Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Br J Cancer ; 131(2): 243-257, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38824222

RESUMEN

BACKGROUND: Disorder of cell cycle represents as a major driver of hepatocarcinogenesis and constitutes an attractive therapeutic target. However, identifying key genes that respond to cell cycle-dependent treatments still facing critical challenges in hepatocellular carcinoma (HCC). Increasing evidence indicates that dynein light chain 1 (DYNLL1) is closely related to cell cycle progression and plays a critical role in tumorigenesis. In this study, we explored the role of DYNLL1 in the regulation of cell cycle progression in HCC. METHODS: We analysed clinical specimens to assess the expression and predictive value of DYNLL1 in HCC. The oncogenic role of DYNLL1 was determined by gain or loss-of-function experiments in vitro, and xenograft tumour, liver orthotopic, and DEN/CCl4-induced mouse models in vivo. Mass spectrometry analysis, RNA sequencing, co-immunoprecipitation assays, and forward and reverse experiments were performed to clarify the mechanism by which DYNLL1 activates the interleukin-2 enhancer-binding factor 2 (ILF2)/CDK4 signalling axis. Finally, the sensitivity of HCC cells to palbociclib and sorafenib was assessed by apoptosis, cell counting kit-8, and colony formation assays in vitro, and xenograft tumour models and liver orthotopic models in vivo. RESULTS: DYNLL1 was significantly higher in HCC tissues than that in normal liver tissues and closely related to the clinicopathological features and prognosis of patients with HCC. Importantly, DYNLL1 was identified as a novel hepatocarcinogenesis gene from both in vitro and in vivo evidence. Mechanistically, DYNLL1 could interact with ILF2 and facilitate the expression of ILF2, then ILF2 could interact with CDK4 mRNA and delay its degradation, which in turn activates downstream G1/S cell cycle target genes CDK4. Furthermore, palbociclib, a selective CDK4/6 inhibitor, represents as a promising therapeutic strategy for DYNLL1-overexpressed HCC, alone or particularly in combination with sorafenib. CONCLUSIONS: Our work uncovers a novel function of DYNLL1 in orchestrating cell cycle to promote HCC development and suggests a potential synergy of CDK4/6 inhibitor and sorafenib for the treatment of HCC patients, especially those with increased DYNLL1.


Asunto(s)
Carcinoma Hepatocelular , Ciclo Celular , Quinasa 4 Dependiente de la Ciclina , Dineínas Citoplasmáticas , Neoplasias Hepáticas , Piperazinas , Piridinas , Humanos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Animales , Ratones , Piridinas/farmacología , Piperazinas/farmacología , Dineínas Citoplasmáticas/genética , Dineínas Citoplasmáticas/metabolismo , Masculino , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Proliferación Celular
2.
Gut ; 72(12): 2307-2320, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37507218

RESUMEN

OBJECTIVE: Checkpoint immunotherapy unleashes T-cell control of tumours but is suppressed by immunosuppressive myeloid cells. The transmembrane protein MS4A4A is selectively highly expressed in tumour-associated macrophages (TAMs). Here, we aimed to reveal the role of MS4A4A+ TAMs in regulating the immune escape of tumour cells and to develop novel therapeutic strategies targeting TAMs to enhance the efficacy of immune checkpoint inhibitor (ICI) in colorectal cancer. DESIGN: The inhibitory effect of MS4A4A blockade alone or combined with ICI treatment on tumour growth was assessed using murine subcutaneous tumour or orthotopic transplanted models. The effect of MS4A4A blockade on the tumour immune microenvironment was assessed by flow cytometry and mass cytometry. RNA sequencing and western blot analysis were used to further explore the molecular mechanism by which MS4A4A promoted macrophages M2 polarisation. RESULTS: MS4A4A is selectively expressed by TAMs in different types of tumours, and was associated with adverse clinical outcome in patients with cancer. In vivo inhibition of MS4A4A and anti-MS4A4A monoclonal antibody treatment both curb tumour growth and improve the effect of ICI therapy. MS4A4A blockade treatment reshaped the tumour immune microenvironment, resulting in reducing the infiltration of M2-TAMs and exhausted T cells, and increasing the infiltration of effector CD8+ T cells. Anti-MS4A4A plus anti-programmed cell death protein 1 (PD-1) therapy remained effective in large, treatment-resistant tumours and could induce complete regression when further combined with radiotherapy. Mechanistically, MS4A4A promoted M2 polarisation of macrophages by activating PI3K/AKT pathway and JAK/STAT6 pathway. CONCLUSION: Targeting MS4A4A could enhance the ICI efficacy and represent a new anticancer immunotherapy.


Asunto(s)
Neoplasias , Macrófagos Asociados a Tumores , Humanos , Animales , Ratones , Linfocitos T CD8-positivos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Macrófagos , Microambiente Tumoral , Proteínas de la Membrana/metabolismo
3.
Environ Sci Technol ; 57(40): 15055-15064, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37774013

RESUMEN

The particle phase state plays a vital role in the gas-particle partitioning, multiphase reactions, ice nucleation activity, and particle growth in the atmosphere. However, the characterization of the atmospheric phase state remains challenging. Herein, based on measured aerosol chemical composition and ambient relative humidity (RH), a machine learning (ML) model with high accuracy (R2 = 0.952) and robustness (RMSE = 0.078) was developed to predict the particle rebound fraction, f, which is an indicator of the particle phase state. Using this ML model, the f of particles in the urban atmosphere was predicted based on seasonal average aerosol chemical composition and RH. Regardless of seasons, aerosols remain in the liquid state of mid-high latitude cities in the northern hemisphere and in the semisolid state over semiarid regions. In the East Asian megacities, the particles remain in the liquid state in spring and summer and in the semisolid state in other seasons. The effects of nitrate, which is becoming dominant in fine particles in several urban areas, on the particle phase state were evaluated. More nitrate led the particles to remain in the liquid state at an even lower RH. This study proposed a new approach to predict the particle phase state in the atmosphere based on RH and aerosol chemical composition.


Asunto(s)
Atmósfera , Nitratos , Aerosoles , Atmósfera/química , Ciudades , Estaciones del Año , Tamaño de la Partícula
4.
BMC Med ; 20(1): 365, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36258210

RESUMEN

BACKGROUND: Radiotherapy (RT) is one of the major therapeutic approaches to hepatocellular carcinoma (HCC). Ionizing radiation (IR) inducing the generation of reactive oxygen species (ROS) leads to a promising antitumor effect. However, the dysregulation of the redox system often causes radioresistance and impairs the efficacy of RT. Increasing evidence indicates that nuclear protein 1 (NUPR1) plays a critical role in redox reactions. In this study, we aim to explore the role of NUPR1 in maintaining ROS homeostasis and radioresistance in HCC. METHODS: The radioresistant role of NUPR1 was determined by colony formation assay, comet assay in vitro, and xenograft tumor models in vivo. Probes for ROS, apoptosis assay, and lipid peroxidation assay were used to investigate the functional effect of NUPR1 on ROS homeostasis and oxidative stress. RNA sequencing and co-immunoprecipitation assay were performed to clarify the mechanism of NUPR1 inhibiting the AhR/CYP signal axis. Finally, we analyzed clinical specimens to assess the predictive value of NUPR1 and AhR in the radiotherapeutic efficacy of HCC. RESULTS: We demonstrated that NUPR1 was upregulated in HCC tissues and verified that NUPR1 increased the radioresistance of HCC in vitro and in vivo. NUPR1 alleviated the generation of ROS and suppressed oxidative stress, including apoptosis and lipid peroxidation by downregulating cytochrome P450 (CYP) upon IR. ROS scavenger N-acetyl-L-cysteine (NAC) and CYP inhibitor alizarin restored the viability of NUPR1-knockdown cells during IR. Mechanistically, the interaction between NUPR1 and aryl hydrocarbon receptor (AhR) promoted the degradation and decreased nuclear translation of AhR via the autophagy-lysosome pathway, followed by being incapable of CYP's transcription. Furthermore, genetically and pharmacologically activating AhR abrogated the radioresistant role of NUPR1. Clinical data suggested that NUPR1 and AhR could serve as novel biomarkers for predicting the radiation response of HCC. CONCLUSIONS: Our findings revealed the role of NUPR1 in regulating ROS homeostasis and oxidative stress via the AhR/CYP signal axis upon IR. Strategies targeting the NUPR1/AhR/CYP pathway may have important clinical applications for improving the radiotherapeutic efficacy of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/metabolismo , Acetilcisteína , Transducción de Señal , Homeostasis , Sistema Enzimático del Citocromo P-450/metabolismo , Línea Celular Tumoral , Apoptosis
5.
Molecules ; 27(13)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35807360

RESUMEN

Cardiac pathological hypertrophy is associated with undesirable epigenetic changes and causes maladaptive cardiac remodeling and heart failure, leading to high mortality rates. Specific drugs for the treatment of cardiac hypertrophy are still in urgent need. In the present study, a hydrogen-sulfide-releasing hybrid 13-E was designed and synthesized by appending p-hydroxythiobenzamide (TBZ), an H2S-releasing donor, to an analog of our previously discovered cardioprotective natural product XJP, 7,8-dihydroxy-3-methyl-isochromanone-4. This hybrid 13-E exhibited excellent H2S-generating ability and low cellular toxicity. The 13-E protected against cardiomyocyte hypertrophy In Vitro and reduced the induction of Anp and Bnp. More importantly, 13-E could reduce TAC-induced cardiac hypertrophy In Vivo, alleviate cardiac interstitial fibrosis and restore cardiac function. Unbiased transcriptomic analysis showed that 13-E regulated the AMPK signaling pathway and influenced fatty acid metabolic processes, which may be attributed to its cardioprotective activities.


Asunto(s)
Sulfuro de Hidrógeno , Cardiomegalia/metabolismo , Corazón , Humanos , Hidrógeno/farmacología , Hidrógeno/uso terapéutico , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Miocitos Cardíacos/metabolismo , Sulfuros/farmacología , Sulfuros/uso terapéutico
6.
Br J Cancer ; 125(5): 734-747, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34188196

RESUMEN

BACKGROUND: SLC2A5 is a high-affinity fructose transporter, which is frequently upregulated in multiple human malignant tumours. However, the function and molecular mechanism of SLC2A5 in colorectal cancer (CRC) remain unknown. METHODS: We detected the expression levels of SLC2A5 in CRC tissues and CRC cell lines by western blotting, qRT-PCR and immunohistochemistry. CRC cell lines with stable overexpression or knockdown of SLC2A5 were constructed to evaluate the functional roles of SLC2A5 in vitro through conventional assays. An intrasplenic inoculation model was established in mice to investigate the effect of SLC2A5 in promoting metastasis in vivo. Methylation mass spectrometry sequencing, methylation specific PCR, bisulphite sequencing PCR, ChIP-qPCR and luciferase reporter assay were performed to investigate the molecular mechanism underlying transcriptional activation of SLC2A5. RESULTS: We found that SLC2A5 was upregulated in colorectal tumour tissues. Functionally, a high level of SLC2A5 expression was associated with increased invasion and metastasis capacities of CRC cells both in vitro and in vivo. Mechanistically, we unveiled that S100P could integrate to a specific region of SLC2A5 promoter, thereby reducing its methylation levels and activating SLC2A5 transcription. CONCLUSIONS: Our results reveal a novel mechanism that S100P mediates the promoter demethylation and transcription activation of SLC2A5, thereby promoting the metastasis of CRC.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Neoplasias Colorrectales/patología , Metilación de ADN , Transportador de Glucosa de Tipo 5/genética , Transportador de Glucosa de Tipo 5/metabolismo , Proteínas de Neoplasias/metabolismo , Regulación hacia Arriba , Animales , Células CACO-2 , Estudios de Casos y Controles , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HT29 , Humanos , Masculino , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias , Regiones Promotoras Genéticas , Activación Transcripcional
7.
Biogerontology ; 22(6): 589-602, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34542790

RESUMEN

Aging often leads to an increase risk of age-related diseases, and the development of anti-aging drugs have become the trend and focus of the current scientific research. In this experiment, serum samples from healthy people of different ages were analyzed based on clinical lipidomics, and a total of 10 potential biomarkers in middle-aged and youth group, 20 biomarkers in the youth and the elderly group were obtained. Furthermore, dhSph and dhCer involved above may affect the aging process through sphingolipid metabolic pathway. As the first and rate-limiting step of catalyzing de novo sphingolipid pathway, SPT may play a key role in human anti-aging, which is revealed by lipidomics liposome tracer analysis. The potential active components in ginseng on SPT was further verified by molecular docking virtual screening and atomic force microscope. Four ingredients of ginseng may reduce the levels of metabolites dhSph and dhCer by inhibiting the activity of SPT, and play an anti-aging effect by affecting the sphingolipid metabolism pathway.A clinical trials registration number: ChiCTR1900026836.


Asunto(s)
Lipidómica , Panax , Adolescente , Anciano , Envejecimiento , Biomarcadores , Humanos , Persona de Mediana Edad , Simulación del Acoplamiento Molecular
8.
Environ Sci Technol ; 55(2): 832-841, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33377762

RESUMEN

The phase states of primarily emitted and secondarily formed aerosols from gasoline vehicle exhausts were investigated by quantifying the particle rebound fraction (f). The rebound behaviors of gasoline vehicle emission-related aerosols varied with engines, fuel types, and photochemical aging time, showing distinguished differences from biogenic secondary organic aerosols. The nonliquid-to-liquid phase transition of primary aerosols emitted from port fuel injection (PFI) and gasoline direct injection (GDI) vehicles started at a relative humidity (RH) = 50 and 60%, and liquefaction was accomplished at 60 and 70%, respectively. The RH at which f declined to 0.5 decreased from 70 to 65% for the PFI case with 92# fuel, corresponding to the photochemical aging time from 0.37 to 4.62 days. For the GDI case, such RH enhanced from 60 to 65%. Our results can be used to imply the phase state of traffic-related aerosols and further understand their roles in urban atmospheric chemistry. Taking Beijing, China, as an example, traffic-related aerosols were mainly nonliquid during winter with the majority ambient RH below 50%, whereas they were mostly liquid during the morning rush hour of summer, and traffic-related secondary aerosols fluctuated between nonliquid and liquid during the daytime and tended to be liquid at night with increased ambient RH.


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Aerosoles , Beijing , China , Gasolina/análisis , Humedad , Material Particulado/análisis , Emisiones de Vehículos/análisis
9.
Chem Res Toxicol ; 33(10): 2675-2685, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32924446

RESUMEN

Negative feelings caused by external stress can continually agonize adrenergic receptors via promoting catecholamine secretion, causing cardiovascular disease. This study examines the mechanism by which persistent ß-adrenergic receptor agonism induces myocardial injury. A rat model of cardiac injury was herein established using isoproterenol (5 mg/kg, continuous intraperitoneal injection for 3 days), and multiomics technology combined with metabolomics and proteomics was used to explore the mechanism by which persistent ß-adrenergic receptor agonism induces myocardial injury. The mechanism underlying this phenomenon was further verified at the cellular level. Isoproterenol-induced persistent ß-adrenergic receptor agonism promoted the release of reactive oxygen species, and P53, S100-A9, and complement 3 were shown to be involved in complement system activation pathways. Our data have demonstrated that isoproterenol could trigger ROS/P53/S100-A9 positive feedback to aggravate myocardial damage associated with complement activation.


Asunto(s)
Calgranulina B/metabolismo , Isoproterenol/farmacología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Células Cultivadas , Masculino , Contracción Miocárdica/efectos de los fármacos , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Proteómica , Ratas , Ratas Wistar
10.
Chem Res Toxicol ; 33(12): 3031-3040, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33236894

RESUMEN

Currently, research on cardiac injury by aconitine focuses on its effect to directly interfere with the function of cardiac ion channels. Further, abnormal lipid metabolism could cause cardiac injury via inflammatory signaling pathway. In our preliminary study, we discovered that aconitine could alter the metabolism processes of various substances, including palmitic acid. Inspired by these studies, we investigated how elevation of palmitic acid by aconitine causes cardiac injury. Aconitine induced cardiac injury in rats (0.32 mg/kg, d = 7), and the cardiac injury was confirmed by electrocardiogram and serum biochemical study. The proteomic and metabolomic results showed that the palmitic acid level increases in heart tissue, and the NOD-like receptor (NLR) signaling pathway showed a strong effect of cardiac injury. The palmitic acid results in cell viability decline and activates NLR signaling in vitro. The shRNA-mediated knockdown of NLRP3 and NOD1/2 attenuates palmitic acid-induced inhibitory effect on cells and inhibited activation of the NLR signaling pathway. Collectively, this study reveals that aconitine provoked palmitic acid elevation could aggravate cardiac injury via the NLR signaling pathway. This study suggests that drug triggered disorder of the metabolism process could evoke cardiac injury and could propose a new strategy to study drug cardiac injury.


Asunto(s)
Aconitina/farmacología , Metabolómica , Miocitos Cardíacos/efectos de los fármacos , Ácido Palmítico/metabolismo , Proteómica , Aconitina/metabolismo , Animales , Línea Celular , Masculino , Ratones , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar
11.
J Proteome Res ; 18(5): 1994-2003, 2019 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-30907085

RESUMEN

Coronary heart disease (CHD) threatens human health. The discovery and assessment of potential biometabolic markers for different syndrome types of CHD may contribute to decipher pathophysiological mechanisms and identify new targets for diagnosis and treatment. On the basis of UPLC-Q-TOF/MS metabolomics technology, urine samples of 1072 participants from nine centers, including normal control, phlegm and blood stasis (PBS) syndrome and Qi and Yin deficiency (QYD) syndrome, and other syndromes of CHD, were conducted to find biomarkers. Among them, the discovery set ( n = 125) and the test set ( n = 337) were used to identify and validate biomarkers, and the validation set ( n = 610) was used for the application and evaluation of the support vector machine (SVM) prediction model. We discovered 15 CHD-PBS syndrome biomarkers and 12 CHD-QYD syndrome biomarkers, and the receiver-operator characteristic (ROC) area-under-the-curve (AUC) values of them were 0.963 and 0.990. The established SVM model has a good diagnostic ability and can well distinguish the two syndromes of CHD with a high predicted accuracy >98.0%. The discovery of biomarkers and metabolic pathways in different syndrome types of CHD provides a basis for the diagnosis and evaluation of CHD, thereby improving the accurate diagnosis and precise treatment level of Chinese medicine.


Asunto(s)
Enfermedad Coronaria/diagnóstico , Medicina Tradicional China/métodos , Metaboloma , Adulto , Anciano , Anciano de 80 o más Años , Área Bajo la Curva , Biomarcadores/orina , Estudios de Casos y Controles , Cromatografía Líquida de Alta Presión , Enfermedad Coronaria/fisiopatología , Enfermedad Coronaria/orina , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Máquina de Vectores de Soporte , Síndrome
12.
Environ Sci Technol ; 53(9): 5027-5033, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30933482

RESUMEN

Particle phase state plays a key role in gas-particle partitioning, heterogeneous and multiphase reactions, and secondary aerosol formation. In this work, the rebound fraction and chemical composition of submicron particles were simultaneously measured to investigate the particle phase state and its link to chemical composition in a subtropical coastal urban city (Shenzhen, China). Submicron particles were found to be in the liquid state for most of the measurement period in spring. During the sampling time, both high relative humidity (RH, ranged from 40% to 93%) and inorganic mass fraction in particles (62.6 ± 12.4% of dry particles, on average) resulted in abundant aerosol liquid water (43 ± 6% in the wet PM1, on average), which may liquefy the particles. Considering the high frequency of ambient RH > 60% and large inorganic mass fraction in aerosol particles, we deduced that particles were in the liquid state throughout the year in coastal urban areas, where this study was performed. The liquid phase particles may accelerate the mass transfer of reactive trace gases and multiphase reactions, thereby enhanced secondary aerosol formation, further resulting in a rapid growth in aerosol mass. Our work suggested that in regions heavily impacted by SO2 and NO x emissions, especially in developing countries, the presence of inorganics could significantly impact the phase state of ambient aerosol particles, and thus the mixing state of inorganic and organic matter should be taken into account for the investigation of the aerosol phase state in urban environments.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles , China , Ciudades , Agua
13.
Environ Sci Technol ; 53(3): 1235-1244, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30625271

RESUMEN

Naphthalene (Nap) and methylnaphthalene (MN) are the most abundant polycyclic aromatic hydrocarbons (PAHs) in atmosphere and have been proposed to be important precursors of anthropogenic secondary organic aerosol (SOA) derived from laboratory chamber experiments. In this study, atmospheric Nap/MN and their gas-phase photooxidation products were quantified by a Proton Transfer Reaction-Quadrupole interface Time-of-Flight Mass Spectrometer (PTR-QiTOF) during the 2016 winter in Beijing. Phthalic anhydride, a late generation product from Nap under high-NO x conditions, appeared to be more prominent than 2-formylcinnamaldehyde (early generation product), possibly due to more sufficient oxidation during the haze. 1,2-Phthalic acid (1,2-PhA), the hydrated form of phthalic anhydride, was capable of partitioning into aerosol phase and served as a tracer to explore the contribution of Nap to ambient SOA. The measured fraction in particle phase ( Fp) of 1,2-PhA averaged at 73 ± 13% with OA mass loadings of 52.5-87.8 µg/m3, lower than the value predicted by the absorptive partitioning model (100%). Using tracer product-based and precursor consumption-based methods, 2-ring PAHs (Nap and MN) were estimated to produce 14.9% (an upper limit) of the SOA formed in the afternoon during the wintertime haze, suggesting a comparable contribution of Nap and MN with monocyclic-aromatics on urban SOA formation.


Asunto(s)
Atmósfera , Naftalenos , Aerosoles , Beijing , Oxidación-Reducción
14.
Biotechnol Lett ; 41(4-5): 565-574, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30734149

RESUMEN

OBJECTIVE: To investigate the biochemical and enzymatic properties of chlorogenic acid hydrolase (ChlH) from Aspergillus niger SD14.721 and its applicability in sunflower seed protein processing. RESULTS: The ChlH with two identical subunits (97 kDa) was highly stable. Its optimal temperature and pH were determined as 60 °C and pH 7.0. The Km towards chlorogenic acid (CGA) was 1.85 µM. Based on its N-terminal sequence (AVDSVDAIFA), the purified ChlH appeared to be a new chlorogenic acid hydrolase. When applied in sunflower seed protein extraction, ChlH removed 99.13% of CGA in sunflower seed pastes, thus the colour of sunflower seed protein (SSP) changed from green to grey and its visual acceptance improved. Meanwhile, the solubility, water absorption capacity, and emulsification stability of SSP were increased 48.39%, 59.32% and 22.92%, respectively. CONCLUSIONS: A new ChlH was obtained and its feasibility as a CGA-removal tool to obtain high quality SSP was demonstrated.


Asunto(s)
Aspergillus niger/enzimología , Ácido Clorogénico/metabolismo , Helianthus/química , Hidrolasas/metabolismo , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Semillas/química , Biotecnología/métodos , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrolasas/química , Cinética , Peso Molecular , Proteínas de Plantas/química , Multimerización de Proteína , Solubilidad , Temperatura
15.
Int J Mol Sci ; 20(22)2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31731809

RESUMEN

Gout Party is a Chinese medicine prescription composed of Aconiti Lateralis Radix Praeparaia, Aconiti Radix Cocta, Cremastrae Pseudobulbus Pleiones Pseudobulbus, Smilacis Glabrae Rhizoma, Rehmanniae Radix, and Glycyrrhizae Radix et Rhizoma, which can relieve joint pain caused by gouty arthritis (GA) and rheumatoid, and has a therapeutic effect on acute gouty arthritis (AGA). However, little information is available on the molecular biological basis and therapeutic mechanism of Gout Party for the treatment of AGA. AGA model was established by injecting sodium urate, and colchicine served as a positive control drug. We established a metabolomic method based on ultra-high-performance liquid chromatography-tandem quadrupole/time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) to analyze the plasma samples of model group rats and blank group rats. Multiple statistical analyses, including principal component analysis (PCA) and partial least square discrimination analysis (PLS-DA), were used to examine metabolite profile changes in plasma samples. Finally, we identified 2-ketobutyric acid, 3-hexenedioic acid, but-2-enoic acid, and so on; 22 endogenous metabolites associated with AGA. After successful molding, we found that 2-ketobutyric acid, 3-hexenedioic acid, but-2-enoic acid, argininic acid, galactonic acid, lactic acid, equol 4'-O-glucuronide, deoxycholic acid glycine conjugate, glycocholic acid, sphinganine 1-phosphate, LPE (0:0/20:3), LPE (0:0/16:0), LPC (15:0) decreased significantly (p < 0.05 or p < 0.01), alanine, erythrulose, 3-dehydrocarnitine, m-methylhippuric acid, 3-hydroxyoctanoic acid, p-cresol sulfate, estriol 3-sulfate 16-glucuronide, 10-hydroxy-9-(phosphonooxy)octadecenoate, docosahexaenoic acid increased significantly (p < 0.05 or p < 0.01). After Gout Party treatment, 14 biomarkers had a tendency to normal conditions. These above biomarkers were mainly involved in fatty acid metabolism, bile acid metabolism, amino acid metabolism, and energy metabolism pathways. These results suggested that Gout Party exerted therapeutic effects of treating AGA by improving energy metabolism disorder and amino acid metabolism dysfunction, and attenuating fatty acid metabolism abnormal and inflammation. The results of this experiment provided a reference for revealing the metabolic mechanism produced by Gout Party in the treatment of AGA, but the subsequent studies need to be further improved and supported by relevant cell experiments and clinical experiments.


Asunto(s)
Artritis Gotosa/sangre , Artritis Gotosa/metabolismo , Biomarcadores/sangre , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos , Animales , Análisis Multivariante , Ratas
16.
Molecules ; 24(10)2019 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-31130645

RESUMEN

Ginkgo tea is a kind of health food produced from Ginkgo biloba leaves. The market of Ginkgo tea encountered many difficulties because of its bad palatability and vague function statement. In this study, two kinds of glycosidase were used to improve the flavor of Ginkgo tea, and three kinds of bioactivities were selected to investigate the health care function of the tea infusion. The aroma components extracted by headspace absorb (HSA) method during the making of Ginkgo tea were analyzed by GC-MS. The flavonoids and ginkgolides released into the tea infusion were studied by HPLC. A combination of ß-glucosidase (ß-G) and α-rhamnosidase (α-R) was applied during the making of the tea. The contents of characteristic aroma components and the release of total flavonoids and ginkgolides were increased significantly by adding ß-G and α-R. The composition of flavone glycosides was changed greatly. The free radical scavenging, inhibition of inflammatory cell activation, and tumor cytotoxicity activities of the tea were demonstrably improved. According to the release of active components, Ginkgo tea can be brewed repeatedly for at least three times. The enzymes used here show potential application prospects in the making of Ginkgo tea or tea drink to get higher contents of flavonoids, ginkgolides, and aroma components.


Asunto(s)
Bebidas/análisis , Flavonoides/metabolismo , Ginkgo biloba/química , Ginkgólidos/metabolismo , Glicósido Hidrolasas/metabolismo , beta-Glucosidasa/metabolismo , Odorantes/análisis
17.
Dalton Trans ; 53(3): 839-850, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38108230

RESUMEN

The conjugation of DNA molecules with metal or metal-containing nanoparticles (M/MC NPs) has resulted in a number of new hybrid materials, enabling a diverse range of novel biological applications in nanomaterial assembly, biosensor development, and drug/gene delivery. In such materials, the molecular recognition, gene therapeutic, and structure-directing functions of DNA molecules are coupled with M/MC NPs. In turn, the M/MC NPs have optical, catalytic, pore structure, or photodynamic/photothermal properties, which are beneficial for sensing, theranostic, and drug loading applications. This review focuses on the different DNA functionalization protocols available for M/MC NPs, including gold NPs, upconversion NPs, metal-organic frameworks, metal oxide NPs and quantum dots. The biological applications of DNA-functionalized M/MC NPs in the treatment or diagnosis of cancers are discussed in detail.


Asunto(s)
Nanopartículas del Metal , Estructuras Metalorgánicas , Nanopartículas , Neoplasias , Humanos , Nanopartículas del Metal/química , Sistemas de Liberación de Medicamentos , Estructuras Metalorgánicas/química , Neoplasias/tratamiento farmacológico , ADN/química , Nanopartículas/química
18.
Nanomaterials (Basel) ; 13(19)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37836265

RESUMEN

On-chip multi-dimensional detection systems integrating pixelated polarization and spectral filter arrays are the latest trend in optical detection instruments, showing broad application potential for diagnostic medical imaging and remote sensing. However, thin-film or microstructure-based filter arrays typically have a trade-off between the detection dimension, optical efficiency, and spectral resolution. Here, we demonstrate novel on-chip integrated polarization spectral detection filter arrays consisting of metasurfaces and multilayer films. The metasurfaces with two nanopillars in one supercell are designed to modulate the Jones matrix for polarization selection. The angle of diffraction of the metasurfaces and the optical Fabry-Perot (FP) cavities determine the spectrum's center wavelength. The polarization spectral filter arrays are placed on top of the CMOS sensor; each array corresponds to one pixel, resulting in high spectral resolution and optical efficiency in the selected polarization state. To verify the methodology, we designed nine-channel polarized spectral filter arrays in a wavelength range of 1350 nm to 1550 nm for transverse electric (TE) linear polarization. The array has a 10 nm balanced spectral resolution and average peak transmission efficiency of over 75%, which is maintained by utilizing lossless dielectric material. The proposed array can be fabricated using overlay e-beam lithography, and the process is CMOS-compatible. The proposed array enables broader applications of in situ on-chip polarization spectral detection with high efficiency and spectral resolution, as well as in vivo imaging systems.

19.
Med Image Anal ; 90: 102941, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37683445

RESUMEN

Although many deep learning models-based medical applications are performance-driven, i.e., accuracy-oriented, their explainability is more critical. This is especially the case with neuroimaging, where we are often interested in identifying biomarkers underlying brain development or disorders. Herein we propose an explainable deep learning approach by elucidating the information transmission mechanism between two layers of a deep network with a joint feature selection strategy that considers several shallow-layer explainable machine learning models and sparse learning of the deep network. At the end, we apply and validate the proposed approach to the analysis of dynamic brain functional connectivity (FC) from fMRI in a brain development study. Our approach can identify the differences within and between functional brain networks over age during development. The results indicate that the brain network transits from undifferentiated structures to more specialized and organized ones, and the information processing ability becomes more efficient as age increases. In addition, we detect two developmental patterns in the brain network: the FCs in regions related to visual and sound processing and mental regulation become weakened, while those between regions corresponding to emotional processing and cognitive activities are enhanced.

20.
Nat Ecol Evol ; 7(11): 1914-1929, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37652999

RESUMEN

The tiger (Panthera tigris) is a charismatic megafauna species that originated and diversified in Asia and probably experienced population contraction and expansion during the Pleistocene, resulting in low genetic diversity of modern tigers. However, little is known about patterns of genomic diversity in ancient populations. Here we generated whole-genome sequences from ancient or historical (100-10,000 yr old) specimens collected across mainland Asia, including a 10,600-yr-old Russian Far East specimen (RUSA21, 8× coverage) plus six ancient mitogenomes, 14 South China tigers (0.1-12×) and three Caspian tigers (4-8×). Admixture analysis showed that RUSA21 clustered within modern Northeast Asian phylogroups and partially derived from an extinct Late Pleistocene lineage. While some of the 8,000-10,000-yr-old Russian Far East mitogenomes are basal to all tigers, one 2,000-yr-old specimen resembles present Amur tigers. Phylogenomic analyses suggested that the Caspian tiger probably dispersed from an ancestral Northeast Asian population and experienced gene flow from southern Bengal tigers. Lastly, genome-wide monophyly supported the South China tiger as a distinct subspecies, albeit with mitochondrial paraphyly, hence resolving its longstanding taxonomic controversy. The distribution of mitochondrial haplogroups corroborated by biogeographical modelling suggested that Southwest China was a Late Pleistocene refugium for a relic basal lineage. As suitable habitat returned, admixture between divergent lineages of South China tigers took place in Eastern China, promoting the evolution of other northern subspecies. Altogether, our analysis of ancient genomes sheds light on the evolutionary history of tigers and supports the existence of nine modern subspecies.


Asunto(s)
Tigres , Animales , Tigres/genética , ADN Antiguo , Filogenia , Federación de Rusia , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA