Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203408

RESUMEN

TENT4A (PAPD7) is a non-canonical poly(A) polymerase, of which little is known. Here, we show that TENT4A regulates multiple biological pathways and focuses on its multilayer regulation of translesion DNA synthesis (TLS), in which error-prone DNA polymerases bypass unrepaired DNA lesions. We show that TENT4A regulates mRNA stability and/or translation of DNA polymerase η and RAD18 E3 ligase, which guides the polymerase to replication stalling sites and monoubiquitinates PCNA, thereby enabling recruitment of error-prone DNA polymerases to damaged DNA sites. Remarkably, in addition to the effect on RAD18 mRNA stability via controlling its poly(A) tail, TENT4A indirectly regulates RAD18 via the tumor suppressor CYLD and via the long non-coding antisense RNA PAXIP1-AS2, which had no known function. Knocking down the expression of TENT4A or CYLD, or overexpression of PAXIP1-AS2 led each to reduced amounts of the RAD18 protein and DNA polymerase η, leading to reduced TLS, highlighting PAXIP1-AS2 as a new TLS regulator. Bioinformatics analysis revealed that TLS error-prone DNA polymerase genes and their TENT4A-related regulators are frequently mutated in endometrial cancer genomes, suggesting that TLS is dysregulated in this cancer.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Neoplasias Endometriales/metabolismo , Mutación/genética , Polinucleotido Adenililtransferasa/metabolismo , ARN Mensajero/metabolismo , Western Blotting , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/genética , Biología Computacional , Daño del ADN/genética , Daño del ADN/fisiología , Reparación del ADN/genética , Replicación del ADN/genética , Replicación del ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Neoplasias Endometriales/genética , Femenino , Células HEK293 , Humanos , Inmunoprecipitación , Células MCF-7 , Reacción en Cadena de la Polimerasa , Polinucleotido Adenililtransferasa/genética , Estabilidad del ARN/genética , Estabilidad del ARN/fisiología , ARN Mensajero/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/genética , Ubiquitinación/fisiología
2.
Nucleic Acids Res ; 44(15): 7242-50, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27185888

RESUMEN

The intolerance of DNA polymerase δ (Polδ) to incorrect base pairing contributes to its extremely high accuracy during replication, but is believed to inhibit translesion synthesis (TLS). However, chicken DT40 cells lacking the POLD3 subunit of Polδ are deficient in TLS. Previous genetic and biochemical analysis showed that POLD3 may promote lesion bypass by Polδ itself independently of the translesion polymerase Polζ of which POLD3 is also a subunit. To test this hypothesis, we have inactivated Polδ proofreading in pold3 cells. This significantly restored TLS in pold3 mutants, enhancing dA incorporation opposite abasic sites. Purified proofreading-deficient human Polδ holoenzyme performs TLS of abasic sites in vitro much more efficiently than the wild type enzyme, with over 90% of TLS events resulting in dA incorporation. Furthermore, proofreading deficiency enhances the capability of Polδ to continue DNA synthesis over UV lesions both in vivo and in vitro These data support Polδ contributing to TLS in vivo and suggest that the mutagenesis resulting from loss of Polδ proofreading activity may in part be explained by enhanced lesion bypass.


Asunto(s)
ADN Polimerasa III/metabolismo , Replicación del ADN , ADN/biosíntesis , ADN/química , Alelos , Línea Celular , Daño del ADN , ADN Polimerasa III/química , ADN Polimerasa III/genética , ADN Polimerasa III/aislamiento & purificación , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/aislamiento & purificación , Holoenzimas/metabolismo , Humanos , Inmunoglobulinas/genética , Rayos Ultravioleta
3.
Nucleic Acids Res ; 43(3): 1637-45, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25589543

RESUMEN

DNA-damage tolerance (DDT) via translesion DNA synthesis (TLS) or homology-dependent repair (HDR) functions to bypass DNA lesions encountered during replication, and is critical for maintaining genome stability. Here, we present piggyBlock, a new chromosomal assay that, using piggyBac transposition of DNA containing a known lesion, measures the division of labor between the two DDT pathways. We show that in the absence of DNA damage response, tolerance of the most common sunlight-induced DNA lesion, TT-CPD, is achieved by TLS in mouse embryo fibroblasts. Meanwhile, BP-G, a major smoke-induced DNA lesion, is bypassed primarily by HDR, providing the first evidence for this mechanism being the main tolerance pathway for a biologically important lesion in a mammalian genome. We also show that, far from being a last-resort strategy as it is sometimes portrayed, TLS operates alongside nucleotide excision repair, handling 40% of TT-CPDs in repair-proficient cells. Finally, DDT acts in mouse embryonic stem cells, exhibiting the same pattern­mutagenic TLS included­despite the risk of propagating mutations along all cell lineages. The new method highlights the importance of HDR, and provides an effective tool for studying DDT in mammalian cells.


Asunto(s)
Cromosomas , Daño del ADN , Animales , Secuencia de Bases , Células Cultivadas , Ratones , Sondas de Oligonucleótidos
4.
Proc Natl Acad Sci U S A ; 110(16): E1462-9, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23530190

RESUMEN

DNA lesions can block replication forks and lead to the formation of single-stranded gaps. These replication complications are mitigated by DNA damage tolerance mechanisms, which prevent deleterious outcomes such as cell death, genomic instability, and carcinogenesis. The two main tolerance strategies are translesion DNA synthesis (TLS), in which low-fidelity DNA polymerases bypass the blocking lesion, and homology-dependent repair (HDR; postreplication repair), which is based on the homologous sister chromatid. Here we describe a unique high-resolution method for the simultaneous analysis of TLS and HDR across defined DNA lesions in mammalian genomes. The method is based on insertion of plasmids carrying defined site-specific DNA lesions into mammalian chromosomes, using phage integrase-mediated integration. Using this method we show that mammalian cells use HDR to tolerate DNA damage in their genome. Moreover, analysis of the tolerance of the UV light-induced 6-4 photoproduct, the tobacco smoke-induced benzo[a]pyrene-guanine adduct, and an artificial trimethylene insert shows that each of these three lesions is tolerated by both TLS and HDR. We also determined the specificity of nucleotide insertion opposite these lesions during TLS in human genomes. This unique method will be useful in elucidating the mechanism of DNA damage tolerance in mammalian chromosomes and their connection to pathological processes such as carcinogenesis.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , Replicación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Genómica/métodos , Benzo(a)pireno/metabolismo , Aductos de ADN/metabolismo , Humanos , Plásmidos/genética , Homología de Secuencia , Rayos Ultravioleta
5.
Carcinogenesis ; 36(9): 982-91, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26045303

RESUMEN

The key role of DNA repair in removing DNA damage and minimizing mutations makes it an attractive target for cancer risk assessment and prevention. Here we describe the development of a robust assay for apurinic/apyrimidinic (AP) endonuclease 1 (APE1; APEX1), an essential enzyme involved in the repair of oxidative DNA damage. APE1 DNA repair enzymatic activity was measured in peripheral blood mononuclear cell protein extracts using a radioactivity-based assay, and its association with lung cancer was determined using conditional logistic regression with specimens from a population-based case-control study with 96 lung cancer cases and 96 matched control subjects. The mean APE1 enzyme activity in case patients was 691 [95% confidence interval (CI) = 655-727] units/ng protein, significantly lower than in control subjects (mean = 793, 95% CI = 751-834 units/ng protein, P = 0.0006). The adjusted odds ratio for lung cancer associated with 1 SD (211 units) decrease in APE1 activity was 2.0 (95% CI = 1.3-3.1; P = 0.002). Comparison of radioactivity- and fluorescence-based assays showed that the two are equivalent, indicating no interference by the fluorescent tag. The APE1Asp148Glu SNP was associated neither with APE1 enzyme activity nor with lung cancer risk. Taken together, our results indicate that low APE1 activity is associated with lung cancer risk, consistent with the hypothesis that 'bad DNA repair', rather than 'bad luck', is involved in cancer etiology. Such assays may be useful, along with additional DNA repair biomarkers, for risk assessment of lung cancer and perhaps other cancers, and for selecting individuals to undergo early detection techniques such as low-dose CT.


Asunto(s)
Reparación del ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/epidemiología , Estudios de Casos y Controles , Daño del ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/análisis , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Femenino , Fluorescencia , Predisposición Genética a la Enfermedad , Humanos , Leucocitos Mononucleares/citología , Pulmón/enzimología , Pulmón/patología , Neoplasias Pulmonares/genética , Masculino , Polimorfismo de Nucleótido Simple , Riesgo
6.
Carcinogenesis ; 35(12): 2763-70, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25355292

RESUMEN

DNA repair is a major mechanism for minimizing mutations and reducing cancer risk. Here, we present the development of reproducible and specific enzymatic assays for methylpurine DNA glycosylase (MPG) repairing the oxidative lesions 1,N6-ethenoadenine (εA) and hypoxanthine (Hx) in peripheral blood mononuclear cells protein extracts. Association of these DNA repair activities with lung cancer was determined using conditional logistic regression with specimens from a population-based case-control study with 96 lung cancer cases and 96 matched control subjects. The mean MPG-εA in case patients was 15.8 units/µg protein (95% CI 15.3-16.3), significantly higher than in control subjects-15.1 (14.6-15.5), *P = 0.011. The adjusted odds ratio for lung cancer associated with a one SD increase in MPG-εA activity (2.48 units) was significantly bigger than 1 (OR = 1.6, 95% CI = 1.1-2.4; *P = 0.013). When activity of OGG1, a different DNA repair enzyme for oxidative damage, was included in the model, the estimated odds ratio/SD for a combined MPG-εA-OGG1 score was 2.6 (95% CI 1.6-4.2) *P = 0.0001, higher than the odds ratio for each single assay. The MPG enzyme activity assays described provide robust functional risk biomarkers, with increased MPG-εA activity being associated with increased lung cancer risk, similar to the behavior of MPG-Hx. This underscores the notion that imbalances in DNA repair, including high DNA repair, usually perceived as beneficial, can cause cancer risk. Such DNA repair risk biomarkers may be useful for risk assessment of lung cancer and perhaps other cancer types, and for early detection techniques such as low-dose CT.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas de la Membrana/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Anciano , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Estudios de Casos y Controles , ADN Glicosilasas/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Pulmón/metabolismo , Neoplasias Pulmonares/genética , Masculino , Proteínas de la Membrana/genética , Estadificación de Neoplasias , Estrés Oxidativo , Pronóstico
7.
Nucleic Acids Res ; 40(1): 170-80, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21908406

RESUMEN

Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-irradiated mammalian cells, chromosomal single-stranded gaps formed in S phase during replication persist into the G2 phase of the cell cycle, where their repair is completed depending on DNA polymerase ζ and Rev1. Analysis of TLS using a high-resolution gapped-plasmid assay system in cell populations enriched by centrifugal elutriation for specific cell cycle phases showed that TLS operates both in S and G2. Moreover, the mutagenic specificity of TLS in G2 was different from S, and in some cases overall mutation frequency was higher. These results suggest that TLS repair of single-stranded gaps caused by DNA lesions can lag behind chromosomal replication, is separable from it, and occurs both in the S and G2 phases of the cell cycle. Such a mechanism may function to maintain efficient replication, which can progress despite the presence of DNA lesions, with TLS lagging behind and patching regions of discontinuity.


Asunto(s)
Daño del ADN , ADN/biosíntesis , Fase G2/genética , Mutagénesis , Fase S/genética , Animales , Línea Celular Tumoral , Células Cultivadas , Proteínas de Unión al ADN/fisiología , ADN Polimerasa Dirigida por ADN/fisiología , Humanos , Ratones , Proteínas Nucleares/fisiología , Nucleotidiltransferasas/fisiología , Proteína de Replicación A/análisis , Rayos Ultravioleta
8.
PLoS Genet ; 7(9): e1002262, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21931560

RESUMEN

Translesion DNA synthesis (TLS) is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub) in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA) regions caused by UV, accumulate faster and disappear more slowly in Pcna(K164R/K164R) cells, which are resistant to PCNA ubiquitination, compared to Pcna(+/+) cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in Pcna(K164R/K164R) mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity.


Asunto(s)
Reparación del ADN , Replicación del ADN , ADN/biosíntesis , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitinación , Animales , Cisplatino/farmacología , ADN/efectos de los fármacos , ADN/genética , Daño del ADN , ADN de Cadena Simple/biosíntesis , ADN de Cadena Simple/genética , Ratones , Mutagénesis , Antígeno Nuclear de Célula en Proliferación/genética , Ubiquitina/genética , Ubiquitina/metabolismo , Rayos Ultravioleta
9.
EMBO J ; 28(4): 383-93, 2009 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-19153606

RESUMEN

DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error-free, and the third slow and error-prone. A single gene, REV3L, encoding the catalytic subunit of DNA polymerase zeta (pol zeta), was found to have a pivotal role in TLS, being involved in TLS across all lesions examined, except for a TT cyclobutane dimer. Genetic epistasis siRNA analysis indicated that discrete two-polymerase combinations with pol zeta dictate error-prone or error-free TLS across the same lesion. These results highlight the central role of pol zeta in both error-prone and error-free TLS in mammalian cells, and show that bypass of a single lesion may involve at least three different DNA polymerases, operating in different two-polymerase combinations.


Asunto(s)
Daño del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/química , ADN/metabolismo , Animales , Línea Celular Tumoral , ADN Polimerasa Dirigida por ADN/química , Dimerización , Epistasis Genética , Humanos , Cinética , Ratones , Mutagénesis , Dímeros de Pirimidina/química , ARN Interferente Pequeño/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
10.
Cancers (Basel) ; 15(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36765532

RESUMEN

Personalized vaccines against patient-unique tumor-associated antigens represent a promising new approach for cancer immunotherapy. Vaccine efficacy is assessed by quantification of changes in the frequency and/or the activity of antigen-specific T cells. Enzyme-linked immunosorbent spot (ELISpot) and flow cytometry (FCM) are methodologies frequently used for assessing vaccine efficacy. We tested these methodologies and found that both ELISpot and standard FCM [monitoring CD3/CD4/CD8/IFNγ/Viability+CD14+CD19 (dump)] demonstrate background IFNγ secretion, which, in many cases, was higher than the antigen-specific signal measured by the respective methodology (frequently ranging around 0.05-0.2%). To detect such weak T-cell responses, we developed an FCM panel that included two early activation markers, 4-1BB (CD137) and CD40L (CD154), in addition to the above-cited markers. These two activation markers have a close to zero background expression and are rapidly upregulated following antigen-specific activation. They enabled the quantification of rare T cells responding to antigens within the assay well. Background IFNγ-positive CD4 T cell frequencies decreased to 0.019% ± 0.028% and CD8 T cells to 0.009% ± 0.013%, which are 19 and 13 times lower, respectively, than without the use of these markers. The presented methodology enables highly sensitive monitoring of T-cell responses to tumor-associated antigens in the very low, but clinically relevant, frequencies.

11.
Proc Natl Acad Sci U S A ; 106(28): 11552-7, 2009 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-19564618

RESUMEN

Human cells tolerate UV-induced cyclobutane pyrimidine dimers (CPD) by translesion DNA synthesis (TLS), carried out by DNA polymerase eta, the POLH gene product. A deficiency in DNA polymerase eta due to germ-line mutations in POLH causes the hereditary disease xeroderma pigmentosum variant (XPV), which is characterized by sunlight sensitivity and extreme predisposition to sunlight-induced skin cancer. XPV cells are UV hypermutable due to the activity of mutagenic TLS across CPD, which explains the cancer predisposition of the patients. However, the identity of the backup polymerase that carries out this mutagenic TLS was unclear. Here, we show that DNA polymerase zeta cooperates with DNA polymerases kappa and iota to carry out error-prone TLS across a TT CPD. Moreover, DNA polymerases zeta and kappa, but not iota, protect XPV cells against UV cytotoxicity, independently of nucleotide excision repair. This presents an extreme example of benefit-risk balance in the activity of TLS polymerases, which provide protection against UV cytotoxicity at the cost of increased mutagenic load.


Asunto(s)
Reparación del ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/biosíntesis , Dímeros de Pirimidina/metabolismo , Xerodermia Pigmentosa/genética , Células Cultivadas , Humanos , Modelos Genéticos , Rayos Ultravioleta , Xerodermia Pigmentosa/enzimología
12.
Clin Microbiol Infect ; 28(6): 859-864, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35182758

RESUMEN

OBJECTIVES: Despite the success in developing COVID-19 vaccines, containment of the disease is obstructed worldwide by vaccine production bottlenecks, logistics hurdles, vaccine refusal, transmission through unvaccinated children, and the appearance of new viral variants. This underscores the need for effective strategies for identifying carriers/patients, which was the main aim of this study. METHODS: We present a bubble-based PCR testing approach using swab-pooling into lysis buffer. A bubble is a cluster of people who can be periodically tested for SARS-CoV-2 by swab-pooling. A positive test of a pool mandates quarantining each of its members, who are then individually tested while in isolation to identify the carrier(s) for further epidemiological contact tracing. RESULTS: We tested an overall sample of 25 831 individuals, divided into 1273 bubbles, with an average size of 20.3 ± 7.7 swabs/test tube, obtaining for all pools (≤37 swabs/pool) a specificity of 97.5% (lower bound 96.6%) and a sensitivity of 86.3% (lower bound 78.2%) and a post hoc analyzed sensitivity of 94.6% (lower bound 86.7%) and a specificity of 97.2% (lower bound 96.2%) in pools with ≤25 swabs, relative to individual testing. DISCUSSION: This approach offers a significant scale-up in sampling and testing throughput and savings in testing cost, without reducing sensitivity or affecting the standard PCR testing laboratory routine. It can be used in school classes, airplanes, hospitals, military units, and workplaces, and may be applicable to future pandemics.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Prueba de COVID-19 , Vacunas contra la COVID-19 , Niño , Humanos , Pandemias , ARN Viral , SARS-CoV-2/genética , Sensibilidad y Especificidad , Manejo de Especímenes
13.
Nucleic Acids Res ; 37(20): 6737-45, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19762482

RESUMEN

Double strand breaks (DSB) are severe DNA lesions, and if not properly repaired, may lead to cell death or cancer. While there is considerable data on the repair of simple DSB (sDSB) by non-homologous end-joining (NHEJ), little is known about the repair of complex DSBs (cDSB), namely breaks with a nearby modification, which precludes ligation without prior processing. To study the mechanism of cDSB repair we developed a plasmid-based shuttle assay for the repair of a defined site-specific cDSB in cultured mammalian cells. Using this assay we found that repair efficiency and accuracy of a cDSB with an abasic site in a 5' overhang was reduced compared with a sDSB. Translesion DNA synthesis (TLS) across the abasic site located at the break prevented loss of DNA sequences, but was highly mutagenic also at the template base next to the abasic site. Similar to sDSB repair, cDSB repair was totally dependent on XrccIV, and altered in the absence of Ku80. In contrast, Artemis appears to be specifically involved in cDSB repair. These results may indicate that mammalian cells have a damage control strategy, whereby severe deletions are prevented at the expense of the less deleterious point mutations during NHEJ.


Asunto(s)
ADN/biosíntesis , Antígenos Nucleares/metabolismo , Secuencia de Bases , ADN/química , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasas/metabolismo , Humanos , Autoantígeno Ku , Plásmidos
14.
Nucleic Acids Res ; 37(17): 5737-48, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19654238

RESUMEN

Damages in the DNA template inhibit the progression of replication, which may cause single-stranded gaps. Such situations can be tolerated by translesion DNA synthesis (TLS), or by homology-dependent repair (HDR), which is based on transfer or copying of the missing information from the replicated sister chromatid. Whereas it is well established that TLS plays an important role in DNA damage tolerance in mammalian cells, it is unknown whether HDR operates in this process. Using a newly developed plasmid-based assay that distinguishes between the three mechanisms of DNA damage tolerance, we found that mammalian cells can efficiently utilize HDR to repair DNA gaps opposite an abasic site or benzo[a]pyrene adduct. The majority of these events occurred by a physical strand transfer (homologous recombination repair; HRR), rather than a template switch mechanism. Furthermore, cells deficient in either the human RAD51 recombination protein or NBS1, but not Rad18, exhibited decreased gap repair through HDR, indicating a role for these proteins in DNA damage tolerance. To our knowledge, this is the first direct evidence of gap-lesion repair via HDR in mammalian cells, providing further molecular insight into the potential activity of HDR in overcoming replication obstacles and maintaining genome stability.


Asunto(s)
Daño del ADN , Reparación del ADN , Recombinación Genética , Animales , Proteínas de Ciclo Celular/fisiología , Línea Celular Tumoral , Células Cultivadas , ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Humanos , Ratones , Proteínas Nucleares/fisiología , Recombinasa Rad51/fisiología
15.
Nat Commun ; 12(1): 2455, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911081

RESUMEN

The mutational mechanisms underlying recurrent deletions in clonal hematopoiesis are not entirely clear. In the current study we inspect the genomic regions around recurrent deletions in myeloid malignancies, and identify microhomology-based signatures in CALR, ASXL1 and SRSF2 loci. We demonstrate that these deletions are the result of double stand break repair by a PARP1 dependent microhomology-mediated end joining (MMEJ) pathway. Importantly, we provide evidence that these recurrent deletions originate in pre-leukemic stem cells. While DNA polymerase theta (POLQ) is considered a key component in MMEJ repair, we provide evidence that pre-leukemic MMEJ (preL-MMEJ) deletions can be generated in POLQ knockout cells. In contrast, aphidicolin (an inhibitor of replicative polymerases and replication) treatment resulted in a significant reduction in preL-MMEJ. Altogether, our data indicate an association between POLQ independent MMEJ and clonal hematopoiesis and elucidate mutational mechanisms involved in the very first steps of leukemia evolution.


Asunto(s)
Hematopoyesis Clonal/genética , Reparación del ADN por Unión de Extremidades/genética , ADN Polimerasa Dirigida por ADN/genética , Leucemia Mieloide/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Afidicolina/farmacología , Calreticulina/genética , Roturas del ADN de Doble Cadena , ADN Polimerasa Dirigida por ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Humanos , Células Progenitoras Mieloides , Proteínas Represoras/genética , Eliminación de Secuencia/genética , Factores de Empalme Serina-Arginina/genética , ADN Polimerasa theta
16.
PLoS One ; 16(3): e0249149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33784369

RESUMEN

Conducting numerous, rapid, and reliable PCR tests for SARS-CoV-2 is essential for our ability to monitor and control the current COVID-19 pandemic. Here, we tested the sensitivity and efficiency of SARS-CoV-2 detection in clinical samples collected directly into a mix of lysis buffer and RNA preservative, thus inactivating the virus immediately after sampling. We tested 79 COVID-19 patients and 20 healthy controls. We collected two samples (nasopharyngeal swabs) from each participant: one swab was inserted into a test tube with Viral Transport Medium (VTM), following the standard guideline used as the recommended method for sample collection; the other swab was inserted into a lysis buffer supplemented with nucleic acid stabilization mix (coined NSLB). We found that RT-qPCR tests of patients were significantly more sensitive with NSLB sampling, reaching detection threshold 2.1±0.6 (Mean±SE) PCR cycles earlier then VTM samples from the same patient. We show that this improvement is most likely since NSLB samples are not diluted in lysis buffer before RNA extraction. Re-extracting RNA from NSLB samples after 72 hours at room temperature did not affect the sensitivity of detection, demonstrating that NSLB allows for long periods of sample preservation without special cooling equipment. We also show that swirling the swab in NSLB and discarding it did not reduce sensitivity compared to retaining the swab in the tube, thus allowing improved automation of COVID-19 tests. Overall, we show that using NSLB instead of VTM can improve the sensitivity, safety, and rapidity of COVID-19 tests at a time most needed.


Asunto(s)
Límite de Detección , SARS-CoV-2/aislamiento & purificación , Seguridad , Manejo de Especímenes/métodos , Adulto , Tampones (Química) , Femenino , Humanos , Masculino , Pandemias , Reacción en Cadena de la Polimerasa , SARS-CoV-2/genética , Factores de Tiempo
17.
JNCI Cancer Spectr ; 4(1): pkz067, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32064457

RESUMEN

BACKGROUND: Improving lung cancer risk assessment is required because current early-detection screening criteria miss most cases. We therefore examined the utility for lung cancer risk assessment of a DNA Repair score obtained from OGG1, MPG, and APE1 blood tests. In addition, we examined the relationship between the level of DNA repair and global gene expression. METHODS: We conducted a blinded case-control study with 150 non-small cell lung cancer case patients and 143 control individuals. DNA Repair activity was measured in peripheral blood mononuclear cells, and the transcriptome of nasal and bronchial cells was determined by RNA sequencing. A combined DNA Repair score was formed using logistic regression, and its correlation with disease was assessed using cross-validation; correlation of expression to DNA Repair was analyzed using Gene Ontology enrichment. RESULTS: DNA Repair score was lower in case patients than in control individuals, regardless of the case's disease stage. Individuals at the lowest tertile of DNA Repair score had an increased risk of lung cancer compared to individuals at the highest tertile, with an odds ratio (OR) of 7.2 (95% confidence interval [CI] = 3.0 to 17.5; P < .001), and independent of smoking. Receiver operating characteristic analysis yielded an area under the curve of 0.89 (95% CI = 0.82 to 0.93). Remarkably, low DNA Repair score correlated with a broad upregulation of gene expression of immune pathways in patients but not in control individuals. CONCLUSIONS: The DNA Repair score, previously shown to be a lung cancer risk factor in the Israeli population, was validated in this independent study as a mechanism-based cancer risk biomarker and can substantially improve current lung cancer risk prediction, assisting prevention and early detection by computed tomography scanning.

18.
EClinicalMedicine ; 29: 100651, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33235985

RESUMEN

BACKGROUND: An Israeli national taskforce performed a multi-center clinical and analytical validation of seven serology assays to determine their utility and limitations for SARS-CoV-2 diagnosis. METHODS: Serology assays from Roche, Abbott, Diasorin, BioMerieux, Beckman-Coulter, Siemens, and an in-house RBD ELISA were included. Negative samples from 2391 individuals representative of the Israeli population, and 698 SARS-CoV-2 PCR positive patients, collected between March and May 2020, were analyzed. FINDINGS: Immunoassays sensitivities between 81.5%-89.4% and specificities between 97.7%-100% resulted in a profound impact on the expected Positive Predictive Value (PPV) in low (<15%) prevalence scenarios. No meaningful increase was detected in the false positive rate in children compared to adults. A positive correlation between disease severity and antibody titers, and no decrease in antibody titers in the first 8 weeks after PCR positivity was observed. We identified a subgroup of symptomatic SARS-CoV-2 positive patients (~5% of patients), who remained seronegative across a wide range of antigens, isotypes, and technologies. INTERPRETATION: The commercially available automated immunoassays exhibit significant differences in performance and expected PPV in low prevalence scenarios. The low false-positivity rate in under 20's suggests that cross-reactive immunity from previous CoV strains is unlikely to explain the milder disease course in children. Finding no decrease in antibody titers in the first 8 weeks is in contrast to some reports of short half-life for SARS-CoV-2 antibodies. The ~5% who were seronegative non-responders, using multiple assays in a population-wide manner, represents the proportion of patients that may be at risk for re-infection. FUNDING: Israel Ministry of Health.

19.
DNA Repair (Amst) ; 7(10): 1636-46, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18634905

RESUMEN

Xeroderma pigmentosum variant (XPV) patients carry germ-line mutations in DNA polymerase eta (poleta), a major translesion DNA synthesis (TLS) polymerase, and exhibit severe sunlight sensitivity and high predisposition to skin cancer. Using a quantitative TLS assay system based on gapped plasmids we analyzed TLS across a site-specific TT CPD (thymine-thymine cyclobutane pyrimidine dimer) or TT 6-4 PP (thymine-thymine 6-4 photoproduct) in three pairs of poleta-proficient and deficient human cells. TLS across the TT CPD lesion was reduced by 2.6-4.4-fold in cells lacking poleta, and exhibited a strong 6-17-fold increase in mutation frequency at the TT CPD. All targeted mutations (74%) in poleta-deficient cells were opposite the 3'T of the CPD, however, a significant fraction (23%) were semi-targeted to the nearest nucleotides flanking the CPD. Deletions and insertions were observed at a low frequency, which increased in the absence of poleta, consistent with the formation of double strand breaks due to defective TLS. TLS across TT 6-4 PP was about twofold lower than across CPD, and was marginally reduced in poleta-deficient cells. TLS across TT 6-4 PP was highly mutagenic (27-63%), with multiple mutations types, and no significant difference between cells with or without poleta. Approximately 50% of the mutations formed were semi-targeted, of which 84-93% were due to the insertion of an A opposite the template G 5' to the 6-4 PP. These results, which are consistent with the UV hyper-mutability of XPV cells, highlight the critical role of poleta in error-free TLS across CPD in human cells, and suggest a potential involvement, although minor, of poleta in TLS across 6-4 PP under some conditions.


Asunto(s)
ADN Polimerasa Dirigida por ADN/deficiencia , ADN/biosíntesis , Fibroblastos/enzimología , Mutagénesis , Dímeros de Pirimidina/metabolismo , Células Cultivadas , ADN Polimerasa Dirigida por ADN/metabolismo , Fibroblastos/patología , Humanos , Plásmidos/genética , Análisis de Secuencia de ADN , Xerodermia Pigmentosa/enzimología
20.
DNA Repair (Amst) ; 6(1): 45-60, 2007 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-16982217

RESUMEN

While the role of reduced DNA repair in susceptibility to hereditary cancers is well established, its role in sporadic cancer is less understood. One of the reasons is the lack of specific DNA repair assays that are suitable for epidemiology studies. Here we describe the development of the OGG test, an epidemiology-grade enzymatic assay for the activity of the base excision repair enzyme 8-oxoguanine DNA glycosylase, in protein extracts prepared from human blood cells. The assay is robust and reproducible, with a coefficient of variation of 10%. Using the OGG test we determined OGG activity in 120 healthy individuals. Our results show an inter-individual variation of 2.8-fold in OGG activity, from 3.6 up to 10.1units/microg protein, with a mean value of 7.2units/microg protein. There was no significant difference in OGG activity between males and females, or between smokers and non-smokers. Interestingly, there was a gender-specific effect of age: OGG activity was slightly but significantly lower in males older than the age of 55 years compared to younger males, but not in females at the same age groups. Analysis of OGG1 mRNA by quantitative real-time RT-PCR showed a group trend of an increase in OGG enzymatic activity with increasing mRNA expression, but the correlation between activity and mRNA in individuals was poor, indicating the importance of factors other than mRNA expression. The OGG test described is expected to be useful in studying the role of 8-oxoguanine repair in cancer, as recently demonstrated for non-small cell lung cancer [T. Paz-Elizur, M. Krupsky, S. Blumenstein, D. Elinger, E. Schechtman, Z. Livneh, J. Natl. Cancer Inst. 95 (2003) 1312-1319]. In addition, it may serve as a paradigm for the development of additional functional DNA repair tests, which are needed in order to gain further insight into the role of DNA repair in cancer risk and pathology.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , ADN Glicosilasas/genética , Reparación del ADN , Bioensayo , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/epidemiología , ADN Glicosilasas/sangre , Cartilla de ADN/química , Femenino , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/genética , Masculino , Persona de Mediana Edad , Epidemiología Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA