Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurophysiol ; 123(6): 2449-2464, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32401131

RESUMEN

Somatic mutations have emerged as the likely cause of focal epilepsies associated with developmental malformations and epilepsy-associated glioneuronal tumors (GNT). Somatic BRAFV600E mutations in particular have been detected in the majority of low-grade neuroepithelial tumors (LNETS) and in neurons in focal cortical dysplasias adjacent to epilepsy-associated tumors. Furthermore, conditional expression of an activating BRAF mutation in neocortex causes seizures in mice. In this study we characterized the cellular electrophysiology of layer 2/3 neocortical pyramidal neurons induced to express BRAFV600E from neural progenitor stages. In utero electroporation of a piggyBac transposase plasmid system was used to introduce transgenes expressing BRAF wild type (BRAFwt), BRAFV600E, and/or enhanced green fluorescent protein (eGFP) and monomeric red fluorescent protein (mRFP) into radial glia progenitors in mouse embryonic cortex. Whole cell patch-clamp recordings of pyramidal neurons in slices prepared from both juvenile and adult mice showed that BRAFV600E resulted in neurons with a distinct hyperexcitable phenotype characterized by depolarized resting membrane potentials, increased input resistances, lowered action potential (AP) thresholds, and increased AP firing frequencies. Some of the BRAFV600E-expressing neurons normally destined for upper cortical layers by their birthdate were stalled in their migration and occupied lower cortical layers. BRAFV600E-expressing neurons also displayed increased hyperpolarization-induced inward currents (Ih) and decreased sustained potassium currents. Neurons adjacent to BRAFV600E transgene-expressing neurons, and neurons with TSC1 genetically deleted by CRISPR or those induced to carry PIK3CAE545K transgenes, did not show an excitability phenotype similar to that of BRAFV600E-expressing neurons. Together, these results indicate that BRAFV600E leads to a distinct hyperexcitable neuronal phenotype.NEW & NOTEWORTHY This study is the first to report the cell autonomous effects of BRAFV600E mutations on the intrinsic neuronal excitability. We show that BRAFV600E alters multiple electrophysiological parameters in neocortical neurons. Similar excitability changes did not occur in cells neighboring BRAFV600E-expressing neurons, after overexpression of wild-type BRAF transgenes, or after introduction of mutations affecting the mammalian target of rapamycin (mTOR) or the catalytic subunit of phosphoinositide 3-kinase (PIK3CA). We conclude that BRAFV600E causes a distinct, cell autonomous, highly excitable neuronal phenotype when introduced somatically into neocortical neuronal progenitors.


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Neocórtex/fisiología , Células-Madre Neurales/fisiología , Proteínas Proto-Oncogénicas B-raf/metabolismo , Células Piramidales/fisiología , Animales , Excitabilidad Cortical/fisiología , Fenómenos Electrofisiológicos/genética , Electroporación , Embrión de Mamíferos , Femenino , Masculino , Ratones , Neocórtex/metabolismo , Células-Madre Neurales/metabolismo , Técnicas de Placa-Clamp , Fenotipo , Embarazo , Proteínas Proto-Oncogénicas B-raf/genética , Células Piramidales/metabolismo
2.
Am J Hum Genet ; 96(1): 81-92, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25557784

RESUMEN

Nephronophthisis-related ciliopathies (NPHP-RC) are recessive diseases characterized by renal dysplasia or degeneration. We here identify mutations of DCDC2 as causing a renal-hepatic ciliopathy. DCDC2 localizes to the ciliary axoneme and to mitotic spindle fibers in a cell-cycle-dependent manner. Knockdown of Dcdc2 in IMCD3 cells disrupts ciliogenesis, which is rescued by wild-type (WT) human DCDC2, but not by constructs that reflect human mutations. We show that DCDC2 interacts with DVL and DCDC2 overexpression inhibits ß-catenin-dependent Wnt signaling in an effect additive to Wnt inhibitors. Mutations detected in human NPHP-RC lack these effects. A Wnt inhibitor likewise restores ciliogenesis in 3D IMCD3 cultures, emphasizing the importance of Wnt signaling for renal tubulogenesis. Knockdown of dcdc2 in zebrafish recapitulates NPHP-RC phenotypes, including renal cysts and hydrocephalus, which is rescued by a Wnt inhibitor and by WT, but not by mutant, DCDC2. We thus demonstrate a central role of Wnt signaling in the pathogenesis of NPHP-RC, suggesting an avenue for potential treatment of NPHP-RC.


Asunto(s)
Enfermedades Renales Quísticas/genética , Proteínas Asociadas a Microtúbulos/genética , Vía de Señalización Wnt/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Cilios/genética , Cilios/patología , Biología Computacional , Proteínas Dishevelled , Exones , Células HEK293 , Humanos , Riñón/patología , Ratones , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Células 3T3 NIH , Fenotipo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Pez Cebra/genética , beta Catenina/antagonistas & inhibidores , beta Catenina/metabolismo
3.
J Neurosci ; 36(17): 4895-906, 2016 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-27122044

RESUMEN

UNLABELLED: Dyslexia is the most common developmental language disorder and is marked by deficits in reading and phonological awareness. One theory of dyslexia suggests that the phonological awareness deficit is due to abnormal auditory processing of speech sounds. Variants in DCDC2 and several other neural migration genes are associated with dyslexia and may contribute to auditory processing deficits. In the current study, we tested the hypothesis that RNAi suppression of Dcdc2 in rats causes abnormal cortical responses to sound and impaired speech sound discrimination. In the current study, rats were subjected in utero to RNA interference targeting of the gene Dcdc2 or a scrambled sequence. Primary auditory cortex (A1) responses were acquired from 11 rats (5 with Dcdc2 RNAi; DC-) before any behavioral training. A separate group of 8 rats (3 DC-) were trained on a variety of speech sound discrimination tasks, and auditory cortex responses were acquired following training. Dcdc2 RNAi nearly eliminated the ability of rats to identify specific speech sounds from a continuous train of speech sounds but did not impair performance during discrimination of isolated speech sounds. The neural responses to speech sounds in A1 were not degraded as a function of presentation rate before training. These results suggest that A1 is not directly involved in the impaired speech discrimination caused by Dcdc2 RNAi. This result contrasts earlier results using Kiaa0319 RNAi and suggests that different dyslexia genes may cause different deficits in the speech processing circuitry, which may explain differential responses to therapy. SIGNIFICANCE STATEMENT: Although dyslexia is diagnosed through reading difficulty, there is a great deal of variation in the phenotypes of these individuals. The underlying neural and genetic mechanisms causing these differences are still widely debated. In the current study, we demonstrate that suppression of a candidate-dyslexia gene causes deficits on tasks of rapid stimulus processing. These animals also exhibited abnormal neural plasticity after training, which may be a mechanism for why some children with dyslexia do not respond to intervention. These results are in stark contrast to our previous work with a different candidate gene, which caused a different set of deficits. Our results shed some light on possible neural and genetic mechanisms causing heterogeneity in the dyslexic population.


Asunto(s)
Estimulación Acústica/métodos , Dislexia/genética , Proteínas Asociadas a Microtúbulos/genética , Sonido , Percepción del Habla/fisiología , Animales , Corteza Auditiva/fisiología , Percepción Auditiva , Femenino , Masculino , Plasticidad Neuronal/genética , Interferencia de ARN , Ratas , Percepción del Habla/genética , Percepción del Habla/efectos de la radiación
4.
Cereb Cortex ; 26(9): 3705-3718, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26250775

RESUMEN

Variants in DCDC2 have been associated with reading disability in humans, and targeted mutation of Dcdc2 in mice causes impairments in both learning and sensory processing. In this study, we sought to determine whether Dcdc2 mutation affects functional synaptic circuitry in neocortex. We found mutation in Dcdc2 resulted in elevated spontaneous and evoked glutamate release from neurons in somatosensory cortex. The probability of release was decreased to wild-type level by acute application of N-methyl-d-aspartate receptor (NMDAR) antagonists when postsynaptic NMDARs were blocked by intracellular MK-801, and could not be explained by elevated ambient glutamate, suggesting altered, nonpostsynaptic NMDAR activation in the mutants. In addition, we determined that the increased excitatory transmission was present at layer 4-layer 4 but not thalamocortical connections in Dcdc2 mutants, and larger evoked synaptic release appeared to enhance the NMDAR-mediated effect. These results demonstrate an NMDAR activation-gated, increased functional excitatory connectivity between layer 4 lateral connections in somatosensory neocortex of the mutants, providing support for potential changes in cortical connectivity and activation resulting from mutation of dyslexia candidate gene Dcdc2.


Asunto(s)
Ácido Glutámico/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neocórtex/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Animales , Ratones , Proteínas Asociadas a Microtúbulos/genética , Mutación , Neurotransmisores/metabolismo , Corteza Somatosensorial/fisiología , Regulación hacia Arriba/fisiología
5.
J Neurosci ; 34(15): 5311-21, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24719109

RESUMEN

KCNQ2 and KCNQ3 potassium channels have emerged as central regulators of pyramidal neuron excitability and spiking behavior. However, despite an abundance of evidence demonstrating that KCNQ2/3 heteromers underlie critical potassium conductances, it is unknown whether KCNQ2, KCNQ3, or both are obligatory for maintaining normal pyramidal neuron excitability. Here, we demonstrate that conditional deletion of Kcnq2 from cerebral cortical pyramidal neurons in mice results in abnormal electrocorticogram activity and early death, whereas similar deletion of Kcnq3 does not. At the cellular level, Kcnq2-null, but not Kcnq3-null, CA1 pyramidal neurons show increased excitability manifested as a decreased medium afterhyperpolarization and a longer-lasting afterdepolarization. As a result, these Kcnq2-deficient neurons are hyperexcitable, responding to current injections with an increased number and frequency of action potentials. Biochemically, the Kcnq2 deficiency secondarily results in a substantial loss of KCNQ3 and KCNQ5 protein levels, whereas loss of Kcnq3 only leads to a modest reduction of other KCNQ channels. Consistent with this finding, KCNQ allosteric activators can still markedly dampen neuronal excitability in Kcnq3-null pyramidal neurons, but have only weak effects in Kcnq2-null pyramidal neurons. Together, our data reveal the indispensable function of KCNQ2 channels at both the cellular and systems levels, and demonstrate that pyramidal neurons have near normal excitability in the absence of KCNQ3 channels.


Asunto(s)
Potenciales de Acción , Epilepsia/genética , Eliminación de Gen , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/fisiología , Animales , Epilepsia/metabolismo , Epilepsia/fisiopatología , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Células Piramidales/metabolismo
6.
Development ; 139(13): 2299-307, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22627280

RESUMEN

NG2-expressing cells (NG2 cells or polydendrocytes) generate oligodendrocytes throughout the CNS and a subpopulation of protoplasmic astrocytes in the gray matter of the ventral forebrain. The mechanisms that regulate their oligodendrocyte or astrocyte fate and the degree to which they exhibit lineage plasticity in vivo have remained unclear. The basic helix-loop-helix transcription factor Olig2 is required for oligodendrocyte specification and differentiation. We have found that Olig2 expression is spontaneously downregulated in NG2 cells in the normal embryonic ventral forebrain as they differentiate into astrocytes. To further examine the role of Olig2 in NG2 cell fate determination, we used genetic fate mapping of NG2 cells in constitutive and tamoxifen-inducible Olig2 conditional knockout mice in which Olig2 was deleted specifically in NG2 cells. Constitutive deletion of Olig2 in NG2 cells in the neocortex and corpus callosum but not in ventral forebrain caused them to convert their fate into astrocytes, with a concomitant severe reduction in the number of oligodendrocytes and myelin. Deletion of Olig2 in NG2 cells in perinatal mice also resulted in astrocyte generation from neocortical NG2 cells. These observations indicate that the developmental fate of NG2 cells can be switched by altering a single transcription factor Olig2.


Asunto(s)
Astrocitos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/metabolismo , Animales , Antígenos/análisis , Diferenciación Celular , Linaje de la Célula , Cuerpo Calloso/crecimiento & desarrollo , Cuerpo Calloso/metabolismo , Regulación hacia Abajo , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Neocórtex/crecimiento & desarrollo , Neocórtex/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Proteoglicanos/análisis
7.
Cereb Cortex ; 24(2): 508-20, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23118195

RESUMEN

Progenitors within the neocortical ventricular zone (VZ) first generate pyramidal neurons and then astrocytes. We applied novel piggyBac transposase lineage tracking methods to fate-map progenitor populations positive for Nestin or glutamate and aspartate transpoter (GLAST) promoter activities in the rat neocortex. GLAST+ and Nestin+ progenitors at embryonic day 13 (E13) produce lineages containing similar rations of neurons and astrocytes. By E15, the GLAST+ progenitor population diverges significantly to produce lineages with 5-10-fold more astrocytes relative to neurons than generated by the Nestin+ population. To determine when birth-dated progeny within GLAST+ and Nestin+ populations diverge, we used a Cre/loxP fate-mapping system in which plasmids are lost after a cell division. By E18, birth-dated progeny of GLAST+ progenitors give rise to 2-3-fold more neocortical astrocytes than do Nestin+ progenitors. Finally, we used a multicolor clonal labeling method to show that the GLAST+ population labeled at E15 generates astrocyte progenitors that produce larger, spatially restricted, clonal clusters than the Nestin+ population. This study provides in vivo evidence that by mid-corticogenesis (E15), VZ progenitor populations have significantly diversified in terms of their potential to generate astrocytes and neurons.


Asunto(s)
Astrocitos/fisiología , Transportador 1 de Aminoácidos Excitadores/metabolismo , Neocórtex/embriología , Neocórtex/fisiología , Nestina/metabolismo , Células-Madre Neurales/fisiología , Animales , Linaje de la Célula/fisiología , Células Cultivadas , Electroporación , Células HEK293 , Humanos , Integrasas/genética , Integrasas/metabolismo , Neurogénesis/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Ratas , Ratas Wistar , Transposasas/genética , Transposasas/metabolismo
8.
Proc Natl Acad Sci U S A ; 108(40): 16789-94, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21921234

RESUMEN

Neurogenesis requires mechanisms that coordinate early cell-fate decisions, migration, and terminal differentiation. Here, we show that the transcriptional repressor, repressor element 1 silencing transcription factor (REST), regulates radial migration and the timing of neural progenitor differentiation during neocortical development, and that the regulation is contingent upon differential REST levels. Specifically, a sustained presence of REST blocks migration and greatly delays--but does not prevent--neuronal differentiation, resulting in a subcortical band heterotopia-like phenotype, reminiscent of loss of doublecortin. We further show that doublecortin is a direct gene target of REST, and that its overexpression rescues, at least in part, the aberrant phenotype caused by persistent presence of REST. Our studies support the view that the targeted down-regulation of REST to low levels in neural progenitors, and its subsequent disappearance during neurogenesis, is critical for timing the spatiotemporal transition of neural progenitor cells to neurons.


Asunto(s)
Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Neocórtex/embriología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Proteínas Represoras/metabolismo , Animales , Western Blotting , Línea Celular , Inmunoprecipitación de Cromatina , Proteínas Co-Represoras , Cartilla de ADN/genética , ADN Complementario/genética , Proteínas de Dominio Doblecortina , Electroporación , Vectores Genéticos , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/genética , Neuropéptidos/metabolismo , Proteínas Represoras/genética
9.
ACS Appl Bio Mater ; 6(2): 566-577, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36739562

RESUMEN

Bicelles are discoidal lipid nanoparticles (LNPs) in which the planar bilayer and curved rim are, respectively, composed of long- and short-chain lipids. Bicellar LNPs have a hydrophobic core, allowing hydrophobic molecules and large molecular complexes such as quantum dots (QDs) to be encapsulated. In this study, CdSe/ZnS QDs were encapsulated in bicelles made of dipalmitoyl phosphatidylcholine, dihexanoyl phosphatidylcholine, dipalmitoyl phosphatidylglycerol, and distearoyl phosphatidylethanolamine conjugated with polyethylene glycerol amine 2000 to form a well-defined bicelle-QD nanocomplex (known as NANO2-QD or bicelle-QD). The bicelle-QD was then incubated with Hek293t cells and HeLa cells for different periods of time to determine changes in their cellular localization. Bicelle-QDs readily penetrated Hek293t cell membranes within 15 min of incubation, localized to the cytoplasm, and associated with mitochondria and intracellular vesicles. After 1 h, the bicelle-QDs enter the cell nucleus. Large aggregates form throughout the cell after 2 h and QDs are nearly absent from the nucleus by 4 h. Previous reports have demonstrated that CdSe/ZnS QDs can be toxic to cells, and we have found that encapsulating QDs in bicelles can attenuate but did not eliminate cytotoxicity. The present research outcome demonstrates the time-resolved pathway of bicelle-encapsulated QDs in Hek293t cells, morphological evolution in cells over time, and cytotoxicity of the bicelle-QDs, providing important insight into the potential application of the nanocomplex for cellular imaging.


Asunto(s)
Nanocompuestos , Puntos Cuánticos , Humanos , Células HeLa , Puntos Cuánticos/toxicidad , Puntos Cuánticos/química , Células HEK293 , Nanocompuestos/toxicidad
10.
Neurobiol Dis ; 38(2): 173-80, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19616627

RESUMEN

Reading Disability (RD) is a significant impairment in reading accuracy, speed and/or comprehension despite adequate intelligence and educational opportunity. RD affects 5-12% of readers, has a well-established genetic risk, and is of unknown neurobiological cause or causes. In this review we discuss recent findings that revealed neuroanatomic anomalies in RD, studies that identified 3 candidate genes (KIAA0319, DYX1C1, and DCDC2), and compelling evidence that potentially link the function of candidate genes to the neuroanatomic anomalies. A hypothesis has emerged in which impaired neuronal migration is a cellular neurobiological antecedent to RD. We critically evaluate the evidence for this hypothesis, highlight missing evidence, and outline future research efforts that will be required to develop a more complete cellular neurobiology of RD.


Asunto(s)
Corteza Cerebral/fisiopatología , Dislexia/genética , Dislexia/fisiopatología , Neuronas/fisiología , Movimiento Celular/genética , Proteínas del Citoesqueleto , Predisposición Genética a la Enfermedad , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética
11.
Elife ; 82019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31025941

RESUMEN

Dravet syndrome (DS) is a form of epilepsy with a high incidence of sudden unexpected death in epilepsy (SUDEP). Respiratory failure is a leading cause of SUDEP, and DS patients' frequently exhibit disordered breathing. Despite this, mechanisms underlying respiratory dysfunction in DS are unknown. We found that mice expressing a DS-associated Scn1a missense mutation (A1783V) conditionally in inhibitory neurons (Slc32a1cre/+::Scn1aA1783V fl/+; defined as Scn1aΔE26) exhibit spontaneous seizures, die prematurely and present a respiratory phenotype including hypoventilation, apnea, and a diminished ventilatory response to CO2. At the cellular level in the retrotrapezoid nucleus (RTN), we found inhibitory neurons expressing the Scn1a A1783V variant are less excitable, whereas glutamatergic chemosensitive RTN neurons, which are a key source of the CO2/H+-dependent drive to breathe, are hyper-excitable in slices from Scn1aΔE26 mice. These results show loss of Scn1a function can disrupt respiratory control at the cellular and whole animal levels.


Asunto(s)
Epilepsias Mioclónicas/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Respiración/genética , Convulsiones/genética , Potenciales de Acción/genética , Animales , Dióxido de Carbono/toxicidad , Modelos Animales de Enfermedad , Epilepsias Mioclónicas/fisiopatología , Humanos , Ratones , Mutación Missense/genética , Neuronas/metabolismo , Neuronas/patología , Convulsiones/fisiopatología , Muerte Súbita e Inesperada en la Epilepsia/patología
12.
J Neurosci ; 27(52): 14459-69, 2007 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18160654

RESUMEN

Physiological processing of the beta-amyloid precursor protein (APP) generates amyloid beta-protein, which can assemble into oligomers that mediate synaptic failure in Alzheimer's disease. Two decades of research have led to human trials of compounds that chronically target this processing, and yet the normal function of APP in vivo remains unclear. We used the method of in utero electroporation of shRNA constructs into the developing cortex to acutely knock down APP in rodents. This approach revealed that neuronal precursor cells in embryonic cortex require APP to migrate correctly into the nascent cortical plate. cDNAs encoding human APP or its homologues, amyloid precursor-like protein 1 (APLP1) or APLP2, fully rescued the shRNA-mediated migration defect. Analysis of an array of mutations and deletions in APP revealed that both the extracellular and cytoplasmic domains of APP are required for efficient rescue. Whereas knock-down of APP inhibited cortical plate entry, overexpression of APP caused accelerated migration of cells past the cortical plate boundary, confirming that normal APP levels are required for correct neuronal migration. In addition, we found that Disabled-1 (Dab1), an adaptor protein with a well established role in cortical cell migration, acts downstream of APP for this function in cortical plate entry. We conclude that full-length APP functions as an important factor for proper migration of neuronal precursors into the cortical plate during the development of the mammalian brain.


Asunto(s)
Precursor de Proteína beta-Amiloide/fisiología , Movimiento Celular/fisiología , Corteza Cerebral , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/fisiología , Interferencia de ARN/fisiología , Animales , Células COS , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Chlorocebus aethiops , Electroporación/métodos , Embrión de Mamíferos , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Embarazo , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Células Madre/fisiología , Transfección/métodos , Útero/fisiología
13.
Trends Neurosci ; 29(7): 407-413, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16713637

RESUMEN

The genetic basis is now known for several disorders of neuronal migration in the developing cerebral cortex. Identification of the cellular processes mediated by the implicated genes is revealing crucial stages of neuronal migration and has the potential to reveal common cellular causes of neuronal migration disorders. We hypothesize that a newly recognized morphological stage of neuronal migration, the multipolar stage, is vulnerable and is disrupted in several disorders of neocortical development. The multipolar stage occurs as bipolar progenitor cells become radially migrating neurons. Several studies using in utero electroporation and RNAi have revealed that transition out of the multipolar stage depends on the function of filamin A, LIS1 and DCX. Mutations in the genes encoding these proteins in humans cause distinct neuronal migration disorders, including periventricular nodular heterotopia, subcortical band heterotopia and lissencephaly. The multipolar stage therefore seems to be a critical point of migration control and a vulnerable target for disruption of neocortical development. This review is part of the INMED/TINS special issue "Nature and nurture in brain development and neurological disorders", based on presentations at the annual INMED/TINS symposium (http://inmednet.com/).


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/anomalías , Corteza Cerebral/fisiología , Malformaciones del Sistema Nervioso/patología , Neuronas/fisiología , Animales , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Malformaciones del Sistema Nervioso/etiología , Malformaciones del Sistema Nervioso/genética , Neuropéptidos/genética , Neuropéptidos/metabolismo
14.
Dev Neurosci ; 30(1-3): 144-56, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18075262

RESUMEN

During forebrain development the lateral cortical stream (LCS) supplies neurons to structures in the ventral telencephalon including the amygdala and piriform cortex. In the current study, we used spatially directed in utero electroporation and RNAi to investigate mechanisms of migration to the ventral telencephalon. Cells labeled by in utero electroporation of the lateral ventricular zone migrated into the LCS, and entered the lateral neocortex, piriform cortex and amygdala, where they differentiated primarily as pyramidal neurons. RNAi of DCX or LIS1 disrupted migration into amygdala and piriform cortex and caused many neurons to accumulate in the external and amygdalar capsules. RNAi of LIS1 and DCX had similar as well as distinguishable effects on the pattern of altered migration. Combinatorial RNAi of LIS1 and DCX further suggested interaction in the functions of LIS1 and DCX on the morphology and migration of migrating neurons in the LCS. Together, these results confirm that the LCS contributes pyramidal neurons to ventral forebrain structures and reveals that DCX and LIS1 have important functions in this major migratory pathway in the developing forebrain.


Asunto(s)
Movimiento Celular/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuropéptidos/metabolismo , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Células Piramidales/metabolismo , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/embriología , Amígdala del Cerebelo/metabolismo , Animales , Diferenciación Celular/genética , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Electroporación , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/citología , Vías Nerviosas/embriología , Vías Nerviosas/metabolismo , Neuropéptidos/genética , Vías Olfatorias/citología , Vías Olfatorias/embriología , Vías Olfatorias/metabolismo , Prosencéfalo/citología , Células Piramidales/citología , Interferencia de ARN , Ratas , Ratas Wistar , Células Madre/citología , Células Madre/metabolismo
15.
Nat Neurosci ; 6(12): 1277-83, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14625554

RESUMEN

Mutations in the doublecortin gene (DCX) in humans cause malformation of the cerebral neocortex. Paradoxically, genetic deletion of Dcx in mice does not cause neocortical malformation. We used electroporation of plasmids encoding short hairpin RNA to create interference (RNAi) of DCX protein in utero, and we show that DCX is required for radial migration in developing rat neocortex. RNAi of DCX causes both cell-autonomous and non-cell autonomous disruptions in radial migration, and creates two disruptions in neocortical development. First, many neurons prematurely stop migrating to form subcortical band heterotopias within the intermediate zone and then white matter. Second, many neurons migrate into inappropriate neocortical lamina within normotopic cortex. In utero RNAi can therefore be effectively used to study the specific cellular roles of DCX in neocortical development and to produce an animal model of double cortex syndrome.


Asunto(s)
Movimiento Celular/fisiología , Proteínas Asociadas a Microtúbulos , Neocórtex/citología , Neocórtex/fisiología , Neuropéptidos/genética , Neuropéptidos/fisiología , Interferencia de ARN , Animales , Animales Recién Nacidos , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Femenino , Eliminación de Gen , Neocórtex/embriología , Neocórtex/crecimiento & desarrollo , Neuropéptidos/biosíntesis , Neuropéptidos/deficiencia , Embarazo , Ratas , Ratas Wistar
16.
J Neurosci ; 26(44): 11413-22, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17079670

RESUMEN

The neurogenic potential of the postnatal neocortex has not been tested previously with a combination of both retroviral and bromodeoxyuridine (BrdU) labeling. Here we report that injections of enhanced green fluorescent protein (eGFP) retrovirus into 134 postnatal rats resulted in GFP labeling of 642 pyramidal neurons in neocortex. GFP-labeled neocortical pyramidal neurons, however, unlike GFP-labeled glia, did not incorporate BrdU. Closer inspection of retrovirally labeled neurons revealed microglia fused to the apical dendrites of labeled pyramidal neurons. Retroviral infection of mixed cultures of cortical neurons and glia confirmed the presence of specific neuronal-microglial fusions. Microglia did not fuse to other glial cell types, and cultures not treated with retrovirus lacked microglial-neuronal fusion. Furthermore, activation of microglia by lipopolysaccharide greatly increased the virally induced fusion of microglia to neurons in culture. These results indicate a novel form of specific cell fusion between neuronal dendrites and microglia and further illustrate the need for caution when interpreting evidence for neuronogenesis in the postnatal brain.


Asunto(s)
Microglía/citología , Microglía/virología , Neuronas/citología , Neuronas/virología , Células Piramidales/virología , Infecciones por Retroviridae/patología , Animales , Comunicación Celular/fisiología , Fusión Celular/métodos , Células Cultivadas , Microglía/fisiología , Neocórtex/citología , Neocórtex/fisiología , Neocórtex/virología , Neuronas/fisiología , Células Piramidales/citología , Células Piramidales/fisiología , Ratas , Ratas Wistar , Retroviridae , Infecciones por Retroviridae/virología
17.
Cell Stem Cell ; 20(4): 421-422, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388422

RESUMEN

Cellular changes underlying malformations of human cortical development may be difficult to identify with traditional mouse models. Two recent Cell Stem Cell papers, Li et al. (2017) and Bershteyn et al. (2017), use human cerebral organoids to identify specific cellular defects in neurogenesis that may explain PTEN-related macrocephaly and Miller-Dieker lissencephaly.


Asunto(s)
Neocórtex , Organoides , Animales , Humanos , Masculino , Ratones , Neurogénesis , Especificidad de la Especie , Células Madre
18.
Brain Lang ; 172: 30-38, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-25989970

RESUMEN

Dyslexia is a learning disability characterized by difficulty learning to read and write. The underlying biological and genetic etiology remains poorly understood. One candidate gene, dyslexia susceptibility 1 candidate 1 (DYX1C1), has been shown to be associated with deficits in short-term memory in dyslexic populations. The purpose of the current study was to examine the behavioral phenotype of a mouse model with a homozygous conditional (forebrain) knockout of the rodent homolog Dyx1c1. Twelve Dyx1c1 conditional homozygous knockouts, 7 Dyx1c1 conditional heterozygous knockouts and 6 wild-type controls were behaviorally assessed. Mice with the homozygous Dyx1c1 knockout showed deficits on memory and learning, but not on auditory or motor tasks. These findings affirm existing evidence that DYX1C1 may play an underlying role in the development of neural systems important to learning and memory, and disruption of this function could contribute to the learning deficits seen in individuals with dyslexia.


Asunto(s)
Dislexia/genética , Predisposición Genética a la Enfermedad , Aprendizaje/fisiología , Trastornos de la Memoria/genética , Mutación , Proteínas del Tejido Nervioso/genética , Animales , Modelos Animales de Enfermedad , Genotipo , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Lectura
19.
J Comp Neurol ; 525(5): 1291-1311, 2017 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27804142

RESUMEN

Collybistin (CB) is a guanine nucleotide exchange factor selectively localized to γ-aminobutyric acid (GABA)ergic and glycinergic postsynapses. Active CB interacts with gephyrin, inducing the submembranous clustering and the postsynaptic accumulation of gephyrin, which is a scaffold protein that recruits GABAA receptors (GABAA Rs) at the postsynapse. CB is expressed with or without a src homology 3 (SH3) domain. We have previously reported the effects on GABAergic synapses of the acute overexpression of CBSH3- or CBSH3+ in cultured hippocampal (HP) neurons. In the present communication, we are studying the effects on GABAergic synapses after chronic in vivo transgenic expression of CB2SH3- or CB2SH3+ in neurons of the adult rat cerebral cortex. The embryonic precursors of these cortical neurons were in utero electroporated with CBSH3- or CBSH3+ DNAs, migrated to the appropriate cortical layer, and became integrated in cortical circuits. The results show that: 1) the strength of inhibitory synapses in vivo can be enhanced by increasing the expression of CB in neurons; and 2) there are significant differences in the results between in vivo and in culture studies. J. Comp. Neurol. 525:1291-1311, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Corteza Cerebral/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Animales , Corteza Cerebral/crecimiento & desarrollo , Embrión de Mamíferos , Femenino , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Masculino , Microscopía Confocal , Técnicas de Placa-Clamp , Ratas , Ratas Transgénicas , Ratas Wistar , Sinapsis/metabolismo
20.
J Neurosci ; 23(32): 10411-8, 2003 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-14614100

RESUMEN

The subventricular zone produces neuroblasts that migrate to the olfactory bulb (OB) and differentiate into interneurons throughout postnatal life (Altman and Das, 1966; Hinds, 1968; Altman, 1969; Kishi et al., 1990; Luskin, 1993; Lois and Alvarez-Buylla, 1994). Although such postnatally generated interneurons have been characterized morphologically, their physiological differentiation has not been thoroughly described. Combining retroviral-mediated labeling of newly generated neurons with patch-clamp electrophysiology, we demonstrated that soon after new cells enter the layers of the olfactory bulb, they display voltage-dependent currents typical of more mature neurons. We also show that these "newcomers" express functional GABA and glutamate receptor channels, respond synaptically to stimulation of the olfactory nerve, and may establish both axodendritic and dendrodendritic synaptic contacts within the olfactory bulb. These data provide a basic description of the physiology of newly generated cells in the OB and show that such new cells are functional neurons that synaptically integrate into olfactory bulb circuitry soon after their arrival.


Asunto(s)
Electrofisiología/métodos , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Canales de Potasio con Entrada de Voltaje , Animales , Diferenciación Celular , Linaje de la Célula , Movimiento Celular/fisiología , Canales de Potasio de Tipo Rectificador Tardío , Femenino , Proteínas Fluorescentes Verdes , Interneuronas/fisiología , Interneuronas/virología , Ventrículos Laterales/citología , Ventrículos Laterales/fisiología , Proteínas Luminiscentes/biosíntesis , Masculino , Neuronas/clasificación , Neuronas/virología , Bulbo Olfatorio/citología , Técnicas de Placa-Clamp , Canales de Potasio/metabolismo , Ratas , Ratas Wistar , Receptores de GABA/efectos de los fármacos , Receptores de GABA/metabolismo , Receptores de Glutamato/efectos de los fármacos , Receptores de Glutamato/metabolismo , Retroviridae/fisiología , Células Madre/citología , Células Madre/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA