys yet remain inaccessible in bulk-state condensed soft matters. Via annealing the mixture of two giant molecules, the binary system assemblies into an axial DQC superlattice, which is identified comprehensively with meso-atomic accuracy. Analysis indicates that the DQC superlattice is composed of mesoatoms with an unusually broad volume distribution. The interplays of submesoatomic (molecular) and mesoatomic (supramolecular) local packings are found to play a crucial role in not only the formation of the metastable DQC superlattice but also its transition to dodecagonal quasicrystal and Frank-Kasper σ superlattices.

4.
J Am Chem Soc ; 146(1): 567-577, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38117946

RESUMEN

Integrating inorganic and polymerized organic functionalities to create composite materials presents an efficient strategy for the discovery and fabrication of multifunctional materials. The characteristics of these composites go beyond a simple sum of individual component properties; they are profoundly influenced by the spatial arrangement of these components and the resulting homo-/hetero-interactions. In this work, we develop a facile and highly adaptable approach for crafting nanostructured polymer-inorganic composites, leveraging hierarchically assembling mixed-graft block copolymers (mGBCPs) as templates. These mGBCPs, composed of diverse polymeric side chains that are covalently tethered with a defined sequence to a linear backbone polymer, self-assemble into ordered hierarchical structures with independently tuned nano- and mesoscale lattice features. Through the coassembly of mGBCPs with diversely sized inorganic fillers such as metal ions (ca. 0.1 nm), metal oxide clusters (0.5-2 nm), and metallic nanoparticles (>2 nm), we create three-dimensional filler arrays with controlled interfiller separation and arrangement. Multiple types of inorganic fillers are simultaneously integrated into the mGBCP matrix by introducing orthogonal interactions between distinct fillers and mGBCP side chains. This results in nanocomposites where each type of filler is selectively segregated into specific nanodomains with matrix-defined orientations. The developed coassembly strategy offers a versatile and scalable pathway for hierarchically structured nanocomposites, unlocking new possibilities for advanced materials in the fields of optoelectronics, sensing, and catalysis.

5.
Chemistry ; 29(63): e202302352, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37584964

RESUMEN

In expanding our research activities of superlattice engineering, designing new giant molecules is the necessary first step. One attempt is to use inorganic transition metal clusters as building blocks. Efficient functionalization of chemically precise transition metal clusters, however, remains a great challenge to material scientists. Herein, we report an efficient thiol-Michael addition approach for the modifications of cyclic titanium-oxo cluster (CTOC). Several advantages, including high efficiency, mild reaction condition, capability of complete addition, high atom economy, as well as high functional group tolerance were demonstrated. This approach can afford high yields of fully functionalized CTOCs, which provides a powerful platform for achieving versatile functionalization of precise transition metal clusters and further applications.

6.
Angew Chem Int Ed Engl ; 61(28): e202203433, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35478477

RESUMEN

The hierarchical self-assembly process opens up great potential for the construction of nanostructural superlattices. Precise regulation of self-assembled superlattices, however, remains a challenge. Even when the primary molecules are precise, the supramolecular motifs (or secondary building blocks) can vary dramatically. In the present work, we propose the concept of unimolecular nanoparticles (UMNPs). The UMNPs act as the supramolecular motif and directly pack into the superlattices. A highly branched giant molecule is presented. We systematically explore its conformations and the superlattice of this giant molecule. Moreover, intriguing complex phases are discovered when blending this UMNP with other conventional giant molecules. These binary mixtures provide direct evidence to support our previously proposed self-sorting process in the self-assembly of "soft alloys". The concept of UMNPs offers a unique approach toward more precise regulation of self-assembled superlattices in soft matter.

7.
Angew Chem Int Ed Engl ; 61(19): e202200637, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35174943

RESUMEN

The packing structures of spherical motifs affect the properties of resultant condensed materials such as in metal alloys. Inspired by the classic metallurgy, developing complex alloy-like packing phases in soft matter (also called "soft alloys") is promising for the next-generation superlattice engineering. Nevertheless, the formation of many alloy-like phases in single-component soft matter is usually thermodynamically unfavourable and technically challenging. Here, we utilize a novel self-sorting assembly approach to tackle this challenge in binary blends of soft matter. Two types of giant shape amphiphiles self-sort to form their discrete spherical motifs, which further simultaneously pack into alloy-like phases. Three unconventional spherical packing phases have been observed in these binary systems, including MgZn2 , NaZn13 , and CaCu5 phases. It's the first time that the CaCu5 phase is experimentally observed in soft matter. This work demonstrates a general approach to constructing unconventional spherical packing phases and other complex superlattices in soft matter.

8.
J Am Chem Soc ; 143(51): 21613-21621, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34913335

RESUMEN

Correlating nanoscale building blocks with mesoscale superlattices, mimicking metal alloys, a rational engineering strategy becomes critical to generate designed periodicity with emergent properties. For molecule-based superlattices, nevertheless, nonrigid molecular features and multistep self-assembly make the molecule-to-superlattice correlation less straightforward. In addition, single component systems possess intrinsically limited volume asymmetry of self-assembled spherical motifs (also known as "mesoatoms"), further hampering novel superlattices' emergence. In the current work, we demonstrate that properly designed molecular systems could generate a spectrum of unconventional superlattices. Four categories of giant molecules are presented. We systematically explore the lattice-forming principles in unary and binary systems, unveiling how molecular stoichiometry, topology, and size differences impact the mesoatoms and further toward their superlattices. The presence of novel superlattices helps to correlate with Frank-Kasper phases previously discovered in soft matter. We envision the present work offers new insights about how complex superlattices could be rationally fabricated by scalable-preparation and easy-to-process materials.

9.
J Am Chem Soc ; 143(33): 12935-12942, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34387467

RESUMEN

We report the preparation of hexagonal mesoporous silica from single-source giant surfactants constructed via dihydroxyl-functionlized polyhedral oligomeric silsesquioxane (DPOSS) heads and a polystyrene (PS) tail. After thermal annealing, the obtained well-ordered hexagonal hybrid was pyrolyzed to afford well-ordered mesoporous silica. A high porosity (e.g., 581 m2/g) and a uniform and narrow pore size distribution (e.g., 3.3 nm) were achieved. Mesoporous silica in diverse shapes and morphologies were achieved by processing the precursor. When the PS tail length was increased, the pore size expanded accordingly. Moreover, such pyrolyzed, ordered mesoporous silica can help to increase both efficiency and stability of nanocatalysts.

10.
Chemistry ; 27(30): 7992-7997, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33830540

RESUMEN

Achieving self-assembled nanostructures with ultra-small feature sizes (e. g., below 5 nm) is an important prerequisite for the development of block copolymer lithography. In this work, the preparation and self-assembly of a series of giant molecules composed of vinyl polyhedral oligomeric silsesquioxane (VPOSS) tethered with monodispersed oligo(L-lactide) chains are presented. Small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) results demonstrate that ultra-small domain sizes (down to 3 nm) of phase separated lamellar morphology are achieved in bulk, driven by the strong tendency and fast kinetics for crystallization of VPOSS moieties. Moreover, upon gamma ray radiation, VPOSS cages in the lamellar structure can be crosslinked via polymerization of the vinyl groups. After pyrolysis at high temperature, ultra-thin two-dimensional nano-silica sheets can be obtained.

11.
Angew Chem Int Ed Engl ; 60(9): 4894-4900, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33210413

RESUMEN

Granular materials, composed of densely packed particles, are known to possess unique mechanical properties that are highly dependent on the surface structure of the particles. A microscopic understanding of the structure-property relationship in these systems remains unclear. Here, supra-nanoparticle clusters (SNPCs) with precise structures are developed as model systems to elucidate the unexpected elastic behaviors. SNPCs are prepared by coordination-driven assembly of polyhedral oligomeric silsesquioxane (POSS) with metal-organic polyhedron (MOP). Due to the disparity in sizes, the POSS-MOP assemblies, like their classic nanoparticles counterparts, ordering is suppressed, and the POSS-MOP mixtures will vitrify or jam as a function of decreasing temperature. An unexpected elasticity is observed for the SNPC assemblies with a high modulus that is maintained at temperatures far beyond the glass transition temperature. From studies on the dynamics of the hierarchical structures of SNPCs and molecular dynamic simulation, the elasticity has its origins in the interpenetration of POSS-ended arms. The physical molecular interpenetration and inter-locking phenomenon favors the convenient solution or pressing processing of the novel cluster-based elastomers.

12.
Angew Chem Int Ed Engl ; 60(4): 2024-2029, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33111472

RESUMEN

Despite the significant advances in creating assembled structures from polymers, engineering the assembly of polymeric materials into framework structures remains an outstanding challenge. In this work, we present a facile strategy to construct polymeric molecular frameworks through the assembly of T-shape polymer-rod-sphere amphiphiles in the bulk state. Various frameworks are yielded as a result of delicate interplays among three components of the T-shape amphiphiles. The internal structure of frameworks was revealed by combining experimental investigations and computational simulations. The frameworks display good solution-processability, thermal stability, and uniform pore-forming capability, which endow the resultant frameworks with great potential in scalable fabrications.

13.
Angew Chem Int Ed Engl ; 59(42): 18563-18571, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-32656991

RESUMEN

Like other discotic molecules, self-assembled supramolecular structures of perylene bisimides (PBIs) are commonly limited to columnar or lamellar structures due to their distinct π-conjugated scaffolds and unique rectangular shape of perylene cores. The discovery of PBIs with supramolecular structures beyond layers and columns may expand the scope of PBI-based materials. A series of unconventional spherical packing phases in PBIs, including A15 phase, σ phase, dodecagonal quasicrystalline (DQC) phase, and body-centered cubic (BCC) phase, is reported. A strategy involving functionalization of perylene core with several polyhedral oligomeric silsesquioxane (POSS) cages achieved spherical assemblies of PBIs, instead of columnar assemblies, due to the significantly increased steric hindrance at the periphery. This strategy may also be employed for the discovery of unconventional spherical assemblies in other related discotic molecules by the introduction of similar bulky functional groups at their periphery. An unusual inverse phase transition sequence from a BCC phase to a σ phase was observed by increasing annealing temperature.

14.
Angew Chem Int Ed Engl ; 59(13): 5226-5234, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-31957938

RESUMEN

How biomembranes are self-organized to perform their functions remains a pivotal issue in biological and chemical science. Understanding the self-assembly principles of lipid-like molecules hence becomes crucial. Herein, we report the mesostructural evolution of amphiphilic sphere-rod conjugates (giant lipids), and study the roles of geometric parameters (head-tail ratio and cross-sectional area) during this course. As a prototype system, giant lipids resemble natural lipidic molecules by capturing their essential features. The self-assembly behavior of two categories of giant lipids (I-shape and T-shape, a total of 8 molecules) is demonstrated. A rich variety of mesostructures is constructed in solution state and their molecular packing models are rationally understood. Giant lipids recast the phase behavior of natural lipids to a certain degree and the abundant self-assembled morphologies reveal distinct physiochemical behaviors when geometric parameters deviate from natural analogues.

15.
Soft Matter ; 15(36): 7108-7116, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31482930

RESUMEN

In biological systems, it is well-known that the activities and functions of biomacromolecules are dictated not only by their primary chemistries, but also by their secondary, tertiary, and quaternary hierarchical structures. Achieving control of similar levels in synthetic macromolecules is yet to be demonstrated. Most of the critical molecular parameters associated with molecular and hierarchical structures, such as size, composition, topology, sequence, and stereochemistry, are heterogenous, which impedes the exploration and understanding of structure formation and manipulation. Alternatively, in the past few years we have developed a unique giant molecule system based on molecular nanoparticles, in which the above-mentioned molecular parameters, as well as interactions, are precisely defined and controlled. These molecules could self-assemble into a myriad of unconventional and unique structures in the bulk, thin films, and solution. Giant molecules thus offer a robust platform to manipulate the hierarchical structures via precise and modular assemblies of building blocks in an amplified size level compared with small molecules. It has been found that they are not only scientifically intriguing, but also technologically relevant.


Asunto(s)
Sustancias Macromoleculares/química , Nanopartículas/química , Dimerización , Estructura Molecular , Ácidos Nucleicos/química , Tamaño de la Partícula , Transición de Fase , Polímeros/química , Propiedades de Superficie , Temperatura
16.
Carcinogenesis ; 38(6): 649-660, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28498893

RESUMEN

Oncogene c-Myc is frequently amplified and activated in human cancers. Deregulation of c-Myc protein has been shown to occur in 30% of all human cancers, especially in hematopoietic malignancies. As a transcription factor, c-Myc has been shown to regulate up to 15% of all human genome genes, controlling diverse cellular activities including cell cycle, ribosome biogenesis, protein synthesis, metabolism, apoptosis and angiogenesis. In this report, we provide evidence that the RNA helicase DHX33 is a critical downstream target of c-Myc. Myc binds to DHX33 upstream promoter region and stimulates its transcription. Elevated DHX33 protein is pivotal for c-Myc to drive tumor formation. Knockdown of DHX33 to basal levels in c-Myc overexpressing cells significantly reduced cell proliferation, cell migration and anchorage-independent cell growth in vitro and in vivo. Additionally, we found that DHX33 promotes MMP9, MMP14 and urokinase-type plasminogen activator (PLAU) transcription by directly binding to their promoters, thus promoting cancer cell migration. DHX33 protein was overexpressed in a certain subset of human non-Hodgkin's lymphoma tissues. Finally, knockdown of DHX33 significantly inhibits the development of Myc-induced acute myeloid leukemia. Overall, our results implicate the important role for DHX33 in Myc-induced cancer and point toward its potential therapeutic value in Myc driven cancers.


Asunto(s)
Transformación Celular Neoplásica , ARN Helicasas DEAD-box/genética , Leucemia Mieloide Aguda/metabolismo , Linfoma no Hodgkin/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Apoptosis , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , ARN Helicasas DEAD-box/metabolismo , Femenino , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Linfoma no Hodgkin/genética , Linfoma no Hodgkin/patología , Ratones , Ratones Desnudos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal , Transcripción Genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Phys Chem Lett ; 15(16): 4268-4275, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38607695

RESUMEN

The search for alternative chemical systems other than polymers with chain topologies for soft structural materials raises general interests in fundamental materials and chemical sciences. It is also appealing from an engineering perspective for the urgent need to resolve the typical trade-offs of polymer systems. Herein, a subnanometer molecular cluster, polyhedral oligomeric silsesquioxanes, is assembled into molecular nanoparticles (MNPs) with star topology. Broadly tunable viscoelasticity can be realized by fine-tuning the MNPs' deformability. Being analogous to polymeric systems, the hierarchical structural relaxation dynamics can be observed, and their relaxation time and temperature dependence are dominated by the linker flexibilities. This not only provides microscopic understanding on MNP's unique viscoelasticity but also offers enormous opportunities for modulating their mechanical properties via linker engineering. Our work proves the possibility of applying structural units with particle topologies for the design of soft structural materials.

18.
Sci Adv ; 9(7): eadd5330, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36791202

RESUMEN

Salt homeostasis is orchestrated by both neural circuits and peripheral endocrine factors. The colon is one of the primary sites for electrolyte absorption, while its potential role in modulating sodium intake remains unclear. Here, we revealed that a gastrointestinal hormone, secretin, is released from colon endocrine cells under body sodium deficiency and is indispensable for inducing salt appetite. As the neural substrate, circulating secretin activates specific receptors in the nucleus of the solitary tracts, which further activates the downstream paraventricular nucleus of the hypothalamus, resulting in enhanced sodium intake. These results demonstrated a previously unrecognized gut-brain pathway for the timely regulation of sodium homeostasis.


Asunto(s)
Apetito , Sodio en la Dieta , Apetito/fisiología , Secretina , Sodio , Regulación del Apetito/fisiología , Eje Cerebro-Intestino , Hipotálamo
19.
Cell Rep ; 42(3): 112240, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36924491

RESUMEN

The aggregation of TAR DNA binding protein 43 kDa (TDP-43) is related to different neurodegenerative diseases, which leads to microglial activation and neuronal loss. The molecular mechanism driving neuronal death by reactive microglia, however, has not been completely resolved. In this study, we generated a mouse model by overexpressing mutant human TDP-43 (M337V) in the primary motor cortex, leading to prominent motor-learning deficits. In vivo 2-photon imaging shows an active approach of microglia toward parvalbumin interneurons, resulting in disrupted cortical excitatory-inhibitory balance. Proteomics studies suggest that activation of the complement pathway induces microglial activity. To develop an early interventional strategy, treadmill exercise successfully prevents the deterioration of motor dysfunction under enhanced adipocytic release of clusterin to block the complement pathway. These results demonstrate a previously unrecognized pathway by which TDP-43 induces cortical deficits and provide additional insights for the mechanistic explanation of exercise training in disease intervention.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ratones Transgénicos , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Condicionamiento Físico Animal
20.
Sci Rep ; 12(1): 4625, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35301364

RESUMEN

The Cretaceous witnessed a radiation of rove beetles (Staphylinidae), the most species-rich beetle family. Although most staphylinid subfamilies have been documented from Cretaceous strata over the world, there has been no fossil record of the subfamily Pseudopsinae until a recently reported fossil from the 99-Ma-old Myanmar amber. Here we describe a new compression fossil from the Lower Cretaceous Yixian Formation of northeastern China. It is described as Cretaceonanobius fossilis. gen. et sp. nov. and assigned to the extant subfamily Pseudopsinae, based on the well-preserved carinae on the pronotum, a carina on ventrites II and III, and distinctly separated mesocoxae. The discovery of Cretaceonanobius fossilis gen. et sp. nov. backdates the earliest fossils record of Pseudopsinae to 125 Ma in the Northern Hemisphere and sheds new lights on the evolution history and paleobiogeography of this subfamily.


Asunto(s)
Escarabajos , Compresión de Datos , Ámbar , Animales , China , Fósiles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA