Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 717: 150029, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38714015

RESUMEN

The CARMA-BCL10-MALT1 (CBM) signalosome functions as a pivotal supramolecular module, integrating diverse receptor-induced signaling pathways to regulate BCL10-dependent NF-kB activation in innate and adaptive immunity. Conversely, the API2-MALT1 fusion protein in t(11; 18)(q21; q21) MALT lymphoma constitutively induces BCL10-independent NF-kB activation. MALT1 dimer formation is indispensable for the requisite proteolytic activity and is critical for NF-kB activation regulation in both scenarios. However, the molecular assembly of MALT1 individual domains in CBM activation remains elusive. Here we report the crystal structure of the MALT1 death domain (DD) at a resolution of 2.1 Å, incorporating reconstructed residues in previously disordered loops 1 and 2. Additionally, we observe a conformational regulation element (CRE) regulating stem-helix formation in NLRPs pyrin (PYD) within the MALT1 DD structure. The structure reveals a stem-helix-mediated dimer further corroborated in solution. To elucidate how the BCL10 filament facilitates MALT1 dimerization, we reconstitute a BCL10-CARD-MALT1-DD-IG1-IG2 complex model. We propose a N+7 rule for BCL10-dependent MALT1 dimerization via the IG1-IG2 domain and for MALT1-dependent cleavage in trans. Biochemical data further indicates concentration-dependent dimerization of the MALT1 IG1-IG2 domain, facilitating MALT1 dimerization in BCL10-independent manner. Our findings provide a structural and biochemical foundation for understanding MALT1 dimeric mechanisms, shedding light on potential BCL10-independent MALT1 dimer formation and high-order BCL10-MALT1 assembly.


Asunto(s)
Proteína 10 de la LLC-Linfoma de Células B , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , Dominios Proteicos , Multimerización de Proteína , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/química , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/genética , Proteína 10 de la LLC-Linfoma de Células B/metabolismo , Proteína 10 de la LLC-Linfoma de Células B/química , Proteína 10 de la LLC-Linfoma de Células B/genética , Humanos , Cristalografía por Rayos X , Modelos Moleculares , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Caspasas/metabolismo , Caspasas/química
2.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809042

RESUMEN

Clinical presentations of dengue fever (DF) are diverse and non-specific, causing unpredictable progression and outcomes. Its progression and severity have been associated with cytokine levels alteration. In this study, dengue patients were classified into groups following the 2009 WHO dengue classification scheme to investigate the cytokine signature at different severity of the disease: dengue without warning sign symptoms (A); dengue with warning signs (B); severe dengue (C); other fever (OF) and healthy (Healthy). We analyzed 23 different cytokines simultaneously, namely IL-1b, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-17A, IL-33, CD14, CD54, CD62E, CD62L, CD62p, CD106, CD121b, CD154, CD178, GM-CSF, IFN-g, MIF, ST2 and TNF from patients admitted to National Cheng Kung University Hospital during the 2015 Taiwan dengue outbreak. Cytokines TNF, CD54, CD62E, CD62L, CD62P, GM-CSF, IL-1b, IL-2, IL-6, IL-8, IL-10, IL-12p70, IL-17A, INF-g and MIF were elevated while CD106, CD154, IL-4 and L-33 were decreased when compared to the control. IL-10 demonstrated to be a potential diagnostic marker for DF (H and A group; AUC = 0.944, H and OF group; AUC = 0.969). CD121b demonstrated to be predictive of the SD (A and B group; AUC = 0.744, B and C group; AUC = 0.775). Our results demonstrate the cytokine profile changes during the progression of dengue and highlight possible biomarkers for optimizing effective intervention strategies.


Asunto(s)
Virus del Dengue/aislamiento & purificación , Dengue/diagnóstico , Interleucina-10/genética , Receptores Tipo II de Interleucina-1/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Citocinas/clasificación , Citocinas/genética , Dengue/genética , Dengue/patología , Dengue/virología , Virus del Dengue/genética , Virus del Dengue/patogenicidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Transcriptoma/genética , Adulto Joven
3.
BMC Cancer ; 18(1): 480, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29703163

RESUMEN

BACKGROUND: Gene therapy is a potent method to increase the therapeutic efficacy against cancer. However, a gene that is specifically expressed in the tumor area has not been identified. In addition, nonspecific expression of therapeutic genes in normal tissues may cause side effects that can harm the patients' health. Certain promoters have been reported to drive therapeutic gene expression specifically in cancer cells; however, low expression levels of the target gene are a problem for providing good therapeutic efficacy. Therefore, a specific and highly expressive promoter is needed for cancer gene therapy. METHODS: Bioinformatics approaches were utilized to analyze transcription factors (TFs) from high-throughput data. Reverse transcription polymerase chain reaction, western blotting and cell transfection were applied for the measurement of mRNA, protein expression and activity. C57BL/6JNarl mice were injected with pD5-hrGFP to evaluate the expression of TFs. RESULTS: We analyzed bioinformatics data and identified three TFs, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), cyclic AMP response element binding protein (CREB), and hypoxia-inducible factor-1α (HIF-1α), that are highly active in tumor cells. Here, we constructed a novel mini-promoter, D5, that is composed of the binding sites of the three TFs. The results show that the D5 promoter specifically drives therapeutic gene expression in tumor tissues and that the strength of the D5 promoter is directly proportional to tumor size. CONCLUSIONS: Our results show that bioinformatics may be a good tool for the selection of appropriate TFs and for the design of specific mini-promoters to improve cancer gene therapy.


Asunto(s)
Biología Computacional , Regulación Neoplásica de la Expresión Génica , Vectores Genéticos/genética , Neoplasias/genética , Regiones Promotoras Genéticas , Animales , Línea Celular Tumoral , Biología Computacional/métodos , Expresión Génica , Perfilación de la Expresión Génica , Genes Reporteros , Humanos , Ratones , Ratones Transgénicos , Neoplasias/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Factores de Transcripción/metabolismo , Transgenes
4.
Nature ; 472(7343): 325-30, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21423167

RESUMEN

Inhibitor of κB (IκB) kinase (IKK) phosphorylates IκB proteins, leading to their degradation and the liberation of nuclear factor κB for gene transcription. Here we report the crystal structure of IKKß in complex with an inhibitor, at a resolution of 3.6 Å. The structure reveals a trimodular architecture comprising the kinase domain, a ubiquitin-like domain (ULD) and an elongated, α-helical scaffold/dimerization domain (SDD). Unexpectedly, the predicted leucine zipper and helix-loop-helix motifs do not form these structures but are part of the SDD. The ULD and SDD mediate a critical interaction with IκBα that restricts substrate specificity, and the ULD is also required for catalytic activity. The SDD mediates IKKß dimerization, but dimerization per se is not important for maintaining IKKß activity and instead is required for IKKß activation. Other IKK family members, IKKα, TBK1 and IKK-i, may have a similar trimodular architecture and function.


Asunto(s)
Quinasa I-kappa B/antagonistas & inhibidores , Quinasa I-kappa B/química , Secuencias de Aminoácidos , Animales , Biocatálisis , Cristalografía por Rayos X , Activación Enzimática , Humanos , Quinasa I-kappa B/metabolismo , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato , Ubiquitina/química , Xenopus laevis
5.
Mol Cell ; 33(5): 602-15, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19185524

RESUMEN

NEMO is the regulatory subunit of the IkappaB kinase (IKK) in NF-kappaB activation, and its CC2-LZ region interacts with Lys63 (K63)-linked polyubiquitin to recruit IKK to receptor signaling complexes. In vitro, CC2-LZ also interacts with tandem diubiquitin. Here we report the crystal structure of CC2-LZ with two dimeric coiled coils representing CC2 and LZ, respectively. Surprisingly, mutagenesis and nuclear magnetic resonance experiments reveal that the binding sites for diubiquitins at LZ are composites of both chains and that each ubiquitin in diubiquitins interacts with symmetrical NEMO asymmetrically. For tandem diubiquitin, the first ubiquitin uses the conserved hydrophobic patch and the C-terminal tail, while the second ubiquitin uses an adjacent surface patch. For K63-linked diubiquitin, the proximal ubiquitin uses its conserved hydrophobic patch, while the distal ubiquitin mostly employs the C-terminal arm including the K63 linkage residue. These studies uncover the energetics and geometry for mutual recognition of NEMO and diubiquitins.


Asunto(s)
Quinasa I-kappa B/química , Ubiquitinas/química , Secuencia de Aminoácidos , Sitios de Unión , Clonación Molecular , Secuencia Conservada , Cristalografía por Rayos X , Predisposición Genética a la Enfermedad , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , FN-kappa B/metabolismo , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Relación Estructura-Actividad , Ubiquitinas/metabolismo
6.
J Virol ; 89(8): 4527-38, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25673703

RESUMEN

UNLABELLED: Because the pathogenesis of enterovirus 71 (EV71) remains mostly ambiguous, identifying the factors that mediate viral binding and entry to host cells is indispensable to ultimately uncover the mechanisms that underlie virus infection and pathogenesis. Despite the identification of several receptors/attachment molecules for EV71, the binding, entry, and infection mechanisms of EV71 remain unclear. Herein, we employed glycoproteomic approaches to identify human nucleolin as a novel binding receptor for EV71. Glycoproteins purified by lectin chromatography from the membrane extraction of human cells were treated with sialidase, followed by immunoprecipitation with EV71 particles. Among the 16 proteins identified by tandem mass spectrometry analysis, cell surface nucleolin attracted our attention. We found that EV71 interacted directly with nucleolin via the VP1 capsid protein and that an antinucleolin antibody reduced the binding of EV71 to human cells. In addition, the knockdown of cell surface nucleolin decreased EV71 binding, infection, and production in human cells. Furthermore, the expression of human nucleolin on the cell surface of a mouse cell line increased EV71 binding and conferred EV71 infection and production in the cells. These results strongly indicate that human nucleolin can mediate EV71 binding to and infection of cells. Our findings also demonstrate that the use of glycoproteomic approaches is a reliable methodology to discover novel receptors for pathogens. IMPORTANCE: Outbreaks of EV71 have been reported in Asia-Pacific countries and have caused thousands of deaths in young children during the last 2 decades. The discovery of new EV71-interacting molecules to understand the infection mechanism has become an emergent issue. Hence, this study uses glycoproteomic approaches to comprehensively investigate the EV71-interacting glycoproteins. Several EV71-interacting glycoproteins are identified, and the role of cell surface nucleolin in mediating the attachment and entry of EV71 is characterized and validated. Our findings not only indicate a novel target for uncovering the EV71 infection mechanism and anti-EV71 drug discovery but also provide a new strategy for virus receptor identification.


Asunto(s)
Enterovirus Humano D/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Acoplamiento Viral , Internalización del Virus , Cromatografía , Enterovirus Humano D/fisiología , Ensayo de Inmunoadsorción Enzimática , Técnicas de Silenciamiento del Gen , Humanos , Inmunoprecipitación , Proteínas de la Membrana/genética , Microscopía Inmunoelectrónica , Neuraminidasa , Fosfoproteínas/genética , Proteómica , Proteínas de Unión al ARN/genética , Espectrometría de Masas en Tándem , Nucleolina
7.
Nature ; 465(7300): 885-90, 2010 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-20485341

RESUMEN

MyD88, IRAK4 and IRAK2 are critical signalling mediators of the TLR/IL1-R superfamily. Here we report the crystal structure of the MyD88-IRAK4-IRAK2 death domain (DD) complex, which surprisingly reveals a left-handed helical oligomer that consists of 6 MyD88, 4 IRAK4 and 4 IRAK2 DDs. Assembly of this helical signalling tower is hierarchical, in which MyD88 recruits IRAK4 and the MyD88-IRAK4 complex recruits the IRAK4 substrates IRAK2 or the related IRAK1. Formation of these Myddosome complexes brings the kinase domains of IRAKs into proximity for phosphorylation and activation. Composite binding sites are required for recruitment of the individual DDs in the complex, which are confirmed by mutagenesis and previously identified signalling mutations. Specificities in Myddosome formation are dictated by both molecular complementarity and correspondence of surface electrostatics. The MyD88-IRAK4-IRAK2 complex provides a template for Toll signalling in Drosophila and an elegant mechanism for versatile assembly and regulation of DD complexes in signal transduction.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1 , Modelos Moleculares , Factor 88 de Diferenciación Mieloide , Receptores de Interleucina-1/fisiología , Transducción de Señal , Receptores Toll-Like/fisiología , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/química , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Factor 88 de Diferenciación Mieloide/química , Factor 88 de Diferenciación Mieloide/metabolismo , Estructura Terciaria de Proteína , Receptores de Interleucina-1/metabolismo , Receptores Toll-Like/metabolismo
8.
Apoptosis ; 20(2): 124-35, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25398537

RESUMEN

Apoptosis is an important process to maintain cellular homeostasis. Deregulated apoptosis has linked to a number of diseases, such as inflammatory diseases, neurodegenerative disorder, and cancers. A major signaling complex in the death receptor signaling pathway leading to apoptosis is death-induced signaling complex (DISC), which is regulated mainly by death effector domain (DED)-containing proteins. There are seven DED-containing proteins in human, including FADD, c-FLIP, caspase-8, caspase-10, DEDD, DEDD2, and PEA-15. The main players in DISC formation employ tandem DEDs for regulating signaling complex formation. The regulatory mechanism of signaling complex formation is important and yet remains unclear. Interestingly, three caspase recruitment domain (CARD)-containing members, which belong to the same DD superfamily as DED-containing proteins, also contains similar tandem CARDs. Recent structural studies have shown that tandem CARDs are essential for the formation of a helical signaling complex. This review summarizes recent structural studies on DED-containing proteins and especially discusses the studies on tandem DEDs and tandem CARDs, which suggest new mechanisms of signaling complex assembly.


Asunto(s)
Apoptosis , Proteínas Adaptadoras de Señalización CARD/fisiología , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/fisiología , Proteínas Adaptadoras de Señalización CARD/química , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/química , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/fisiología , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Transducción de Señal , Homología Estructural de Proteína
9.
Apoptosis ; 20(2): 174-95, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25420757

RESUMEN

CARD subfamily is the second largest subfamily in the DD superfamily that plays important roles in regulating various signaling pathways, including but not limited to NF-kB activation signaling, apoptosis signaling and inflammatory signaling. The CARD subfamily contains 33 human CARD-containing proteins, regulating the assembly of many signaling complexes, including apoptosome, inflammsome, nodosome, the CBM complex, PIDDosome, the TRAF2 complex, and the MAVS signalosome, by homotypic CARD-CARD interactions. The mechanism of how CARDs find the right binding partner to form a specific complex remains unclear. This review uses different classification schemes to update the classification of CARD-containing proteins. Combining the classification based on domain structures, functions, associated signaling complexes, and roles would help better understand the structural and function diversity of CARD-containing proteins. This review also summarizes recent structural studies on CARDs. Especially, the CARD-containing complexes can be divided into the homodimeric, heterodimeric, oligomeric, filamentous CARD complexes and the CARD-ubiquitin complex. This review will give an overview of the versatile roles of CARDs in regulating signaling transduction, as well as the therapeutic drugs targeting CARD-containing proteins.


Asunto(s)
Apoptosis , Proteínas Adaptadoras de Señalización CARD/fisiología , FN-kappa B/metabolismo , Humanos , Inflamación/metabolismo , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Receptores de Muerte Celular/fisiología , Transducción de Señal
10.
Nat Commun ; 15(1): 3791, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710704

RESUMEN

Fas-associated protein with death domain (FADD), procaspase-8, and cellular FLICE-inhibitory proteins (cFLIP) assemble through death-effector domains (DEDs), directing death receptor signaling towards cell survival or apoptosis. Understanding their three-dimensional regulatory mechanism has been limited by the absence of atomic coordinates for their ternary DED complex. By employing X-ray crystallography and cryogenic electron microscopy (cryo-EM), we present the atomic coordinates of human FADD-procaspase-8-cFLIP complexes, revealing structural insights into these critical interactions. These structures illustrate how FADD and cFLIP orchestrate the assembly of caspase-8-containing complexes and offer mechanistic explanations for their role in promoting or inhibiting apoptotic and necroptotic signaling. A helical procaspase-8-cFLIP hetero-double layer in the complex appears to promote limited caspase-8 activation for cell survival. Our structure-guided mutagenesis supports the role of the triple-FADD complex in caspase-8 activation and in regulating receptor-interacting protein kinase 1 (RIPK1). These results propose a unified mechanism for DED assembly and procaspase-8 activation in the regulation of apoptotic and necroptotic signaling across various cellular pathways involved in development, innate immunity, and disease.


Asunto(s)
Apoptosis , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD , Caspasa 8 , Proteína de Dominio de Muerte Asociada a Fas , Humanos , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/química , Caspasa 8/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/genética , Células HEK293 , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Transducción de Señal
11.
J Biomed Sci ; 20: 88, 2013 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24305068

RESUMEN

Dengue is becoming recognized as one of the most important vector-borne human diseases. It is predominant in tropical and subtropical zones but its geographical distribution is progressively expanding, making it an escalating global health problem of today. Dengue presents with spectrum of clinical manifestations, ranging from asymptomatic, undifferentiated mild fever, dengue fever (DF), to dengue hemorrhagic fever (DHF) with or without shock (DSS), a life-threatening illness characterized by plasma leakage due to increased vascular permeability. Currently, there are no antiviral modalities or vaccines available to treat and prevent dengue. Supportive care with close monitoring is the standard clinical practice. The mechanisms leading to DHF/DSS remains poorly understood. Multiple factors have been attributed to the pathological mechanism, but only a couple of these hypotheses are popular in scientific circles. The current discussion focuses on underappreciated factors, temperature, natural IgM, and endotoxin, which may be critical components playing roles in dengue pathogenesis.


Asunto(s)
Virus del Dengue/fisiología , Dengue Grave/fisiopatología , Dengue Grave/virología , Fenómenos Fisiológicos Bacterianos , Endotoxinas/efectos adversos , Endotoxinas/sangre , Humanos , Inmunoglobulina M/efectos adversos , Inmunoglobulina M/sangre , Temperatura
12.
Virulence ; 14(1): 2279355, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37927064

RESUMEN

Dengue poses a significant global public health threat, with diverse clinical manifestations due to complex interactions between the host and the pathogen. Recent reports have highlighted elevated serum-free light chain (FLC) levels in viral infectious diseases. Hence, our study aimed to investigate serum FLC levels in dengue patients. The findings revealed elevated serum λ FLCs, which were associated with the severity of dengue. Receiver operating characteristic curve (ROC) analysis demonstrated that λ FLCs may serve as a serum marker for identifying dengue disease (AUC: 0.7825, sensitivity: 80, specificity: 71.43) and classifying severe dengue (AUC: 0.8102, sensitivity: 75, specificity: 79.52). The viral protease, Dengue virus (DENV) nonstructural protein 3 (NS3), acts as a protease that cleaves viral polyproteins as well as host substrates. Therefore, we proposed that antibodies might be potential targets of NS3 protease, leading to an increase in FLCs. LC/MS-MS analysis confirmed that λ FLCs were the predominant products after antibody degradation by NS3 protease. Additionally, purified NS3 protease cleaved both human IgG and DENV2-neutralizing antibodies, resulting in the presence of λ FLCs. Moreover, NS3 protease administration in vitro led to a reduction in the neutralizing efficacy of DENV2-neutralizing antibodies. In summary, the elevated serum λ FLC levels effectively differentiate dengue patients from healthy individuals and identify severe dengue. Furthermore, the elevation of serum λ FLCs is, at least in part, mediated through NS3 protease-mediated antibody cleavage. These findings provide new insights for developing diagnostic tools and understanding the pathogenesis of DENV infection.


Asunto(s)
Virus del Dengue , Dengue , Dengue Grave , Humanos , Virus del Dengue/metabolismo , Péptido Hidrolasas , Serina Endopeptidasas/metabolismo , Biomarcadores , Anticuerpos Neutralizantes , Proteínas no Estructurales Virales/metabolismo , Dengue/diagnóstico
13.
Clin Transl Med ; 12(1): e724, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35090088

RESUMEN

Due to the heterogeneity and high frequency of genome mutations in cancer cells, targeting vital protumour factors found in stromal cells in the tumour microenvironment may represent an ideal strategy in cancer therapy. However, the regulation and mechanisms of potential targetable therapeutic candidates need to be investigated. An in vivo study demonstrated that loss of pentraxin 3 (PTX3) in stromal cells significantly decreased the metastasis and growth of cancer cells. Clinically, our results indicate that stromal PTX3 expression correlates with adverse prognostic features and is associated with worse survival outcomes in triple-negative breast cancer (TNBC). We also found that transforming growth factor beta 1 (TGF-ß1) induces PTX3 expression by activating the transcription factor CCAAT/enhancer binding protein delta (CEBPD) in stromal fibroblasts. Following PTX3 stimulation, CD44, a PTX3 receptor, activates the downstream ERK1/2, AKT and NF-κB pathways to specifically contribute to the metastasis/invasion and stemness of TNBC MDA-MB-231 cells. Two types of PTX3 inhibitors were developed to disrupt the PTX3/CD44 interaction and they showed a significant effect on attenuating growth and restricting the metastasis/invasion of MDA-MB-231 cells, suggesting that targeting the PTX3/CD44 interaction could be a new strategy for future TNBC therapies.


Asunto(s)
Proteína C-Reactiva/efectos de los fármacos , Receptores de Hialuranos/efectos de los fármacos , Componente Amiloide P Sérico/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/genética , Proteína C-Reactiva/genética , Femenino , Humanos , Receptores de Hialuranos/genética , Componente Amiloide P Sérico/genética , Neoplasias de la Mama Triple Negativas/terapia , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética
14.
Front Psychol ; 12: 685426, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367009

RESUMEN

Community-Based Tourism (CBT) offers local residents opportunities to manage local tourism resources while sustaining their lifestyle at the same time. The research objective of the study was to explore the process and experience of communities in Northern Thailand which are known as elephant habitats, how these communities strive for stimulating the local economy without jeopardizing the way of life. The study was qualitative in nature. Qualitative data collection methods such as field observations and in-depth interviews were employed. The qualitative data were further analyzed with thematic analysis. In practicing CBT, the findings identified positive factors (Establishment of Elephant Camps), negative factors (Waste from Tourism Activity and Effects of Global Crisis on Employment and Local Income), and suggestions (Waste and Environment Management). The study found that the communities took pride in their cultural as well as natural resources and they are willing to commercialize these resources to a certain degree, i.e. founding elephant themed facilities, as has evidently been indicated. Consequently, as many issues factor into the practice of CBT, the study concluded that community participation and government support should have played a crucial role in maintaining new balance of overall local lifestyle sustainability and commercialization during and after the pandemic.

15.
Artículo en Inglés | MEDLINE | ID: mdl-34073467

RESUMEN

The present study aimed to understand Taiwanese people's willingness to participate in the travel bubble policy. A mixed research method was used to collect 560 questionnaires, and SPSS 22.0 software was used for the statistical validation and Pearson's performance correlation analysis. Expert opinions were collected and the results were validated using multivariate analysis. Findings: People were aware of the seriousness of the virus and the preventive measures but were not afraid of the threat of infection. They looked forward to traveling to heighten their enthusiasm, relieve stress, and soothe their emotions. However, the infection and death rates have been high, there have been various routes of infection, and it has been difficult to identify the symptoms. The complex backgrounds of people coming in and out of airports, hotels and restaurants may create pressure on the participants of events. In addition, the flawed policies and high prices resulted in a loss of confidence in the policies and a wait-and-see attitude toward tourism activities. Thus, travel decisions (0.634), physical and mental health assessment (0.716), and environmental risk (-0.130) were significantly (p < 0.05) related to travel intentions, and different issues were affected to different degrees, while health beliefs had no significant effect (p > 0.05).


Asunto(s)
COVID-19 , Aeropuertos , Miedo , Humanos , SARS-CoV-2 , Viaje
16.
J Mol Biol ; 433(18): 167116, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34161781

RESUMEN

Polyubiquitination is important in controlling NF-κB signaling. Excessive NF-κB activity has been linked to inflammatory disorders and autoimmune diseases, while ABIN1 could attenuate NF-κB activation to maintain immune homeostasis by utilizing UBAN to recognize linear (M1)-linked polyubiquitinated NF-κB activation mediators, including NEMO, IRAK1 and RIP1. PolyUb-mediated UBAN recruitment remains undetermined, since the recognition studies focused mostly on di-ubiquitin (diUb). Here we report three crystal structures of human ABIN1 UBAN (hABIN1UBAN) in complex with M1-linked diUb, triUb, and tetraUb, respectively. Notably, the hABIN1UBAN:diUb structure reveals that a diUb randomly binds one of the Ub-binding sites of the hABIN1UBAN dimer and leaves the other site vacant. Together with the ITC and gel-filtration analyses, we found that M1-triUb and M1-tetraUb adopt two unique conformations, instead of an elongated one, and they preferentially use the N-terminal two-Ub unit to bind the primary Ub-binding site of a hABIN1UBAN dimer and the C-terminal two-Ub unit to bind the secondary Ub-binding site of another hABIN1UBAN dimer. Especially, our results suggest that two ABIN1UBAN dimers cooperatively bind two UBAN-binding units of a tetraUb or vice versa. Since the UBAN family members share a conserved diUb-binding mode, our results suggest that M1-polyUb modification allows multiple copies of the two-tandem Ub unit to simultaneously coordinate multiple and/or different binding partners to increase their local concentrations and to facilitate the formation of a large signaling complex. Our study provides a structural-functional glimpse of M1-polyUb as a multiple-molecule binding platform to exert its intrinsic structural plasticity in mediating cellular signaling.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , FN-kappa B/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Homología de Secuencia , Ubiquitinas/química
17.
J Mater Chem B ; 9(33): 6634-6645, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34365493

RESUMEN

Cell alignment and elongation, which are critical factors correlated with differentiation and maturation in cell biology and tissue engineering, have been widely studied in organisms. Several strategies such as external mechanical strain, geometric topography, micropatterning approaches, and microfabricated substrates have been developed to guide cell alignment, but these methodologies cannot be used for easily denatured natural proteins to modulate the cell behaviour. Herein, for the first time, a novel biocompatible light-controlled protein-based bilayer soft actuator composed of elastin-like polypeptides (ELPs), silk fibroin (SF), graphene oxide (GO), and reduced graphene oxide (rGO), named ESGRG, is developed for efficiently driving cellular orientation and elongation with anisotropic features on soft actuator via remote NIR laser exposure. The actuation of ESGRG could be manipulated by modulating the intensity of NIR and the relative ratio of GO to rGO for promoting myoblasts alignment and nucleus elongation to generate different motions. The results indicate that the YAP and MHC protein expression of C2C12 skeletal muscle cells on ESGRG can be rapidly induced and enhanced by controlling the relative ratio of rGO/GO = 1/4 at a multiple-cycle stimulation with a very low power intensity of 1.2 W cm-2 in friendly liquid environments. This study demonstrates that the ESGRG hydrogel actuator system can modulate the cell-level behaviors via light-driven cyclic bending-motions and can be utilized in applications of soft robotic and tissue engineering such as artificial muscle and maturation of cardiomyocytes.


Asunto(s)
Materiales Biocompatibles/farmacología , Fibroínas/farmacología , Grafito/farmacología , Hidrogeles/farmacología , Péptidos/farmacología , Anisotropía , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fibroínas/química , Grafito/química , Humanos , Hidrogeles/síntesis química , Hidrogeles/química , Rayos Infrarrojos , Ensayo de Materiales , Tamaño de la Partícula , Péptidos/química , Ingeniería de Tejidos
18.
Biomaterials ; 271: 120762, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33773400

RESUMEN

Although traditional 3D scaffolds or biomimetic hydrogels have been used for tissue engineering and regenerative medicine, soft tissue microenvironment usually has a highly anisotropic structure and a dynamically controllable deformation with various biomolecule distribution. In this study, we developed a hierarchical hybrid gelatin methacrylate-microcapsule hydrogel (HGMH) with Neurotrophin-3(NT-3)-loaded PLGA microcapsules to fabricate anisotropic structure with patterned NT-3 distribution (demonstrated as striped and triangular patterns) by dielectrophoresis (DEP). The HGMH provides a dynamic biomimetic sinuate-microwrinkles change with NT-3 spatial gradient and 2-stage time-dependent distribution, which was further simulated using a 3D finite element model. As demonstrated, in comparison with striped-patterned hydrogel, the triangular-patterned HGMH with highly anisotropic array of microcapsules exhibits remarkably spatial NT-3 gradient distributions that can not only guide neural stem cells (NSCs) migration but also facilitate spinal cord injury regeneration. This approach to construct hierarchical 4D hydrogel system via an electromicrofluidic platform demonstrates the potential for building various biomimetic soft scaffolds in vitro tailed to real soft tissues.


Asunto(s)
Hidrogeles , Regeneración de la Medula Espinal , Cápsulas , Ingeniería de Tejidos , Andamios del Tejido
19.
Front Psychol ; 11: 1493, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848976

RESUMEN

Community-Based Tourism (CBT) has been presented as an alternative to sustaining tourism development in developing countries. This tourism model offers local residents an opportunity to manage natural and cultural resources in order to promote the local economy and generate greater benefits. The objective of the study is to investigate the benefits and challenges of CBT as well as solutions to address identified shortcomings by studying Muen Ngoen Kong community in Chiang Mai, Thailand. In order to achieve these objectives, qualitative methods, field observations, and interviews were employed, and qualitative data were analyzed using thematic analysis. The results of the field observation and interview data from local residents were reported, analyzed, and discussed. To practice CBT, the findings indicated that several challenges had been experienced in the implementation of CBT, including conflict over resource ownership and benefit leaking, financial issues, and problems of community participation. However, an abundance of tourism resources and security related concerns were identified as benefits of CBT in the area. In close collaboration with government agencies, product development was recommended to create a unique condition for CBT and address the shortcomings. It is crucial to involve local residents, empower the local community, conserve and cultivate cultural resources, and, finally, to maintain the overall sustainability of tourism resources.

20.
Biochim Biophys Acta Mol Cell Res ; 1866(8): 1282-1297, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30935967

RESUMEN

Fas-associated factor 1 (FAF1) was originally isolated as a Fas-associated factor and was subsequently found to interact with numerous other proteins that are involved in various cellular events including Fas-mediated apoptosis, nuclear factor (NF)-κB, Wnt/ß-catenin, and transforming growth factor (TGF)-ß signaling pathways, mineralocorticoid receptor (MR)-mediated transactivation, and ubiquitin-dependent processes. Herein, we defined two small ubiquitin-like modifier (SUMO)-interacting motifs (SIMs) within FAF1 and demonstrated to be crucial for transcriptional modulation of the MR. Our study demonstrated that the SIMs of FAF1 do not play a significant role in regulating its subcellular localization, Fas-mediated apoptosis, or NF-κB or Wnt/ß-catenin pathways. Remarkably, FAF1 interacts with the sumoylated MR and represses aldosterone-activated MR transactivation in a SIM-dependent manner. Moreover, silencing of endogenous FAF1 in cells resulted in an increase in the induction of MR target genes by aldosterone, indicating that FAF1 functions as an MR co-repressor. We further provide evidence to suggest that the mechanisms of FAF1/SIM-mediated MR transrepression involve inhibition of MR N/C interactions and promotion of MR polyubiquitination and degradation. Sumoylation has been linked to impacting of repressive properties on several transcription factors and cofactors. Our findings therefore provide mechanistic insights underlying SUMO-dependent transcriptional repression of the MR.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transcripción Genética , Proteínas Adaptadoras Transductoras de Señales/genética , Aldosterona/farmacología , Secuencias de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis , Células COS , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Transporte de Proteínas , Receptores de Mineralocorticoides/agonistas , Receptores de Mineralocorticoides/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación/efectos de los fármacos , Sumoilación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA