Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(24): 10717-10728, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38847549

RESUMEN

Ruthenium single-atom catalysts have great potential in ammonia-selective catalytic oxidation (NH3-SCO); however, the stable sp3 hybrid orbital of NH3 molecules makes N(sp3)-H dissociation a challenge for conventional symmetrical metallic oxide catalysts. Herein, we propose a heterogeneous interface reverse atom capture strategy to construct Ru with unique asymmetric Ru1N2O1 coordination. Ru1N2O1/CeO2 exhibits intrinsic low-temperature conversion (T100 at 160 °C) compared to symmetric coordinated Ru-based (280 °C), Ir-based (220 °C), and Pt-based (200 °C) catalysts, and the TOF is 65.4 times that of Ag-based catalysts. The experimental and theoretical studies show that there is a strong d-p orbital interaction between Ru and N atoms, which not only enhances the adsorption of ammonia at the Ru1N2O1 position but also optimizes the electronic configuration of Ru. Furthermore, the affinity of Ru1N2O1/CeO2 to water is significantly weaker than that of conventional catalysts (the binding energy of the Pd3Au1 catalyst is -1.19 eV, but it is -0.39 eV for our material), so it has excellent water resistance. Finally, the N(sp3)-H activation of NH3 requires the assistance of surface reactive oxygen species, but we found that asymmetric Ru1N2O1 can directly activate the N(sp3)-H bond without the involvement of surface reactive oxygen species. This study provides a novel principle for the rational design of the proximal coordination of active sites to achieve its optimal catalytic activity in single-atom catalysis.


Asunto(s)
Amoníaco , Oxidación-Reducción , Rutenio , Amoníaco/química , Catálisis , Rutenio/química
2.
Environ Sci Technol ; 58(1): 906-914, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38126778

RESUMEN

Developing effective catalysts for N2O decomposition at low temperatures is challenging. Herein, the Cs-O-Co structure, as the active species fabricated by single-layer atoms of Cs over pure Co3O4, originally exhibited great catalytic activity of N2O decomposition in simulated vehicle exhaust and flue gas from nitric acid plants. A similar catalytic performance was also observed for Na, K, and Rb alkali metals over Co3O4 catalysts for N2O decomposition, illustrating the prevalence of alkali-metal-promotion over Co3O4 in practical applications. The catalytic results indicated that the TOF of Co3O4 catalysts loaded by 4 wt% Cs was nearly 2 orders of magnitude higher than that of pure Co3O4 catalysts at 300 °C. Interestingly, the conversions of N2O decomposition over Co3O4 catalysts doped by the same Cs loadings were significantly inhibited. Characterization results indicated that the primary active Cs-O-Co structure was formed by highly orbital hybridization between the Cs 6s and the O 2p orbital over the supported Co3O4 catalysts, where Cs could donate electrons to Co3+ and produce much more Co2+. In contrast, the doped Co3O4 catalysts were dominated by Cs2O2 species; meanwhile, CsOH species was generated by adsorbed water vapor led to a significant decrease in catalytic activity. In situ DRIFTS, rigorous kinetics, and DFT results elaborated the reaction mechanism of N2O decomposition, where the direct decomposition of adsorbed N2O was the kinetically relevant step over supported catalysts in the absence of O2. Meanwhile, the assistance of adsorbed N2O decomposition by activated oxygen was observed as the kinetically relevant step in the presence of O2. The results may pave a promising path toward developing alkali-metal-promotion catalysts for efficient N2O decomposition.


Asunto(s)
Cobalto , Óxidos , Óxidos/química , Cobalto/química , Álcalis
3.
Environ Sci Technol ; 58(1): 960-969, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38150269

RESUMEN

SO2 reduction with CH4 to produce elemental sulfur (S8) or other sulfides is typically challenging due to high energy barriers and catalyst poisoning by SO2. Herein, we report that a comproportionation reaction (CR) induced by H2S recirculating significantly accelerates the reactions, altering reaction pathways and enabling flexible adjustment of the products from S8 to sulfides. Results show that SO2 can be fully reduced to H2S at a lower temperature of 650 °C, compared to the 800 °C required for the direct reduction (DR), effectively eliminating catalyst poisoning. The kinetic rate constant is significantly improved, with CR at 650 °C exhibiting about 3-fold higher value than DR at 750 °C. Additionally, the apparent activation energy decreases from 128 to 37 kJ/mol with H2S, altering the reaction route. This CR resolves the challenges related to robust sulfur-oxygen bond activation and enhances CH4 dissociation. During the process, the well-dispersed lamellar MoS2 crystallites with Co promoters (CoMoS) act as active species. H2S facilitates the comproportionation reaction, reducing SO2 to a nascent sulfur (Sx*). Subsequently, CH4 efficiently activates CoMoS in the absence of SO2, forming H2S. This shifts the mechanism from Mars-van Krevelen (MvK) in DR to sequential Langmuir-Hinshelwood (L-H) and MvK in CR. Additionally, it mitigates sulfation poisoning through this rapid activation reaction pathway. This unique comproportionation reaction provides a novel strategy for efficient sulfur resource utilization.


Asunto(s)
Metano , Dióxido de Azufre , Metano/química , Sulfuros/química , Temperatura , Azufre/química , Oxidación-Reducción
4.
Environ Sci Technol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934498

RESUMEN

The elevation of the low-temperature oxidation activity for Pt/CeO2 catalysts is challenging to meet the increasingly stringent requirements for effectively eliminating carbon monoxide (CO) from automobile exhaust. Although reducing activation is a facile strategy for boosting reactivity, past research has mainly concentrated on applying H2 as the reductant, ignoring the reduction capabilities of CO itself, a prevalent component of automobile exhaust. Herein, atomically dispersed Pt/CeO2 was fabricated and activated by CO, which could lower the 90% conversion temperature (T90) by 256 °C and achieve a 20-fold higher CO consumption rate at 200 °C. The activated Pt/CeO2 catalysts showed exceptional catalytic oxidation activity and robust hydrothermal stability under the simulated working conditions for gasoline or diesel exhausts. Characterization results illustrated that the CO activation triggered the formation of a large portion of Pt0 terrace sites, acting as inherent active sites for CO oxidation. Besides, CO activation weakened the Pt-O-Ce bond strength to generate a surface oxygen vacancy (Vo). It served as the oxygen reservoir to store the dissociated oxygen and convert it into active dioxygen intermediates. Conversely, H2 activation failed to stimulate Vo, but triggered a deactivating transformation of the Pt nanocluster into inactive PtxOy in the presence of oxygen. The present work offers coherent insight into the upsurging effect of CO activation on Pt/CeO2, aiming to set up a valuable avenue in elevating the efficiency of eliminating CO, C3H6, and NH3 from automobile exhaust.

5.
Environ Sci Technol ; 57(7): 2949-2957, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36751011

RESUMEN

Resolving severe deactivation by alkali metals for selective catalytic reduction of NOx with NH3 (NH3-SCR) is challenging. Herein, surface Ce2(SO4)3 species as a self-protection armor originally exhibited antipoisoning of potassium over ceria-based catalysts. The self-protection armor was also effective for other alkali (Na), alkali-earth (Ca), and heavy (Pb) metals, considerably resolving the deactivation of ceria-based SCR catalysts in practical applications. The catalytic activity tests indicated that the presence of ∼0.8 wt % potassium did not deactivate sulfated CeO2 catalysts, yet commercial V2O5-WO3/TiO2 catalysts almost lost the NOx conversions. Potassium preferably bonded with surface sulfates to form K2SO4 accompanied with the majority of surface Ce2(SO4)3 over sulfated CeO2 catalysts, but preferably coupled with active vanadia to generate inactive KVO3 species over V2O5-WO3/TiO2 catalysts. Such an active Ce2(SO4)3 species facilitated the adsorption and reactivity of NH3 and NOx, enabling ceria catalysts to maintain high catalytic efficiency in the presence of potassium. Conversely, the introduction of potassium into V2O5-WO3/TiO2 catalysts caused a considerable loss of surface acidity, hindering catalyst reactivity during the SCR reaction. The self-protection armor of Ce2(SO4)3 species may open a promising pathway to develop efficient ceria-based SCR catalysts with strong antipoisoning ability.


Asunto(s)
Amoníaco , Titanio , Catálisis , Potasio , Óxidos de Azufre , Álcalis
6.
Environ Sci Technol ; 57(50): 21272-21283, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38051813

RESUMEN

Cobalt-based catalysts have been identified for effective CO oxidation, but their activity is limited by molecular O2 and interfacial oxygen passivation at low temperatures. Optimization of the d-band structure of the cobalt center is an effective method to enhance the dissociation of oxygen species. Here, we developed a novel Co/FeOx catalyst based on selective cationic deposition to anchor Co cations at the defect site of FeOx, which exhibited superior intrinsic low-temperature activity (100%, 115 °C) compared to that of Pt/Co3O4 (100%, 140 °C) and La/Co2O3 (100%, 150 °C). In contrast to catalysts with oxygen defects, the cationic Fe defect in Co/FeOx showed an exceptional ability to accept electrons from the Co 3d orbital, resulting in significant electron delocalization at the Co sites. The Co/FeOx catalyst exhibited a remarkable turnover frequency of 178.6 per Co site per second, which is 2.3 times higher than that of most previously reported Co-based catalysts. The d-band center is shifted upward by electron redistribution effects, which promotes the breaking of the antibonding orbital *π of the O═O bond. In addition, the controllable regulation of the Fe-Ov-Co oxygen defect sites enlarges the Fe-O bond from 1.97 to 2.02 Å to activate the lattice oxygen. Moreover, compared to CoxFe3-xO4, Co/FeOx has a lower energy barrier for CO oxidation, which significantly accelerates the rate-determining step, *COO formation. This study demonstrates the feasibility of modulating the d-band structure to enhance O2 molecular and interfacial lattice oxygen activation.


Asunto(s)
Nanoestructuras , Cationes , Cobalto , Electrónica , Oxígeno
7.
Environ Sci Technol ; 57(45): 17566-17576, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37906097

RESUMEN

Low-temperature catalytic oxidation is of significance to the degradation of halogenated volatile organic compounds (HVOCs) to avoid hazardous byproducts with low energy consumption. Efficient molecular oxygen (O2) activation is pivotal to it but usually limited by the insufficient electron cloud density at the metal center. Herein, Ru-B catalysts with enhanced electron density around Ru were designed to achieve efficient O2 activation, realizing dibromomethane (DBM) degradation T90 at 182 °C on RuB1/TiO2 (about 30 °C lower than pristine Ru/TiO2) with a TOFRu value of 0.055 s-1 (over 8 times that of Ru/TiO2). Compared to the limited electron transfer (0.02 e) on pristine Ru/TiO2, the Ru center gained sufficient negative charges (0.31 e) from BOx via strong p-d orbital hybridization. The Ru-B site then acted as the electron donor complexing with the 2π* antibonding orbital of O2 to realize the O2 dissociative activation. The reactive oxygen species formed thereby could initiate a fast conversion and oxidation of formate intermediates, thus eventually boosting the low-temperature catalytic activity. Furthermore, we found that the Ru-B sites for O2 activation have adaptation for pollutant removal and multiple metal availability. Our study shed light on robust O2 activation catalyst design based on electron density adjustment by boron.


Asunto(s)
Boro , Electrones , Temperatura , Metales
8.
Environ Sci Technol ; 57(48): 20431-20439, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37992298

RESUMEN

The interaction between mercury (Hg) and inorganic compounds, including selenium (Se), sulfur (S), and halogens (X = Cl, Br, or I), plays a critical role in the global mercury cycle. However, most previously reported mercury compounds are susceptible to reduction, leading to the release of elemental mercury (Hg0) and causing secondary pollution. In this study, we unveil a groundbreaking discovery that underscores the vital role of halogenation in creating exceptionally stable Hg3Se2X2 compounds. Through the dynamic interplay of Hg, Se, and halogens, an intermediary stage denoted [HgSe]m[HgX2]n emerges, and this transformative process significantly elevates the stabilization of mercury. Remarkably, halogen ions strategically occupy pores at the periphery of HgSe clusters, engendering a more densely packed atomic arrangement of Hg, Se, and halogen components. A marked enhancement in both thermal and acid stability is observed, wherein temperatures ascend from 130 to 300 °C (transitioning from HgSe to Hg3Se2Cl2). This sequence of escalating stability follows the order HgSe < Hg3Se2I2 < Hg3Se2Br2 < Hg3Se2Cl2 for thermal resilience, complemented by virtually absent acid leaching. This innovative compound formation fundamentally alters the transformation pathways of gaseous Hg0 and ionic mercury (Hg2+), resulting in highly efficient in situ removal of both Hg0 and Hg2+ ions. These findings pave the way for groundbreaking advancements in mercury stabilization and environmental remediation strategies, offering a comprehensive solution through the creation of chemically stable precipitates.


Asunto(s)
Compuestos de Mercurio , Mercurio , Selenio , Mercurio/química , Halogenación , Halógenos , Iones , Compuestos de Mercurio/química
9.
Environ Sci Technol ; 57(13): 5424-5432, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36939455

RESUMEN

Flue gas mercury removal is mandatory for decreasing global mercury background concentration and ecosystem protection, but it severely suffers from the instability of traditional demercury products (e.g., HgCl2, HgO, HgS, and HgSe). Herein, we demonstrate a superstable Hg3Se2Cl2 compound, which offers a promising next-generation flue gas mercury removal strategy. Theoretical calculations revealed a superstable Hg bonding structure in Hg3Se2Cl2, with the highest mercury dissociation energy (4.71 eV) among all known mercury compounds. Experiments demonstrate its unprecedentedly high thermal stability (>400 °C) and strong acid resistance (5% H2SO4). The Hg3Se2Cl2 compound could be produced via the reduction of SeO32- to nascent active Se0 by the flue gas component SO2 and the subsequent combination of Se0 with Hg0 and Cl- ions or HgCl2. During a laboratory-simulated experiment, this Hg3Se2Cl2-based strategy achieves >96% removal efficiencies of both Hg0 and HgCl2 enabling nearly zero Hg0 re-emission. As expected, real mercury removal efficiency under Se-rich industrial flue gas conditions is much more efficient than Se-poor counterparts, confirming the feasibility of this Hg3Se2Cl2-based strategy for practical applications. This study sheds light on the importance of stable demercury products in flue gas mercury treatment and also provides a highly efficient and safe flue gas demercury strategy.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Mercurio/análisis , Ecosistema , Gases/química , Contaminantes Atmosféricos/análisis
10.
Environ Sci Technol ; 56(15): 10935-10944, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35867955

RESUMEN

Sulfur trioxide (SO3) is an unstable pollutant, and its removal from the gas phase of industrial flue gas remains a significant challenge. Herein, we propose a reverse conversion treatment (RCT) strategy to reduce S(VI) in SO3 to S(IV) by combining bench-scale experiments and theoretical studies. We first demonstrated that metastable sulfides can break the S-O bond in SO3, leading to the re-formation of sulfur dioxide (SO2). The RCT performance varied between mono- and binary-metal sulfides, and metastable CuS had a high SO3 conversion efficiency in the temperature range of 200-300 °C. Accordingly, the introduction of selenium (Se) lowered the electronegativity of the CuS host and enhanced its reducibility to SO3. Among the CuSe1-xSx composites, CuSe0.3S0.7 was the optimal RCT material and reached a SO2 yield of 6.25 mmol/g in 120 min. The low-valence state of selenium (Se2-/Se1-) exhibited a higher reduction activity for SO3 than did S2-/S1-; however, excessive Se doping degraded the SO3 conversion owing to the re-oxidation of SO2 by the generated SeO32-. The density functional theory calculations verified the stronger SO3 adsorption performance (Eads = -2.76 eV) and lower S-O bond breaking energy (Ea = 1.34 eV) over CuSe0.3S0.7 compared to those over CuS and CuSe. Thus, CuSe1-xSx can serve as a model material and the RCT strategy can make use of field temperature conditions in nonferrous smelters for SO3 emission control.

11.
Environ Sci Technol ; 56(14): 10402-10411, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35815997

RESUMEN

Slip NH3 is a priority pollutant of concern to be removed in various flue gases with NOx and CO after denitrification using NH3-SCR or NH3-SNCR, and the simultaneous catalytic removal of NH3 and CO has become one of the new topics in the deep treatment of such flue gases. Synergistic catalytic oxidation of CO and NH3 appears to be a promising method but still has many challenges. Due to the competition for active oxidizing species, CO was supposed to hinder the NH3 selective catalytic oxidation (NH3-SCO). However, it is first found that CO could significantly promote NH3-SCO over the CuOx-CeO2 catalyst. The NH3 conversion rates increased linearly with CO concentrations in the range of 180-300 °C. Specifically, it accelerated by 2.8 times with 10,000 ppm CO inflow at 220 °C. Mechanism studies found that the Cu-O-Ce solid solution was more active for CO oxidation, while the CuOx species facilitated the NH3 dehydrogenation and mitigated the competition of NH3 and CO, further stabilizing the promotion effects. Gaseous CO boosted the generation of active isolated oxygen atoms (Oi) by actuating the Cu+/Cu2+ redox cycle. The enriched Oi facilitated oxidation of NH3 to NO and was conducive to the NH3-SCO via the i-SCR approach. This study tapped the potential of CO for promoting simultaneous catalytic oxidation of coexisting pollutants in the flue gas.


Asunto(s)
Amoníaco , Gases , Catálisis , Cobre , Oxidación-Reducción
12.
Liver Int ; 40(11): 2848-2857, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32910500

RESUMEN

BACKGROUND & AIMS: Proton pump inhibitors (PPIs) have been reported to be associated with cholangitis and might possibly be carcinogenic. However, few studies have been conducted to investigate the association of PPIs with cholangiocarcinoma (CCA). Thus, a hospital-based case-control study was carried out in China to explore the association between PPIs and CCA. METHODS: In this study, 1468 CCA cases (826 intrahepatic cholangiocarcinoma (ICC) and 642 extrahepatic cholangiocarcinoma (ECC)) were included, which were observed at Beijing Friendship Hospital, from February 2002 to October 2018. We retrospectively extracted PPI use and other possible risk factors from clinical records, followed by an investigation of the relationship with CCA via calculation of odds ratios (ORs), adjusted odds ratios (AORs), and 95% confidence intervals (CIs) using logistic regression analysis. RESULTS: PPIs were used by 135 (9.2%) CCA cases and 173 (5.9%) controls. We found that PPI use was associated with a 1.61-fold elevated CCA odds (P < .001) (AOR = 1.61, 95% CI = 1.28-2.05; P < .001). After stratification by CCA subtypes, the AORs of PPIs were consistent for both CCA subtypes, with ORs of 1.36 (AOR = 1.36, 95% CI = 1.02-1.83; P = .003) and 1.95 (AOR = 1.95, 95% CI = 1.46-2.62; P < .001) for ICC and ECC respectively. Our results also showed that PPI use was slightly linked to the odds of CCA in a dose-dependent manner. CONCLUSION: PPI use was correlated with a significant 61% increased odds of CCA, particularly in the ECC. However, the retrospective design and observational nature cannot establish causation. Larger scale, multi-centre prospective studies are required for further validation.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias de los Conductos Biliares/inducido químicamente , Neoplasias de los Conductos Biliares/epidemiología , Estudios de Casos y Controles , China/epidemiología , Colangiocarcinoma/inducido químicamente , Colangiocarcinoma/epidemiología , Humanos , Estudios Prospectivos , Inhibidores de la Bomba de Protones/efectos adversos , Estudios Retrospectivos , Factores de Riesgo
13.
J Cell Physiol ; 234(10): 18837-18848, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30916406

RESUMEN

The aberrant expression of long noncoding RNAs (lncRNAs) has drawn increasing attention in the field of hepatocellular carcinoma (HCC) biology. In the present study, we obtained the expression profiles of lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) in 371 HCC tissues and 50 normal tissues from The Cancer Genome Atlas (TCGA) and identified hepatocarcinogenesis-specific differentially expressed genes (DEGs, log fold change ≥ 2, FDR < 0.01), including 753 lncRNAs, 97 miRNAs, and 1,535 mRNAs. Because the specific functions of lncRNAs are closely related to their intracellular localizations and because the cytoplasm is the main location for competitive endogenous RNA (ceRNA) action, we analyzed not only the interactions among these DEGs but also the distributions of lncRNAs (cytoplasmic, nuclear or both). Then, an HCC-associated deregulated ceRNA network consisting of 37 lncRNAs, 10 miRNAs, and 26 mRNAs was constructed after excluding those lncRNAs located only in the nucleus. Survival analysis of this network demonstrated that 15 lncRNAs, 3 miRNAs, and 16 mRNAs were significantly correlated with the overall survival of HCC patients (p < 0.01). Through multivariate Cox regression and lasso analysis, a risk score system based on 13 lncRNAs was constructed, which showed good discrimination and predictive ability for HCC patient survival time. This ceRNA network-construction approach, based on lncRNA distribution, not only narrowed the scope of target lncRNAs but also provided specific candidate molecular biomarkers for evaluating the prognosis of HCC, which will help expand our understanding of the ceRNA mechanisms involved in the early development of HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Citoplasma/metabolismo , Progresión de la Enfermedad , Redes Reguladoras de Genes , Neoplasias Hepáticas/genética , ARN Largo no Codificante/genética , Regulación Neoplásica de la Expresión Génica , Ontología de Genes , Humanos , Estimación de Kaplan-Meier , Modelos Lineales , Neoplasias Hepáticas/patología , MicroARNs/genética , MicroARNs/metabolismo , Pronóstico , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Riesgo , Análisis de Supervivencia
14.
Heliyon ; 9(9): e19654, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809681

RESUMEN

Land resources are an essential foundation for socioeconomic development. Island land resources are limited, the type changes are particularly frequent, and the environment is fragile. Therefore, large-scale, long-term, and high-accuracy land-use classification and spatiotemporal characteristic analysis are of great significance for the sustainable development of islands. Based on the advantages of remote sensing indices and principal component analysis in accurate classification, and taking Zhoushan Archipelago, China, as the study area, in this work long-term satellite remote sensing data were used to perform land-use classification and spatiotemporal characteristic analysis. The classification results showed that the land-use types could be exactly classified, with the overall accuracy and Kappa coefficient greater than 94% and 0.93, respectively. The results of the spatiotemporal characteristic analysis showed that the built-up land and forest land areas increased by 90.00 km2 and 36.83 km2, respectively, while the area of the cropland/grassland decreased by 69.77 km2. The areas of the water bodies, tidal flats, and bare land exhibited slight change trends. The spatial coverage of Zhoushan Island continuously expanded toward the coast, encroaching on nearby sea areas and tidal flats. The cropland/grassland was the most transferred-out area, at up to 108.94 km2, and built-up land was the most transferred-in areas, at up to 73.31 km2. This study provides a data basis and technical support for the scientific management of land resources.

15.
ACS Appl Mater Interfaces ; 15(20): 24701-24712, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37167560

RESUMEN

Ruthenium (Ru)-based catalysts have been candidates in hydrochlorination for vinyl chloride monomer (VCM) production, yet they are limited by efficient acetylene (C2H2) utilization. The strong adsorption performance of HCl can deactivate Ru active sites which resulted in weak C2H2 adsorption and slow activation kinetics. Herein, we designed a channel that employed metal-organic framework (MOF)-encaged Ru single atoms to achieve rapid adsorption and activation of C2H2. Low-Ru (∼0.5 wt %) single-atom catalysts (named Ru-NC@MIL) were assembled by hydrogen-bonding nanotraps (the H-C≡C-Hδ+···Oδ- interactions between C2H2 and carboxylate groups/furan rings). Results confirmed that C2H2 could easily enter the encapsulation channels in an optimal mode perpendicular to the channel with a potential energy of 42.3 kJ/mol. The harvested C2H2 molecules can be quickly passed to Ru-N4 active sites for activation by stretching the length of carbon-carbon triple bonds (C≡C) to 1.212 Å. Such a strategy guaranteed >99% C2H2 conversion efficiency and >99% VCM selectivity. Moreover, a stable long-term (>150 h) catalysis with high efficiency (∼0.85 kgvcm/h/kgcat.) and a low deactivation constant (0.001 h-1) was also achieved. This work provides an innovative strategy for precise C2H2 adsorption and activation and guidance for designing multi-functional Ru-based catalysts.

16.
J Hazard Mater ; 446: 130681, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36584652

RESUMEN

Arsenic is extremely toxic to humans with water as its carrier. One challenge for arsenic control is the complete elimination of As(III) due to its high toxicity, mobility, and solubility. Herein, an active FeSx@MOF-808 composite was fabricated to enhance the As(III) removal for wastewater remediation. The FeSx@MOF-808 showed better As(III) adsorptive performance (Qe = 73.60 mg/g) compared with Fe2S3 (Qe=12.38 mg/g), MOF-808 (Qe = 27.85 mg/g), and Fe@MOF-808 (Qe=34.26 mg/g). This can be attributed to an improved porous structure provided by MOF-808 and abundant reactive sites provided by FeSx. Calculated by the Langmuir model (R2 =0.9965), the maximum adsorption capacity (Qmax) of FeSx@MOF-808 for As(III) removal at 298 K and pH = 7 was 203.28 ± 6.43 mg/g, which is beyond most of the traditional materials and MOFs. Additionally, FeSx@MOF-808 exhibited good stability in a wide pH range (1-13). Results also showed that the different Fe/S ratios (1:0-1:8) and FeSx loading amount (0.00625-0.25 mmol) have effects on the FeSx@MOF-808 performance. By kinetics studies, XPS, and DFT calculation, the mechanisms for arsenic by FeSx@MOF-808 were proposed. Multiple reaction mechanisms combine the adsorption by the MOF-808 support, the co-precipitation of iron oxides via hydroxyl (Fe-OH) groups, and most importantly, the precipitation through the break of Fe-S and the bond of As-S.

17.
Sci Total Environ ; 891: 164203, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37230360

RESUMEN

The steel smelting process produces extensive CO2 and Ca-containing steel slag (SS). Meanwhile, the low value utilization of steel slag results in the loss of Ca resources. CO2 sequestration utilizing SS can reduce carbon emissions while achieving Ca circulation. However, conventional SS carbon sequestration methods suffer from slow reaction rates, finite Ca usage efficiency, and difficulty separating the CaCO3 product from SS. Herein, an innovative two-step leaching (TSL) and carbonation method was presented based on the variations in leaching efficiency of activated Ca under different conditions, aiming at efficient leaching, carbon sequestration, and high-value reuse of SS. This method employed two NH4Cl solutions in sequence for two leaching operations on SS, allowing the Ca leaching rate to be effectively increased. According to the findings, TSL could increase the activated Ca leaching rate by 26.9 % and achieve 223.15 kg CO2/t SS sequestration compared to the conventional one-step leaching (CSL) method. If part of the CaCO3 is recovered as a slagging agent, about 34.1 % of the exogenous Ca introduction could be saved. In addition, the CO2 sequestration of TSL did not significantly decrease after 8 cycles. This work proposes a strategy that has the potential for recycling SS and reducing carbon emissions.

18.
IEEE Trans Image Process ; 31: 1857-1869, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35139016

RESUMEN

We present See360, which is a versatile and efficient framework for 360° panoramic view interpolation using latent space viewpoint estimation. Most of the existing view rendering approaches only focus on indoor or synthetic 3D environments and render new views of small objects. In contrast, we suggest to tackle camera-centered view synthesis as a 2D affine transformation without using point clouds or depth maps, which enables an effective 360° panoramic scene exploration. Given a pair of reference images, the See360 model learns to render novel views by a proposed novel Multi-Scale Affine Transformer (MSAT), enabling the coarse-to-fine feature rendering. We also propose a Conditional Latent space AutoEncoder (C-LAE) to achieve view interpolation at any arbitrary angle. To show the versatility of our method, we introduce four training datasets, namely UrbanCity360, Archinterior360, HungHom360 and Lab360, which are collected from indoor and outdoor environments for both real and synthetic rendering. Experimental results show that the proposed method is generic enough to achieve real-time rendering of arbitrary views for all four datasets. In addition, our See360 model can be applied to view synthesis in the wild: with only a short extra training time (approximately 10 mins), and is able to render unknown real-world scenes. The superior performance of See360 opens up a promising direction for camera-centered view rendering and 360° panoramic view interpolation.

19.
J Colloid Interface Sci ; 623: 285-293, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35594587

RESUMEN

Hydrogen production technologies have attracted considerable attention with the increasing demand for renewable energy. Among them, the combined action of water electrolysis and solar energy has emerged. In this study, a hydrangea ZnO/NiFe-layered double hydroxide (LDH) heterojunction was synthesized using the two-step hydrothermal method. The resulting ZnO/NiFe-LDH improved the range and intensity of light response, thus meeting the requirement of electrocatalysis and photocatalysis in theory. Moreover, ZnO/NiFe-LDH demonstrated excellent activity in the electrochemical performance test in the presence of light. When used as a water splitting catalyst in a full cell, the cell voltage was 1.632 V, and Faradic efficiency was 99.1%. Moreover, from the in situ Raman and theoretical calculation results, it is possible to conclude that the synthesized ZnO/NiFe-LDH has the property of absorbing light energy, and the introduction of light energy can optimize the bandgap structure of the material and enhance the adsorption capacity of the system, thus significantly reducing the energy required for water splitting reaction. In sum, this study introduced a composition strategy for LDH heterojunction materials and presented a theoretical and experimental investigation of the light influence on the material structure and electrochemical reaction. Furthermore, it is believed that an important future direction of hydrogen production is photo-assisted water splitting.

20.
IEEE Trans Image Process ; 30: 4157-4170, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33819156

RESUMEN

Face hallucination or super-resolution is a practical application of general image super-resolution which has been recently studied by many researchers. The challenge of good face hallucination comes from a variety of poses, illuminations, facial expressions, and other degradations. In many proposed methods, researchers resolve it by using a generative neural network to reduce the perceptual loss so we can generate a photo-realistic image. The problem is that researchers usually overlook the fidelity of the super-resolved image which could affect further facial image processing. Meanwhile, many CNN based approaches cascade multiple networks to extract facial prior information to improve super-resolution quality. Because of the end-to-end design, the details are missing for investigation. In this paper, we combine new techniques in convolutional neural network and random forests to a Hierarchical CNN based Random Forests (HCRF) approach for face super-resolution in a coarse-to-fine manner. In the proposed approach, we focus on a general approach that can handle facial images with various conditions without pre-processing. To the best of our knowledge, this is the first paper that combines the advantages of deep learning with random forests for face super-resolution. To achieve superior performance, we propose two novel CNN models for coarse facial image super-resolution and segmentation and then apply new random forests to target on local facial features refinement making use of the segmentation results. Extensive benchmark experiments on subjective and objective evaluation show that HCRF can achieve comparable speed and competitive performance compared with state-of-the-art super-resolution approaches for very low-resolution images.


Asunto(s)
Aprendizaje Profundo , Cara/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Árboles de Decisión , Humanos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA