RESUMEN
Stretchable hybrid devices have enabled high-fidelity implantable1-3 and on-skin4-6 monitoring of physiological signals. These devices typically contain soft modules that match the mechanical requirements in humans7,8 and soft robots9,10, rigid modules containing Si-based microelectronics11,12 and protective encapsulation modules13,14. To make such a system mechanically compliant, the interconnects between the modules need to tolerate stress concentration that may limit their stretching and ultimately cause debonding failure15-17. Here, we report a universal interface that can reliably connect soft, rigid and encapsulation modules together to form robust and highly stretchable devices in a plug-and-play manner. The interface, consisting of interpenetrating polymer and metal nanostructures, connects modules by simply pressing without using pastes. Its formation is depicted by a biphasic network growth model. Soft-soft modules joined by this interface achieved 600% and 180% mechanical and electrical stretchability, respectively. Soft and rigid modules can also be electrically connected using the above interface. Encapsulation on soft modules with this interface is strongly adhesive with an interfacial toughness of 0.24 N mm-1. As a proof of concept, we use this interface to assemble stretchable devices for in vivo neuromodulation and on-skin electromyography, with high signal quality and mechanical resistance. We expect such a plug-and-play interface to simplify and accelerate the development of on-skin and implantable stretchable devices.
Asunto(s)
Electromiografía , Electrónica Médica , Nanoestructuras , Docilidad , Polímeros , Prótesis e Implantes , Dispositivos Electrónicos Vestibles , Humanos , Nanoestructuras/química , Polímeros/química , Piel , Monitoreo Fisiológico , Electrónica Médica/instrumentación , Electrónica Médica/métodos , Electromiografía/instrumentaciónRESUMEN
Mucosal immunity protects a host from intestinal inflammation and infection and is profoundly influenced by symbiotic bacteria. Here we report that in mice symbiotic bacteria directed selective cargo sorting in Paneth cells to promote symbiosis through Nod2, a cytosolic bacterial sensor, and the multifunctional protein kinase LRRK2, both encoded by inflammatory bowel disease (IBD)-associated genes. Commensals recruited Nod2 onto lysozyme-containing dense core vesicles (DCVs), which was required for DCV localization of LRRK2 and a small GTPase, Rab2a. Deficiency of Nod2, LRRK2 or Rab2a or depletion of commensals resulted in lysosomal degradation of lysozyme. Thus, commensal bacteria and host factors orchestrate the lysozyme-sorting process to protect the host from enteric infection, implicating Paneth cell dysfunction in IBD pathogenesis.
Asunto(s)
Enterocolitis/inmunología , Inmunidad Mucosa/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Intestinos/inmunología , Listeriosis/inmunología , Células de Paneth/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Simbiosis/inmunología , Animales , Enterocolitis/genética , Inmunidad Mucosa/genética , Enfermedades Inflamatorias del Intestino/genética , Intestinos/microbiología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Listeriosis/genética , Lisosomas , Ratones , Ratones Noqueados , Muramidasa , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/inmunología , Proteínas Serina-Treonina Quinasas/genética , Vesículas Secretoras/inmunología , Simbiosis/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/inmunologíaRESUMEN
Biodiversity contributes to the ecological and climatic stability of the Amazon Basin1,2, but is increasingly threatened by deforestation and fire3,4. Here we quantify these impacts over the past two decades using remote-sensing estimates of fire and deforestation and comprehensive range estimates of 11,514 plant species and 3,079 vertebrate species in the Amazon. Deforestation has led to large amounts of habitat loss, and fires further exacerbate this already substantial impact on Amazonian biodiversity. Since 2001, 103,079-189,755 km2 of Amazon rainforest has been impacted by fires, potentially impacting the ranges of 77.3-85.2% of species that are listed as threatened in this region5. The impacts of fire on the ranges of species in Amazonia could be as high as 64%, and greater impacts are typically associated with species that have restricted ranges. We find close associations between forest policy, fire-impacted forest area and their potential impacts on biodiversity. In Brazil, forest policies that were initiated in the mid-2000s corresponded to reduced rates of burning. However, relaxed enforcement of these policies in 2019 has seemingly begun to reverse this trend: approximately 4,253-10,343 km2 of forest has been impacted by fire, leading to some of the most severe potential impacts on biodiversity since 2009. These results highlight the critical role of policy enforcement in the preservation of biodiversity in the Amazon.
Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/legislación & jurisprudencia , Sequías , Agricultura Forestal/legislación & jurisprudencia , Bosque Lluvioso , Incendios Forestales/estadística & datos numéricos , Animales , Brasil , Cambio Climático/estadística & datos numéricos , Bosques , Mapeo Geográfico , Plantas , Árboles/fisiología , VertebradosRESUMEN
Ovarian cancer is an aggressive gynecological tumor characterized by a high relapse rate and chemoresistance. Ovarian cancer exhibits the cancer hallmark of elevated glycolysis, yet effective strategies targeting cancer cell metabolic reprogramming to overcome therapeutic resistance in ovarian cancer remain elusive. Here, we revealed that epigenetic silencing of Otubain 2 (OTUB2) is a driving force for mitochondrial metabolic reprogramming in ovarian cancer, which promotes tumorigenesis and chemoresistance. Mechanistically, OTUB2 silencing destabilizes sorting nexin 29 pseudogene 2 (SNX29P2), which subsequently prevents hypoxia-inducible factor-1 alpha (HIF-1α) from von Hippel-Lindau tumor suppressor-mediated degradation. Elevated HIF-1α activates the transcription of carbonic anhydrase 9 (CA9) and drives ovarian cancer progression and chemoresistance by promoting glycolysis. Importantly, pharmacological inhibition of CA9 substantially suppressed tumor growth and synergized with carboplatin in the treatment of OTUB2-silenced ovarian cancer. Thus, our study highlights the pivotal role of OTUB2/SNX29P2 in suppressing ovarian cancer development and proposes that targeting CA9-mediated glycolysis is an encouraging strategy for the treatment of ovarian cancer.
Asunto(s)
Anhidrasa Carbónica IX , Silenciador del Gen , Mitocondrias , Neoplasias Ováricas , Tioléster Hidrolasas , Animales , Femenino , Humanos , Ratones , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Anhidrasa Carbónica IX/metabolismo , Anhidrasa Carbónica IX/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Reprogramación Metabólica , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/tratamiento farmacológico , Tioléster Hidrolasas/genéticaRESUMEN
Iron homeostasis is of critical importance to living organisms. Drosophila melanogaster has emerged as an excellent model to study iron homeostasis, while the regulatory mechanism of iron metabolism remains poorly understood. Herein, we accidently found that knockdown of juvenile hormone (JH) acid methyltransferase (Jhamt) specifically in the fat body, a key rate-limiting enzyme for JH synthesis, led to iron accumulation locally, resulting in serious loss and dysfunction of fat body. Jhamt knockdown-induced phenotypes were mitigated by iron deprivation, antioxidant and Ferrostatin-1, a well-known inhibitor of ferroptosis, suggesting ferroptosis was involved in Jhamt knockdown-induced defects in the fat body. Further study demonstrated that upregulation of Tsf1 and Malvolio (Mvl, homolog of mammalian DMT1), two iron importers, accounted for Jhamt knockdown-induced iron accumulation and dysfunction of the fat body. Mechanistically, Kr-h1, a key transcription factor of JH, acts downstream of Jhamt inhibiting Tsf1 and Mvl transcriptionally. In summary, the findings indicated that fat body-derived Jhamt is required for the development of Drosophila by maintaining iron homeostasis in the fat body, providing unique insight into the regulatory mechanisms of iron metabolism in Drosophila.
Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Cuerpo Adiposo , Homeostasis , Hierro , Metiltransferasas , Animales , Drosophila melanogaster/metabolismo , Hierro/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Cuerpo Adiposo/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Hormonas Juveniles/metabolismo , Ferroptosis/fisiología , Factores de Transcripción de Tipo KruppelRESUMEN
Vagus nerve regulates viral infection and inflammation via the alpha 7 nicotinic acetylcholine receptor (α7 nAChR); however, the role of α7 nAChR in ZIKA virus (ZIKV) infection, which can cause severe neurological diseases such as microcephaly and Guillain-Barré syndrome, remains unknown. Here, we first examined the role of α7 nAChR in ZIKV infection in vitro. A broad effect of α7 nAChR activation was identified in limiting ZIKV infection in multiple cell lines. Combined with transcriptomics analysis, we further demonstrated that α7 nAChR activation promoted autophagy and ferroptosis pathways to limit cellular ZIKV viral loads. Additionally, activation of α7 nAChR prevented ZIKV-induced p62 nucleus accumulation, which mediated an enhanced autophagy pathway. By regulating proteasome complex and an E3 ligase NEDD4, activation of α7 nAChR resulted in increased amount of cellular p62, which further enhanced the ferroptosis pathway to reduce ZIKV infection. Moreover, utilizing in vivo neonatal mouse models, we showed that α7 nAChR is essential in controlling the disease severity of ZIKV infection. Taken together, our findings identify an α7 nAChR-mediated effect that critically contributes to limiting ZIKV infection, and α7 nAChR activation offers a novel strategy for combating ZIKV infection and its complications.
Asunto(s)
Autofagia , Ferroptosis , Infección por el Virus Zika , Virus Zika , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Humanos , Ratones , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/genética , Línea Celular , Modelos Animales de Enfermedad , Carga Viral , Virus Zika/fisiología , Infección por el Virus Zika/virología , Infección por el Virus Zika/metabolismoRESUMEN
BACKGROUND: Immune checkpoint blockade (ICB) therapy provides remarkable clinical benefits for multiple cancer types. However, the overall response rate to ICB therapy remains low in esophageal squamous cell carcinoma (ESCC). This study aimed to identify biomarkers of ICB therapy for ESCC and interrogate its potential clinical relevance. METHODS: We investigated gene expression in 42 treatment-naïve ESCC tumor tissues and identified differentially expressed genes, tumor-infiltrating lymphocytes and immune-related genes signatures associated with differential immunotherapy responses. We systematically assessed the tumor microenvironment using the NanoString GeoMx digital spatial profiler, single-cell RNA-seq and multiplex immunohistochemistry in ESCC. Finally, we evaluated the associations between HLA-A-positive tertiary lymphoid structures (TLSs) and patients' responses to ICB in 60 ESCC patients. RESULTS: Tumor infiltrating B lymphocytes and several immune-related gene signatures, such as the antigen presenting machinery (APM) signature, are significantly elevated in ICB treatment responders. Multiplex immunohistochemistry identified the presence of HLA-A+ TLSs and showed that TLS-resident cells increasingly express HLA-A as TLSs mature. Most TLS-resident HLA-A+ cells are tumor-infiltrating T (TIL-T) or tumor-infiltrating B (TIL-B) lymphocytes. Digital spatial profiling of spatially distinct TIL-T lymphocytes and single-cell RNA-seq data from 60 ESCC tumor tissues revealed that CXCL13-expressing exhausted TIL-Ts inside TLSs are reactivated with elevated expression of the APM signature as TLSs mature. Finally, we demonstrated that HLA-A+ TLSs and their major cellular components, TIL-Ts and TIL-Bs, are associated with a clinical benefit from ICB treatment for ESCC. CONCLUSIONS: HLA-A+ TLSs are present in ESCC tumor tissues. TLS-resident TIL-Ts with elevated expression of the APM signature may be reactivated. HLA-A+ TLSs and their major cellular components, TIL-Ts and TIL-Bs, may serve as biomarkers for ICB-treated ESCC patients.
Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Antígenos HLA-A , Inmunoterapia , Linfocitos Infiltrantes de Tumor , Estructuras Linfoides Terciarias , Microambiente Tumoral , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Carcinoma de Células Escamosas de Esófago/inmunología , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/terapia , Carcinoma de Células Escamosas de Esófago/genética , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/patología , Neoplasias Esofágicas/inmunología , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Antígenos HLA-A/inmunología , Antígenos HLA-A/genética , Femenino , Masculino , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Persona de Mediana Edad , Anciano , Biomarcadores de Tumor/metabolismoRESUMEN
Cardiovascular diseases (CVD) represent one of the most considerable global health threats, owing to their high incidence and mortality rates. Despite the ongoing advancements in detection, prevention, treatment, and prognosis of CVD, which have resulted in a decline in both incidence and mortality rates, CVD remains a major public health concern. Therefore, novel diagnostic biomarkers and therapeutic interventions are imperative to minimise the risk of CVD. Non-coding RNAs (ncRNAs) have recently gained increasing attention, with PIWI-interacting RNAs (piRNAs) emerging as a class of small ncRNAs traditionally recognised for their role in silencing transposons within cells. Although the functional roles of PIWI proteins and piRNAs in human cells remain unclear, growing evidence suggests that these molecules are gradually becoming valuable biomarkers for the diagnosis and treatment of CVD. This review provides a comprehensive summary of the latest studies on piRNAs in CVD. This review discusses the roles of piRNAs in various cardiovascular subtypes, including myocardial hypertrophy, heart failure, myocardial infarction, and cardiac regeneration. The perceived insights may contribute novel perspectives for the diagnosis and treatment of CVD.
Asunto(s)
Biomarcadores , Enfermedades Cardiovasculares , ARN Interferente Pequeño , Humanos , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/diagnóstico , Biomarcadores/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/genética , Animales , ARN de Interacción con PiwiRESUMEN
Trichoderma is an excellent biocontrol agent, but most Trichoderma genomes remained at the scaffold level, which greatly limits the research of biocontrol mechanism. Here, we reported the chromosome-level genome of Trichoderma harzianum CGMCC20739 (Tha739), T. asperellum CGMCC11653 (Tas653) and T. atroviride CGMCC40488 (Tat488), they were assembled into 7 chromosomes, genome size were 40 Mb (10,611 genes), 37.3 Mb (10,102 genes) and 36.3 Mb (9,896 genes), respectively. The positive selected genes of three strains were associated to response to stimulus, signaling transduction, immune system and localization. Furthermore, the number of transcription factors in Tha739, Tas653 and Tat488 strains had significant difference, which may contribute to the differential biocontrol function and stress tolerance. The genes related to signal transduction and gene clusters related to antimicrobial compounds in Tha739 were more than those in Tas653 and Tat488, which showed Tha739 may keenly sense other fungi and quickly secret antimicrobial compounds to inhibit other fungi. Tha739 also contained more genes associated to detoxification, antioxidant and nutrition utilization, indicating it had higher stress-tolerance to hostile environments. And the substrate for synthesizing IAA in Tha739 was mainly 3-indole acetonitrile and indole acetaldehyde, but in Tat488, it was indole-3-acetamide, moreover, Tha739 secreted more phosphatase and phytase and was more related to soil phosphorus metabolism, Tat488 secreted more urease and was more related to soil nitrogen metabolism. These candidate genes related to biocontrol function and stress-tolerance laid foundations for construction of functional strains. All above proved the difference in biocontrol function of Tha739, Tas653 and Tat488 strains, however, the defects in individual strains could be compensated for through Trichoderma-biome during the commercial application process of biocontrol Trichoderma strains.
Asunto(s)
Genoma Fúngico , Trichoderma , Genoma Fúngico/genética , Trichoderma/genética , Factores de Transcripción/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Familia de Multigenes/genética , Hypocreales/genéticaRESUMEN
Low-frequency vibrations exist widely in the natural environment and in human activities. Low-frequency tri-axial vibration sensors are enormously applied in the fields of seismic monitoring, building structure health monitoring, aerospace navigating, etc. Their sensitivity calibration accuracy directly determines whether their applications can work reliably. Although the laser interferometry recommended by the International Standardization Organization (ISO) is commonly used to achieve the vibration calibration, it suffers from the shortages of low-frequency range, high cost, low efficiency, and limited applicable environment. In this study, a novel monocular vision-based dynamic calibration method is proposed, which determines the whole sensitivities of tri-axial sensors by the monocular vision method to accurately measure the spatial input excitation. This method improves the calibration performance by eliminating the installation error and enhancing calibration efficiency via decreasing reinstallations. The experimental results compared with the laser interferometry demonstrate that the investigated method can obtain similar calibration accuracy in the range of 0.16-2â Hz with more efficiency. The corresponding maximum relative deviations of X-, Y-, and Z-axial sensitivities were approximately 2.5%, 1.8%, and 0.4%. In addition, the maximum relative standard deviation of the investigated method was only about 0.3% in this range.
RESUMEN
Accurate pose measurement is crucial for parallel manipulators (PM). This study designs a novel integrated 6-DOF motion tracking system to achieve precise online pose measurement. However, the presence of geometric errors introduces imperfections in the accuracy of the measured pose. Based on the displacement information of six grating rulers, measurement pose is obtained through forward kinematics. By comparing the measurement results with the actual pose information captured by stereo vision, measurement errors can be obtained. A closed-loop vector-based kinematic model and an error model are established, and then the geometric errors are identified with the least-squares method. Finally, the geometric calibration experiments are conducted, and the results show that the measurement accuracy has significantly improved, with the average position error decreasing from 3.148 mm to 0.036 mm, and the average orientation error is decreased from 0.225° to 0.022°.
RESUMEN
Bisphenol A (BPA) has been implicated in cognitive impairment. Icariin is the main active ingredient extracted from Epimedium Herb with protective function of nervous system. However, the potential therapeutic effects of Icariin on spatial memory deficits induced by developmental BPA exposure in Sprague-Dawley rats have not been investigated. This study investigated the therapeutic effect of Icariin (10 mg/kg/day, from postnatal day (PND) 21 to PND 60 by gavage) on spatial memory deficits in rat induced by developmental BPA exposure (1 mg/kg/day, from embryonic to PND 60), demonstrating that Icariin can markedly improve spatial memory in BPA-exposed rat. Furthermore, intra-gastric administration of Icariin could attenuate abnormal hippocampal cell dispersion and loss, improved the dendritic spine density and Nissl bodies. Moreover, Icariin reversed BPA induced reduction of frequency of miniature excitatory postsynaptic currents(mEPSC) and decrease of Vesicular glutamate transporter 1(VGlut1). Collectively, Icariin could effectively rescue BPA-induced spatial memory impairment in male rats by preventing cell loss and reduction of dendritic spines in the hippocampus. In addition, we also found that VGlut1 is a critical target in the repair of BPA-induced spatial memory by Icariin. Thus, Icariin may be a promising therapeutic agent to attenuate BPA-induced spatial memory deficits.
Asunto(s)
Flavonoides , Hipocampo , Fenoles , Memoria Espacial , Ratas , Animales , Masculino , Ratas Sprague-Dawley , Compuestos de Bencidrilo/toxicidad , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/prevención & control , Aprendizaje por LaberintoRESUMEN
Stress tolerance is a vital attribute for all living beings to cope with environmental adversities. IrrE (also named PprI) from Deinococcus radiodurans enhances resistance to extreme radiation stress by functioning as a global regulator, mediating the transcription of genes involved in deoxyribonucleic acid (DNA) damage response (DDR). The expression of IrrE augmented the resilience of various species to heat, radiation, oxidation, osmotic stresses and inhibitors, encompassing bacterial, fungal, plant, and mammalian cells. Moreover, IrrE was employed in a global regulator engineering strategy to broaden its applications in stress tolerance. The regulatory impacts of heterologously expressed IrrE have been investigated at the molecular and systems level, including the regulation of genes, proteins, modules, or pathways involved in DNA repair, detoxification proteins, protective molecules, native regulators and other aspects. In this review, we discuss the regulatory role and mechanism of IrrE in the antiradiation response of D. radiodurans. Furthermore, the applications and regulatory effects of heterologous expression of IrrE to enhance abiotic stress tolerance are summarized in particular.
Asunto(s)
Proteínas Bacterianas , Deinococcus , Estrés Fisiológico , Deinococcus/genética , Deinococcus/efectos de la radiación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Daño del ADNRESUMEN
The aim of the study was to explore the clinical features related to early hypothyroidism and the relationship between the changes of thyrotropin receptor antibodies (TRAb) and early hypothyroidism in the course of 131I treatment for Graves' disease. This study was a retrospective observation, including 226 patients who received the first 131I treatment. The general information and laboratory tests were collected before and after 131I treatment, and the laboratory data affecting the difference in disease outcome were analyzed. According to the changes of antibodies in the third month, whether the changes of antibodies were involved in the occurrence of early-onset hypothyroidism was analyzed. Early onset hypothyroidism occurred in 165 of 226 patients, and the results showed that the incidence of early hypothyroidism was higher in patients with low baseline TRAb level (p=0.03) and increased TRAb after treatment (p=0.007). Both baseline TRAb levels (p<0.001) and the 24-hour iodine uptake rate (p=0.004) are significant factors influencing the changes in TRAb. The likelihood of a rise in TRAb was higher when the baseline TRAb was less than 18.55 U/l and the 24-hour iodine uptake level exceeded 63.61%. Low baseline and elevated post-treatment levels of TRAb were significantly associated with early-onset hypothyroidism after 131I treatment. Monitoring this index during RAI treatment is helpful in identifying early-onset hypothyroidism and mastering the clinical outcome and prognosis of Graves' disease.
RESUMEN
Nigrospora oryzae, a newly identified pathogen, is responsible for poplar leaf blight, causing significant harm to poplar growth. Here, we describe, for the first time, a biological control method for the control of poplar leaf blight via the applications of 3 dominant Trichoderma strains/species. In this study, dominant Trichoderma species/strains with the potential for biocontrol were identified and then further characterised via dual culture assays, volatile organic compounds (VOCs), and culture filtrates. The biocontrol efficacy of these strains against N. oryzae was found to exceed 60%. Furthermore, the reactive oxygen species (ROS) content in Populus davidiana × P. alba var. pyramidalis (PdPap) leaves pretreated with these Trichoderma strains significantly decreased. Furthermore, pretreatment of PdPap with a combination of these Trichoderma (Tcom) resulted in 9.71-fold and 1.95-fold increases in peroxidase (POD) and superoxide dismutase (SOD) activity, respectively, and 3.87-fold decrease in the MDA content compared to controls. Moreover, Tcom pretreatment activated the salicylic acid (SA) and jasmonic acid (JA) pathway-dependent defence responses of poplar, upregulating pathogenesis-related protein (PR) and MYC proto-oncogene (MYC-R) by more than 12-fold and 17.32-fold, respectively. In addition, Trichoderma treatments significantly increased the number of lateral roots, aboveground biomass, and stomata number and density of PdPap, and Tcom was superior to the single pretreatments. The soil pH also became weakly acidic in these pretreatments, which is beneficial for the growth of PdPap seedlings. These findings indicate that these dominant Trichoderma strains can effectively increase biocontrol and poplar growth promotion.
Asunto(s)
Ascomicetos , Enfermedades de las Plantas , Hojas de la Planta , Populus , Populus/microbiología , Populus/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Ascomicetos/fisiología , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Trichoderma/fisiología , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Agentes de Control BiológicoRESUMEN
BACKGROUND: Infectious endocarditis (IE) is an infectious disease caused by direct invasion of the heart valve, endocardium, or adjacent large artery endocardium by pathogenic microorganisms. Despite its relatively low incidence, it has a poor prognosis and a high mortality. Intracranial infectious aneurysms (IIA) and ruptured sinus of Valsalva aneurysm (RSVA) are rare complications of IE. CASE PRESENTATION: We report a young male patient with symptoms of respiratory tract infection, heart murmurs and other symptoms and signs. The patient also had kidney function impairment and poor response to symptomatic therapy. Blood culture was negative, but echocardiography was positive, which met the diagnostic criteria for infective endocarditis. Moreover, an echocardiography showed a ruptured sinus of Valsalva aneurysm with a ventricular septal defect. Finally, secondary rupture of an IIA with multiple organ damage led to a poor clinical outcome. CONCLUSION: Therefore, in the clinical setting, for young patients with unexplained fever, chest pain, or palpitations, we need to be highly vigilant, considering the possibility of infective endocarditis and promptly performing blood culture, echocardiography, cerebrovascular imaging and so on, in order to facilitate early proper diagnosis and treatment.
Asunto(s)
Aneurisma Intracraneal , Seno Aórtico , Humanos , Masculino , Seno Aórtico/diagnóstico por imagen , Aneurisma Intracraneal/complicaciones , Aneurisma Intracraneal/diagnóstico , Aneurisma Intracraneal/diagnóstico por imagen , Adulto , Endocarditis/complicaciones , Endocarditis/diagnóstico , Endocarditis/diagnóstico por imagen , Aneurisma Roto/complicaciones , Aneurisma Roto/diagnóstico por imagen , Aneurisma Roto/microbiología , Rotura de la Aorta/complicaciones , Rotura de la Aorta/diagnóstico por imagen , Rotura de la Aorta/microbiología , Endocarditis Bacteriana/complicaciones , Endocarditis Bacteriana/diagnóstico , Endocarditis Bacteriana/diagnóstico por imagen , Aneurisma Infectado/complicaciones , Aneurisma Infectado/diagnóstico por imagen , Aneurisma Infectado/diagnóstico , EcocardiografíaRESUMEN
BACKGROUND: Diet plays an important role in Helicobacter pylori (HP) infection, and our objective was to investigate potential connections between dietary patterns, specific food groups, and HP infection status in U.S. adults. METHODS: The data for this study was obtained from the NHANES (National Health and Nutrition Survey) database for the year 1999-2000. This cross-sectional study involved the selection of adults aged 20 years and older who had undergone dietary surveys and HP testing. Factor analysis was employed to identify dietary patterns, and logistic regression models were utilized to assess the association between these dietary patterns and specific food groups with HP infection status. RESULT: Based on the inclusion and exclusion criteria, our final analysis included 2,952 individuals. The median age of participants was 51.0 years, and 48.7% were male. In the study population, the overall prevalence of HP infection was 44.9%. Factor analysis revealed three distinct dietary patterns: High-fat and high-sugar pattern (including solid fats, refined grains, cheese, and added sugars); Vegetarian pattern (comprising fruits, juices, and whole grains); Healthy pattern (encompassing vegetables, nuts and seeds, and oils). Adjusted results showed that the high-fat and high-sugar pattern (OR = 0.689, 95% CI: 0.688-0.690), vegetarian pattern (OR = 0.802, 95% CI: 0.801-0.803), and healthy pattern (OR = 0.717, 95% CI: 0.716-0.718) were all linked to a lower likelihood of HP infection. Further analysis of the high-fat and high-sugar pattern revealed that solid fats (OR = 0.717, 95% CI: 0.716-0.718) and cheese (OR = 0.863, 95% CI: 0.862-0.864) were protective factors against HP infection, while refined grains (OR = 1.045, 95% CI: 1.044-1.046) and added sugars (OR = 1.014, 95% CI: 1.013-1.015) were identified as risk factors for HP infection. CONCLUSION: Both the Vegetarian pattern and the Healthy pattern are associated with a reduced risk of HP infection. Interestingly, the High-fat and High-sugar pattern, which is initially considered a risk factor for HP infection when the score is low, becomes a protective factor as the intake increases. Within this pattern, animal foods like solid fats and cheese play a protective role, while the consumption of refined grains and added sugars increases the likelihood of HP infection.
Asunto(s)
Queso , Infecciones por Helicobacter , Helicobacter pylori , Encuestas Nutricionales , Humanos , Masculino , Estudios Transversales , Infecciones por Helicobacter/epidemiología , Persona de Mediana Edad , Femenino , Queso/microbiología , Adulto , Dieta , Grasas de la Dieta , Anciano , Adulto Joven , Prevalencia , Factores de Riesgo , Estados Unidos/epidemiología , Conducta AlimentariaRESUMEN
The hydration process of cement-based materials primarily results in the formation of calcium silicate hydrate (CSH), which is crucial in deciding how long concrete will last. This study utilizes molecular dynamics simulation technology to explore the freezing behavior of pure water solutions within various calcium silicate hydrate (CSH) matrices. The investigated matrices encompass four different Ca/Si ratios. According to the simulation, as ice crystals develop close to the surface of CSH, the CSH matrix strengthens its hydrogen and ionic interactions with water molecules, which effectively prevents water molecules from crystallizing and nucleating. Consequently, these molecules compose an unfrozen water film structure that bridges between ice crystals and the CSH matrix. The research also reveals an intriguing relationship between silica chain behavior on the Ca/Si ratio and the CSH surface. Surface flaws arise as a result of the silica chains of CSH breaking into shorter segments as the Ca/Si ratio increases. These surface defects manifest as grooves on the matrix's surface, effectively capturing and retaining specific water molecules. The CSH matrix's hydrogen bonds with water molecules are weakened as a result of this process, facilitating their participation in the crystallization process, and leading to a thinner unfrozen water film thickness with an increased Ca/Si ratio. This study contributes to a greater knowledge of the performance and dependability of cement-based products by offering molecular-level insights into the freezing actions of liquids in gel pores.
RESUMEN
Human beings are routinely exposed to chronic and low dose of Bisphenols (BPs) due to their widely pervasiveness in the environment. BPs hold similar chemical structures to 17ß-estradiol (E2) and thyroid hormone, thus posing threats to human health by rendering the endocrine system dysfunctional. Among BPs, Bisphenol-A (BPA) is the best-known and extensively studied endocrine disrupting compound (EDC). BPA possesses multisystem toxicity, including reproductive toxicity, neurotoxicity, hepatoxicity and nephrotoxicity. Particularly, the central nervous system (CNS), especially the developing one, is vulnerable to BPA exposure. This review describes our current knowledge of BPA toxicity and the related molecular mechanisms, with an emphasis on the role of Wnt signaling in the related processes. We also discuss the role of oxidative stress, endocrine signaling and epigenetics in the regulation of Wnt signaling by BPA exposure. In summary, dysfunction of Wnt signaling plays a key role in BPA toxicity and thus can be a potential target to alleviate EDCs induced damage to organisms.