RESUMEN
Stable metal nitrides (MN) are promising materials to fit the future "green" ammonia-hydrogen nexus. Either through catalysis or chemical looping, the reductive hydrogenation of MN to MN1-x is a necessary step to generate ammonia. However, encumbered by the formation of kinetically stable M-NH1â3 surface species, this reduction step remains challenging under mild conditions. Herein, we discovered that deleterious Ti-NH1â3 accumulation on TiN can be circumvented photochemically with supported single atoms and clusters of platinum (Pt1-Ptn) under N2-H2 conditions. The photochemistry of TiN selectively promoted Ti-NH formation, while Pt1-Ptn effectively transformed any formed Ti-NH into free ammonia. The generated ammonia was found to originate mainly from TiN reduction with a minor contribution from N2 activation. The knowledge accrued from this fundamental study could serve as a springboard for the development of MN materials for more efficient ammonia production to potentially disrupt the century-old fossil-powered Haber-Bosch process.
RESUMEN
Metamaterials are a new class of artificial materials that can achieve electromagnetic properties that do not occur naturally, and as such they can also be a new class of photocatalytic structures. We show that metal-based catalysts can achieve electromagnetic field amplification and broadband absorption by decoupling optical properties from the material composition as exemplified with a ZnO/Cu metamaterial surface comprising periodically arranged nanocubes. Through refractive index engineering close to the index of air, the metamaterial exhibits near-perfect 98% absorption. The combination of plasmonics and broadband absorption elevates the weak electric field intensities across the nonplasmonic absorption range. This feedback between optical excitation and plasmonic excitation dramatically enhances light-to-dark catalytic rates by up to a factor of 181 times, compared to a 3 times photoenhancement of ZnO/Cu nanoparticles or films, and with angular invariance. These results show that metamaterial catalysts can act as a singular light harvesting device that substantially enhances photocatalysis of important reactions.
RESUMEN
Heterogeneous catalysis, a process in which the reaction of gaseous or liquid chemical reagents is facilitated at the surface of a solid material, is responsible for the majority of industrial-scale chemical and fuel production reactions. The energy required to drive these reactions has historically been derived from the combustion of non-renewable fossil fuels and carries an unavoidably large carbon footprint. More recently, the development of environmentally responsible and sustainable chemical industries is increasingly motivated by greenhouse gas-induced climate change, thus creating demand for eco-friendly heterogeneous catalytic processes. This includes innovative approaches enabled by renewable forms of energy, such as the electrification of chemical and petrochemical processes, utilization of CO2 as a feedstock and the incorporation of light into catalytic reactions. Herein we review the conversion of solar energy to chemical energy using CO2, and describe how the photophysical and photochemical properties of nanostructured metal oxide photocatalysts have been engineered to efficiently incorporate light into heterogeneous gas-solid CO2 hydrogenation reactions. Realizing high photonic and energy efficiencies in these systems has demanded innovation in not only photocatalyst engineering, but also photoreactor and process engineering. Rather than exclusively providing an in-depth discussion of the chemistry and science within each individual study, this Tutorial Review highlights the multidisciplinary character of photocatalysis studies by covering the four essential components of a typical research work in this field (materials engineering, theoretical modelling, reactor engineering and process development) via case studies of the archetypal indium oxide catalyst materials. Through advances in these four components, progress has been made towards the ultimate goal of industrializing the production of CO2-derived chemicals and fuels.
RESUMEN
Photo-Induced Transient Current Spectroscopy (PICTS) is a versatile technique for measurements of defect state energies and densities in photo-active materials. It is suitable for investigating the surface-gas adsorbate behavior and the defect characteristics of defect laden In2O3-x(OH)y nanorods, having oxygen vacancies and hydroxide surface groups, under in situ reactor conditions of dark ambient temperature, dark 150 °C and photo-illuminated 150 °C, for the photo-assisted Reverse Water Gas Shift reaction. From glovebox-protected X-ray Photoelectron Spectroscopy and in situ PICTS measurements we determined that the reduction of CO2 is associated with heterolytic dissociation of H2 into In-H§- and HO-H§+ centres accompanied by an increase in average carrier trap energies; increased carbonate formation in a photo/thermal reactor state of H2 + CO2, and an average trap energy decrease of 0.11 eV from H2 to a CO2 + H2 mixture, which correlates with binding energy shifts of the OH shoulder of the O1s spectra. These results show the reactivity link between the various OH groups, oxygen vacancies and trap energies of In2O3-x(OH)y in the reactant gas atmosphere components.
RESUMEN
In the study reported herein, glovebox-protected X-ray photoelectron spectroscopy (XPS) and in situ Hall charge carrier measurements provide new insights into the surface physical chemistry of gaseous H2, CO2, and H2+CO2 combined with nanostructured In2O(3-x)(OH)y nanorods, which ensue under photochemical and thermochemical operating conditions. Heterolytic dissociation of H2 in H2-only atmosphere appears to occur mainly under dark and ambient temperature conditions, while the greatest amount of OH shoulder expansion in H2+CO2 atmosphere appears to mainly occur under photoilluminated conditions. These results correlate with those of the Hall measurements, which show that the prevalence of homolytic over heterolytic dissociation at increasing temperatures leads to a steeper rate of increase in carrier concentrations; and that H2 adsorption is more prevalent than CO2 in H2+CO2 photoillumination conditions.
Asunto(s)
Dióxido de Carbono/química , Hidrógeno/química , Indio/química , Nanotubos/química , Procesos Fotoquímicos , Catálisis , Hidrogenación , Espectroscopía de FotoelectronesRESUMEN
In this study we investigated, theoretically and experimentally, the unique photoactive behavior of pristine and defected indium oxide surfaces providing fundamental insights into their excited state properties as well as an explanation for the experimentally observed enhanced activity of defected indium oxide surfaces for the gas-phase reverse water gas shift reaction, CO2 + H2 + hνâ CO + H2O in the light compared to the dark. To this end, a detailed excited-state study of pristine and defected forms of indium oxide (In2O3, In2O3-x, In2O3(OH)y and In2O3-x(OH)y) surfaces was performed using time dependent density functional theory (TDDFT) calculations, the results of which were supported experimentally by transient absorption spectroscopy and photoconductivity measurements. It was found that the surface frustrated Lewis pairs (FLPs) created by a Lewis acidic coordinately unsaturated surface indium site proximal to an oxygen vacancy and a Lewis basic surface hydroxide site in In2O3-x(OH)y become more acidic and basic and hence more active in the ES compared to the GS. This provides a theoretical mechanism responsible for the enhanced activity and reduced activation energy of the photochemical reverse water gas shift reaction observed experimentally for In2O3-x(OH)y compared to the thermochemical reaction. This fundamental insight into the role of photoexcited surface FLPs for catalytic CO2 reduction could lead to improved photocatalysts for solar fuel production.
RESUMEN
Photodiodes are fundamental components in modern optoelectronics. Heterojunction photodiodes, simply configured by two different contact materials, have been a hot research topic for many years. Currently reported self-biased heterojunction photodiodes routinely have external quantum efficiency (EQE) significantly below 100% due to optical and electrical losses. Herein, an approach that virtually overcomes this 100% EQE challenge via low-aspect-ratio nanostructures and drift-dominated photocarrier transport in a heterojunction photodiode is proposed. Broadband near-ideal EQE is achieved in nanocrystal indium tin oxide/black silicon (nc-ITO/b-Si) Schottky photodiodes. The b-Si comprises nanostalagmites which balance the antireflection effect and surface morphology. The built-in electric field is explored to match the optical generation profile, realizing enhanced photocarrier transport over a broadband of photogeneration. The devices exhibit unprecedented EQE among the reported leading-edge heterojunction photodiodes: average EQE surpasses ≈98% for wavelengths of 570-925 nm, while overall EQE is greater than ≈95% from 500 to 960 nm. Further, only elementary fabrication techniques are explored to achieve these excellent device properties. A heart rate sensor driven by nanowatt faint light is demonstrated, indicating the enormous potential of this near-ideal b-Si photodiode for low power consuming applications.
RESUMEN
The wrinkle period and morphology of a metal thin film on an elastic substrate is typically controlled by modifying the substrate before carrying out additional metal deposition steps. Herein, we show that a simultaneously selective and reactive sputtering plasma that modifies the surface of a polydimethylsiloxane (PDMS) substrate while not reacting with the metal during the deposition process decreases the wrinkle wavelength and induces additional wrinkling components and features such as ripples or folds. The selective reaction of the nitrogen plasma with PDMS functionalizes the siloxane surface into silicon oxynitride. This hardens the immediate surface of PDMS, with a quadratic increase in the Young's modulus as a function of the sputtering flow ratio. The increase in the critical strain mismatch and the corresponding presence of folds in the nitrogen-modified wrinkled silver film form a suitable plasmonic platform for surface-enhanced Raman spectroscopy (SERS), yielding an enhancement factor of 4.8 × 105 for detecting lipids. This enhancement is linked to the emergence of electromagnetic hotspots from surface plasmon polariton coupling between the folds/wrinkles, which in turn enables the detection of low concentrations of organics using SERS. Furthermore, when strained, the nitrogen-modified wrinkles enhance electrical conductivity by a factor of 12 compared with unmodified films. Finally, the optical properties of the substrate can be tuned by altering the N2 content. The simple addition of nonreactive nitrogen to silver sputtering enables simultaneous PDMS hardening and growth of the silver film and together provide a new avenue for tuning wrinkling parameters and enhancing the electrical conductivity of pliable surfaces.
RESUMEN
A conventional light management approach on a photo-catalyst is to concentrate photo-intensity to enhance the catalytic rate. We present a counter-intuitive approach where light intensity is distributed below the electronic photo-saturation limit under the principle of light maximization. By operating below the saturation point of the photo-intensity induced hydroxide growth under reactant gaseous H2+CO2 atmosphere, a coating of defect engineered In2O3-x(OH)y nanorod Reverse Water Gas Shift solar-fuel catalyst on an optical waveguide outperforms a coated plane by a factor of 2.2. Further, light distribution along the length of the waveguide increases optical pathlengths of the weakly absorptive green and yellow wavelengths, which increases CO product rate by a factor of 8.1-8.7 in the visible. Synergistically pairing with thinly doped silicon on the waveguide enhances the CO production rate by 27% over the visible. In addition, the persistent photoconductivity behavior of the In2O3-x(OH)y system enables CO production at a comparable rate for 2 h after turning off photo-illumination, enhancing yield with 44-62% over thermal only yield. The practical utility of persistent photocatalysis was demonstrated through outdoor solar concentrator tests, which after a day-and-night cycle showed CO yield increase of 19% over a day-light only period.
RESUMEN
Calcium hydroxyphosphate, Ca10 (PO4 )6 (OH)2 , is commonly known as hydroxyapatite (HAP). The acidic calcium and basic phosphate/hydroxide sites in HAP can be modified via isomorphous substitution of calcium and/or hydroxide ions to enable a cornucopia of catalyzed reactions. Herein, isomorphic substitution of Ca2+ ions by Cu2+ ions especially at very low levels of exchange created new analogs of molecular surface frustrated Lewis pairs (SFLPs) in Cux Ca10-x (PO4 )6 (OH)2 , thereby boosting its performance metrics in heterogeneous CO2 photocatalytic hydrogenation. In situ Fourier transform infrared spectroscopy characterization and density functional theory calculations provided fundamental insights into the catalytically active SFLPs defined as proximal Lewis acidic Cu2+ and Lewis basic OH- . The photocatalytic pathway proceeds through a formate reaction intermediate, which is generated by the reaction of CO2 with heterolytically dissociated H2 on the SFLPs. Given the wealth of information thus uncovered, it is highly likely that this work will spur the further development of similar classes of materials, leading to the advancement and, ultimately, large-scale application of photocatalytic CO2 reduction technologies.
RESUMEN
The photocatalytic activity of nanostructured In2O3-x(OH)y for the reverse water gas shift (RWGS) reaction CO2 + H2 â CO + H2O can be greatly enhanced by substitution of Bi(III) for In(III) in the lattice of BizIn2-zO3-x(OH)y. This behavior was hypothesized as the effect of the population and location of Bi(III) on the Lewis acidity and Lewis basicity of proximal hydroxide and coordinately unsaturated metal surface sites in BizIn2-zO3-x(OH)y acting synergistically as a frustrated Lewis acid-base pair reaction. Nonetheless, such photocatalytic activity is usually optimized in a specific batch reactor setup sequence, with H2 as an initial gas input under photo and thermal conditions before introducing CO2. Hence, the chemical interplay between environment parameters such as photoillumination, thermal input, and gas reactant components with the effects of Bi substitution is unclear. Reported herein, glovebox-protected X-ray photoelectron spectroscopy (XPS) interrogates this photochemical RWGS reaction transiting from vacuum state to similar conditions in a photocatalytic reactor, under dark and ambient temperatures, 150°C in dark and 150 °C under photoillumination. Binding energy shifts were used to correlate the material system's Lewis basicity response to these acidic probe gases. In-situ gas electronic sensitivity and in-situ UV-vis-derived band-gap trends confirm the trends shown in the XPS results, hence showing its equivalency with in situ methods. The enhanced photocatalytic reduction rate of CO2 with H2 with a low doped 0.05% a.t Bi system is thus associated with an increased gas sensitivity in H2 + CO2, a greater expansion in the OH shoulder than that of the undoped system under heat and light conditions, as well as a greater thermal stability of dissociated H adatoms. The photoinduced expansion of the OH shoulder and the increased positive binding energy shifts show the important role of photoillumination over that of thermal conditions. The poor catalytic performance of the high doped system can be attributed to a competing H2 reduction of In3+. The results provide new insight into how pairing photo and thermal conditions with the methodical tuning of the Lewis acidity and Lewis basicity of surface frustrated Lewis acid-base pair sites by varying z amount in BizIn2-zO3-x(OH)y enables optimization of the rate of the photochemical RWGS.
RESUMEN
We use photoconductivity time, optical absorption, and electron quantum efficiency measurements under in situ reactant CO2 + H2 atmospheres to determine the role of surface trap states during photoreduction of CO2 to CO using In2O3- xOH y nanorods of varied annealing times. Photocurrent decay trends show an asymmetric energy distribution of surface barrier potentials with increased asymmetry from vacuum to CO2 + H2. Urbach analysis shows crystalline disorder parameters of 0.35-0.40 under vacuum and 0.45-0.6 under CO2 + H2. Quantum efficiency spectra show that under H2 + CO2 average tail state energies are similar to those under vacuum but with increased densities of photoconductive gap states. Photoelectro-paramagnetic-resonance measurements show the creation of new paramagnetic centers. Overall, enhanced activity is associated with a lower maximum barrier potential of 0.39 eV than that of 0.41 eV, lower average trap energies of 2.58 eV compared to 2.69 eV, with higher disorder due to increased surface state densities. These techniques pave the way for facile in situ probing of gas-phase photocatalysts, providing simple macrolevel understanding of adsorbed reactants on surface band bending, thus correlating to catalytic efficacy.
RESUMEN
Metal-dielectric multilayers are versatile optical devices that can be designed to combine the visible transmittance of dielectrics with the electronic properties of metals for plasmonic and meta-material applications. However, their performances are limited by an interfacial optical absorption often attributed entirely to the metal surface roughness. Here, we show that during deposition of AlN/Ag/AlN and SiNx/Ag/SiNx multilayers, significant diffusion of Ag into the top dielectric layer form Ag nanoparticles which excite localized surface plasmon resonances that are primarily responsible for the interfacial optical absorption. Based on experimental depth profiles, we model the multilayer's silver concentration profile as two complementary error functions: one for the diffused Ag nanoparticles and one for the interface roughness. We apply the Maxwell-Garnett and Bruggeman effective medium theories to determine that diffusion characteristics dominate the experimental absorption spectra. The newfound metal nanoparticle diffusion phenomenon effectively creates a hybrid structure characteristic of both metal-dielectric multilayer and metal-dielectric composite.
RESUMEN
Frustrated Lewis pairs (FLPs) created by sterically hindered Lewis acids and Lewis bases have shown their capacity for capturing and reacting with a variety of small molecules, including H2 and CO2, and thereby creating a new strategy for CO2 reduction. Here, the photocatalytic CO2 reduction behavior of defect-laden indium oxide (In2O3-x (OH) y ) is greatly enhanced through isomorphous substitution of In3+ with Bi3+, providing fundamental insights into the catalytically active surface FLPs (i.e., In-OH···In) and the experimentally observed "volcano" relationship between the CO production rate and Bi3+ substitution level. According to density functional theory calculations at the optimal Bi3+ substitution level, the 6s2 electron pair of Bi3+ hybridizes with the oxygen in the neighboring In-OH Lewis base site, leading to mildly increased Lewis basicity without influencing the Lewis acidity of the nearby In Lewis acid site. Meanwhile, Bi3+ can act as an extra acid site, serving to maximize the heterolytic splitting of reactant H2, and results in a more hydridic hydride for more efficient CO2 reduction. This study demonstrates that isomorphous substitution can effectively optimize the reactivity of surface catalytic active sites in addition to influencing optoelectronic properties, affording a better understanding of the photocatalytic CO2 reduction mechanism.
RESUMEN
The development of strategies for increasing the lifetime of photoexcited charge carriers in nanostructured metal oxide semiconductors is important for enhancing their photocatalytic activity. Intensive efforts have been made in tailoring the properties of the nanostructured photocatalysts through different ways, mainly including band-structure engineering, doping, catalyst-support interaction, and loading cocatalysts. In liquid-phase photocatalytic dye degradation and water splitting, it was recently found that nanocrystal superstructure based semiconductors exhibited improved spatial separation of photoexcited charge carriers and enhanced photocatalytic performance. Nevertheless, it remains unknown whether this strategy is applicable in gas-phase photocatalysis. Using porous indium oxide nanorods in catalyzing the reverse water-gas shift reaction as a model system, we demonstrate here that assembling semiconductor nanocrystals into superstructures can also promote gas-phase photocatalytic processes. Transient absorption studies prove that the improved activity is a result of prolonged photoexcited charge carrier lifetimes due to the charge transfer within the nanocrystal network comprising the nanorods. Our study reveals that the spatial charge separation within the nanocrystal networks could also benefit gas-phase photocatalysis and sheds light on the design principles of efficient nanocrystal superstructure based photocatalysts.