RESUMEN
This article explores how the modeling of energy systems may lead to an undue closure of alternatives by generating an excess of certainty around some of the possible policy options. We retrospectively exemplify the problem with the case of the International Institute for Applied Systems Analysis (IIASA) global modeling in the 1980s. We discuss different methodologies for quality assessment that may help mitigate this issue, which include Numeral Unit Spread Assessment Pedigree (NUSAP), diagnostic diagrams, and sensitivity auditing (SAUD). We illustrate the potential of these reflexive modeling practices in energy policy-making with three additional cases: (i) the case of the energy system modeling environment (ESME) for the creation of UK energy policy; (ii) the negative emission technologies (NETs) uptake in integrated assessment models (IAMs); and (iii) the ecological footprint indicator. We encourage modelers to adopt these approaches to achieve more robust, defensible, and inclusive modeling activities in the field of energy research.
RESUMEN
CO2-based infection risk monitoring is highly recommended during the current COVID-19 pandemic. However, the CO2 monitoring thresholds proposed in the literature are mainly for spaces with fixed occupants. Determining CO2 threshold is challenging in spaces with changing occupancy due to the co-existence of quanta and CO2 remaining from previous occupants. Here, we propose a new calculation framework for deriving safe excess CO2 thresholds (above outdoor level), C t, for various spaces with fixed/changing occupancy and analyze the uncertainty involved. We categorized common indoor spaces into three scenarios based on their occupancy conditions, e.g., fixed or varying infection ratios (infectors/occupants). We proved that the rebreathed fraction-based model can be applied directly for deriving C t in the case of a fixed infection ratio (Scenario 1 and Scenario 2). In the case of varying infection ratios (Scenario 3), C t derivation must follow the general calculation framework due to the existence of initial quanta/excess CO2. Otherwise, C t can be significantly biased (e.g., 260 ppm) when the infection ratio varies greatly. C t can vary significantly based on specific space factors such as occupant number, physical activity, and community prevalence, e.g., 7 ppm for gym and 890 ppm for lecture hall, indicating C t must be determined on a case-by-case basis. An uncertainty of up to 6 orders of magnitude for C t was found for all cases due to uncertainty in emissions of quanta and CO2, thus emphasizing the role of accurate emissions data in determining C t.
Asunto(s)
Infecciones por Coronavirus/epidemiología , Modelos Teóricos , Neumonía Viral/epidemiología , Ciencias Sociales , Incertidumbre , Sesgo , COVID-19 , Análisis Costo-Beneficio , Política de Salud , Humanos , Modelos Biológicos , Pandemias/estadística & datos numéricos , Política , Salud Pública/métodos , Salud Pública/normas , Reproducibilidad de los ResultadosRESUMEN
The present work looks at what we call "the multiverse of quantification", where visible and invisible numbers permeate all aspects and venues of life. We review the contributions of different authors who focus on the roles of quantification in society, with the aim of capturing different and sometimes separate voices. Several scholars, including economists, jurists, philosophers, sociologists, communication and data scientists, express concerns or identify critical areas of our relationship with new technologies of 'numericization'. While mindful of the important specificities of the different families of quantification, we use our broad and holistic canvas to explore possible spaces for a more systematic investigation of incumbent and novel quantifications, as to increase communication among disciplinary communities, and among these and society, in the pursuit a democratic agency and self-defence.
RESUMEN
Mathematical models are getting increasingly detailed to better predict phenomena or gain more accurate insights into the dynamics of a system of interest, even when there are no validation or training data available. Here, we show through ANOVA and statistical theory that this practice promotes fuzzier estimates because it generally increases the model's effective dimensions, i.e., the number of influential parameters and the weight of high-order interactions. By tracking the evolution of the effective dimensions and the output uncertainty at each model upgrade stage, modelers can better ponder whether the addition of detail truly matches the model's purpose and the quality of the data fed into it.
RESUMEN
In this contribution, we present an innovative data-driven model to reconstruct a reliable temporal pattern for time-lagged statistical monetary figures. Our research cuts across several domains regarding the production of robust economic inferences and the bridging of top-down aggregated information from central databases with disaggregated information obtained from local sources or national statistical offices. Our test bed case study is the European Regional Development Fund (ERDF). The application we discuss deals with the reported time lag between the local expenditures of ERDF by beneficiaries in Italian regions and the corresponding payments reported in the European Commission database. Our model reconstructs the timing of these local expenditures by back-dating the observed European Commission reimbursements. The inferred estimates are then validated against the expenditures reported from the Italian National Managing Authorities (NMAs) in terms of cumulative monetary difference. The lower cumulative yearly distance of our modelled expenditures compared to the official European Commission payments confirms the robustness of our model. Using sensitivity analysis, we also analyse the relative importance of the modelling parameters on the cumulative distance between the modelled and reported expenditures. The parameters with the greatest influence on the uncertainty of this distance are the following: first, how the non-clearly regionalised expenditures are attributed to individual regions; and second, the number of backward years that the residuals of the yearly payments are spread onto. In general, the distance between the modelled and reported expenditures can be further reduced by fixing these parameters. However, the gain is only marginal for some regions. The present study paves the way for modelling exercises that are aimed at more reliable estimates of the expenditures on the ground by the ultimate beneficiaries of European funds. Additionally, the output databases can contribute to enhancing the reliability of econometric studies on the effectiveness of European Union (EU) funds.
Asunto(s)
Gastos en Salud , Políticas , Unión Europea , Italia , Reproducibilidad de los ResultadosRESUMEN
A sustainable management of global freshwater resources requires reliable estimates of the water demanded by irrigated agriculture. This has been attempted by the Food and Agriculture Organization (FAO) through country surveys and censuses, or through Global Models, which compute irrigation water withdrawals with sub-models on crop types and calendars, evapotranspiration, irrigation efficiencies, weather data and irrigated areas, among others. Here we demonstrate that these strategies err on the side of excess complexity, as the values reported by FAO and outputted by Global Models are largely conditioned by irrigated areas and their uncertainty. Modelling irrigation water withdrawals as a function of irrigated areas yields almost the same results in a much parsimonious way, while permitting the exploration of all model uncertainties. Our work offers a robust and more transparent approach to estimate one of the most important indicators guiding our policies on water security worldwide.
RESUMEN
Municipal solid waste (MSW) management is a system involving multiple sub-systems that typically require demanding inputs, materials and resources to properly process generated waste throughput. For this reason, MSW management is generally one of the most expensive services provided by municipalities. In this paper, we analyze the Japanese MSW management system and estimate the cost elasticity with respect to the waste volumes at three treatment stages: collection, processing, and disposal. Although we observe economies of scale at all three stages, the collection cost is less elastic than the disposal cost. We also examine whether source separation at home affects the cost of MSW management. The empirical results show that the separate collection of the recyclable fraction leads to reduced processing costs at intermediate treatment facilities, but does not change the overall waste management cost. Our analysis also reveals that the cost of waste management systems decreases when the service is provided by private companies through a public tender. The cost decreases even more when the service is performed under the coordination of adjacent municipalities.
Asunto(s)
Costos y Análisis de Costo , Reciclaje/economía , Residuos Sólidos/análisis , Administración de Residuos/economía , Japón , Eliminación de Residuos/economía , Eliminación de Residuos/métodos , Residuos Sólidos/economíaRESUMEN
The VCD spectra of lanthanide chelates with two chiral ligands display conserved sequences of bands throughout the Ln series. Some compounds (Tm, Yb) feature increased bands and strongly improved signal-to-noise ratios, an effect we dub Lanthanide Induced VCD Enhancement (LIVE).
RESUMEN
Reversible and selective binding of a dynamically racemic europium(III) complex to α(1)-acid glycoprotein and α(1)-antitrypsin is characterised by a significant change in the europium total emission spectral fingerprint and the switching on of a large circularly polarised luminescence (CPL) signal from the metal centre. Observation of an induced CD into the ligand chromophore in the presence of α(1)-AGP allows a structure for the protein-bound complex to be postulated. A direct determination of elevated α(1)-AGP levels in human serum was achieved by monitoring changes in the intensity ratio of Eu emission bands.