Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Genome Res ; 27(1): 118-132, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27999094

RESUMEN

Cancer cells exhibit multiple epigenetic changes with prominent local DNA hypermethylation and widespread hypomethylation affecting large chromosomal domains. Epigenome studies often disregard the study of repeat elements owing to technical complexity and their undefined role in genome regulation. We have developed NSUMA (Next-generation Sequencing of UnMethylated Alu), a cost-effective approach allowing the unambiguous interrogation of DNA methylation in more than 130,000 individual Alu elements, the most abundant retrotransposon in the human genome. DNA methylation profiles of Alu repeats have been analyzed in colon cancers and normal tissues using NSUMA and whole-genome bisulfite sequencing. Normal cells show a low proportion of unmethylated Alu (1%-4%) that may increase up to 10-fold in cancer cells. In normal cells, unmethylated Alu elements tend to locate in the vicinity of functionally rich regions and display epigenetic features consistent with a direct impact on genome regulation. In cancer cells, Alu repeats are more resistant to hypomethylation than other retroelements. Genome segmentation based on high/low rates of Alu hypomethylation allows the identification of genomic compartments with differential genetic, epigenetic, and transcriptomic features. Alu hypomethylated regions show low transcriptional activity, late DNA replication, and its extent is associated with higher chromosomal instability. Our analysis demonstrates that Alu retroelements contribute to define the epigenetic landscape of normal and cancer cells and provides a unique resource on the epigenetic dynamics of a principal, but largely unexplored, component of the primate genome.


Asunto(s)
Elementos Alu/genética , Neoplasias del Colon/genética , Epigénesis Genética , Genoma Humano/genética , Islas de CpG/genética , Metilación de ADN/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
2.
Nucleic Acids Res ; 45(7): 3800-3811, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28100697

RESUMEN

A precise immune response is essential for cellular homeostasis and animal survival. The paramount importance of its control is reflected by the fact that its non-specific activation leads to inflammatory events that ultimately contribute to the appearance of many chronic diseases. However, the molecular mechanisms preventing non-specific activation and allowing a quick response upon signal activation are not yet fully understood. In this paper we uncover a new function of PHF8 blocking signal independent activation of immune gene promoters. Affinity purifications coupled with mass spectrometry analysis identified SIN3A and HDAC1 corepressors as new PHF8 interacting partners. Further molecular analysis demonstrated that prior to interferon gamma (IFNγ) stimulation, PHF8 is bound to a subset of IFNγ-responsive promoters. Through the association with HDAC1 and SIN3A, PHF8 keeps the promoters in a silent state, maintaining low levels of H4K20me1. Upon IFNγ treatment, PHF8 is phosphorylated by ERK2 and evicted from the promoters, correlating with an increase in H4K20me1 and transcriptional activation. Our data strongly indicate that in addition to its well-characterized function as a coactivator, PHF8 safeguards transcription to allow an accurate immune response.


Asunto(s)
Histona Demetilasas/metabolismo , Interferón gamma/farmacología , Factores de Transcripción/metabolismo , Activación Transcripcional , Línea Celular , Cromatina/metabolismo , Silenciador del Gen , Histona Desacetilasa 1/metabolismo , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3
3.
Stem Cells ; 33(6): 2025-36, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25801824

RESUMEN

The progressive restriction of differentiation potential from pluripotent embryonic stem cells (ESCs) to tissue-specific stem cells involves widespread epigenetic reprogramming, including modulation of DNA methylation patterns. Skeletal muscle stem cells are required for the growth, maintenance, and regeneration of skeletal muscle. To investigate the contribution of DNA methylation to the establishment of the myogenic program, we analyzed ESCs, skeletal muscle stem cells in proliferating (myoblasts) and differentiating conditions (myotubes), and mature myofibers. About 1.000 differentially methylated regions were identified during muscle-lineage determination and terminal differentiation, mainly located in gene bodies and intergenic regions. As a whole, myogenic stem cells showed a gain of DNA methylation, while muscle differentiation was accompanied by loss of DNA methylation in CpG-poor regions. Notably, the hypomethylated regions in myogenic stem cells were neighbored by enhancer-type chromatin, suggesting the involvement of DNA methylation in the regulation of cell-type specific enhancers. Interestingly, we demonstrated the hypomethylation of the muscle cell-identity Myf5 super-enhancer only in muscle cells. Furthermore, we observed that upstream stimulatory factor 1 binding to Myf5 super-enhancer occurs upon DNA demethylation in myogenic stem cells. Taken altogether, we characterized the unique DNA methylation signature of skeletal muscle stem cells and highlighted the importance of DNA methylation-mediated regulation of cell identity Myf5 super-enhancer during cellular differentiation.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Metilación de ADN/genética , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Regulación de la Expresión Génica/genética , Células Madre Embrionarias Humanas/metabolismo , Humanos , Proteínas Musculares/genética
4.
Proteins ; 80(9): 2235-49, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22576332

RESUMEN

Recent studies have shown how alternative splicing (AS), the process by which eukaryotic genes express more than one product, affects protein sequence and structure. However, little information is available on the impact of AS on protein dynamics, a property fundamental for protein function. In this work, we have addressed this issue using molecular dynamics simulations of the isoforms of two model proteins: glutathione S-transferase and ectodysplasin-A. We have found that AS does not have a noticeable impact on global or local structure fluctuations. We have also found that, quite interestingly, AS has a significant effect on the coupling between key structural elements such as surface cavities. Our results provide the first atom-level view of the impact of AS on protein dynamics, as far as we know. They can contribute to refine our present view of the relationship between AS and protein disorder and, more importantly, they reveal how AS may modify structural dynamic couplings in proteins.


Asunto(s)
Ectodisplasinas/química , Glutatión Transferasa/química , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Anopheles , Sitios de Unión , Ectodisplasinas/genética , Ectodisplasinas/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Humanos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Conformación Proteica , Isoformas de Proteínas , Alineación de Secuencia , Termodinámica
5.
BMC Struct Biol ; 8: 2, 2008 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-18199319

RESUMEN

BACKGROUND: Comparative, or homology, modelling of protein structures is the most widely used prediction method when the target protein has homologues of known structure. Given that the quality of a model may vary greatly, several studies have been devoted to identifying the factors that influence modelling results. These studies usually consider the protein as a whole, and only a few provide a separate discussion of the behaviour of biologically relevant features of the protein. Given the value of the latter for many applications, here we extended previous work by analysing the preservation of native protein clefts in homology models. We chose to examine clefts because of their role in protein function/structure, as they are usually the locus of protein-protein interactions, host the enzymes' active site, or, in the case of protein domains, can also be the locus of domain-domain interactions that lead to the structure of the whole protein. RESULTS: We studied how the largest cleft of a protein varies in comparative models. To this end, we analysed a set of 53507 homology models that cover the whole sequence identity range, with a special emphasis on medium and low similarities. More precisely we examined how cleft quality - measured using six complementary parameters related to both global shape and local atomic environment, depends on the sequence identity between target and template proteins. In addition to this general analysis, we also explored the impact of a number of factors on cleft quality, and found that the relationship between quality and sequence identity varies depending on cleft rank amongst the set of protein clefts (when ordered according to size), and number of aligned residues. CONCLUSION: We have examined cleft quality in homology models at a range of seq.id. levels. Our results provide a detailed view of how quality is affected by distinct parameters and thus may help the user of comparative modelling to determine the final quality and applicability of his/her cleft models. In addition, the large variability in model quality that we observed within each sequence bin, with good models present even at low sequence identities (between 20% and 30%), indicates that properly developed identification methods could be used to recover good cleft models in this sequence range.


Asunto(s)
Modelos Moleculares , Estructura Terciaria de Proteína , Proteínas/química , Simulación por Computador , Alineación de Secuencia , Análisis de Secuencia de Proteína , Programas Informáticos , Homología Estructural de Proteína
6.
PLoS One ; 10(5): e0123263, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25933092

RESUMEN

Mouse models of intestinal crypt cell differentiation and tumorigenesis have been used to characterize the molecular mechanisms underlying both processes. DNA methylation is a key epigenetic mark and plays an important role in cell identity and differentiation programs and cancer. To get insights into the dynamics of cell differentiation and malignant transformation we have compared the DNA methylation profiles along the mouse small intestine crypt and early stages of tumorigenesis. Genome-scale analysis of DNA methylation together with microarray gene expression have been applied to compare intestinal crypt stem cells (EphB2high), differentiated cells (EphB2negative), ApcMin/+ adenomas and the corresponding non-tumor adjacent tissue, together with small and large intestine samples and the colon cancer cell line CT26. Compared with late stages, small intestine crypt differentiation and early stages of tumorigenesis display few and relatively small changes in DNA methylation. Hypermethylated loci are largely shared by the two processes and affect the proximities of promoter and enhancer regions, with enrichment in genes associated with the intestinal stem cell signature and the PRC2 complex. The hypermethylation is progressive, with minute levels in differentiated cells, as compared with intestinal stem cells, and reaching full methylation in advanced stages. Hypomethylation shows different signatures in differentiation and cancer and is already present in the non-tumor tissue adjacent to the adenomas in ApcMin/+ mice, but at lower levels than advanced cancers. This study provides a reference framework to decipher the mechanisms driving mouse intestinal tumorigenesis and also the human counterpart.


Asunto(s)
Diferenciación Celular , Transformación Celular Neoplásica/patología , Metilación de ADN , Progresión de la Enfermedad , Intestinos/patología , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Cromosomas de los Mamíferos/genética , Metilación de ADN/genética , Regulación Neoplásica de la Expresión Génica , Sitios Genéticos , Genoma , Neoplasias Intestinales/patología , Ratones Endogámicos C57BL , Análisis de Secuencia de ADN , Células Madre/metabolismo , Células Madre/patología
7.
Mol Genet Genomic Med ; 3(3): 221-32, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26029709

RESUMEN

Hereditary hemochromatosis (HH) type 3 is an autosomal recessive disorder of iron metabolism characterized by excessive iron deposition in the liver and caused by mutations in the transferrin receptor 2 (TFR2) gene. Here, we describe three new HH type 3 Spanish families with four TFR2 mutations (p.Gly792Arg, c.1606-8A>G, Gln306*, and Gln672*). The missense variation p.Gly792Arg was found in homozygosity in two adult patients of the same family, and in compound heterozygosity in an adult proband that also carries a novel intronic change (c.1606-8A>G). Two new nonsense TFR2 mutations (Gln306* and Gln672*) were detected in a pediatric case. We examine the functional consequences of two TFR2 variants (p.Gly792Arg and c.1606-8A>G) using molecular and computational methods. Cellular protein localization studies using immunofluorescence demonstrated that the plasma membrane localization of p.Gly792Arg TFR2 is impaired. Splicing studies in vitro and in vivo reveal that the c.1606-8A>G mutation leads to the creation of a new acceptor splice site and an aberrant TFR2 mRNA. The reported mutations caused HH type 3 by protein truncation, altering TFR2 membrane localization or by mRNA splicing defect, producing a nonfunctional TFR2 protein and a defective signaling transduction for hepcidin regulation. TFR2 genotyping should be considered in adult but also in pediatric cases with early-onset of iron overload.

8.
Epigenetics ; 5(2): 137-48, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20160474

RESUMEN

Structural characterization of the interaction between histone tails and effector modules (bromodomains, chromodomains, PHD fingers, etc.) is fundamental to understand the mechanistic aspects of epigenetic regulation of gene expression. In recent years many researchers have applied this approach to specific systems, thus providing a valuable but fragmentary view of the histone-effector interaction. In our work we use this information to characterize the structural features of the two main components of this interaction, histone peptides and the binding site of effector domains (focusing on those which target modified lysines), and increase our knowledge on its specificity determinants. Our results show that the binding sites of effectors are structurally variable, but some clear trends allow their classification in three main groups: flat-groove, narrow-groove and cavity-insertion. In addition, we found that even within these classes binding site variability is substantial. These results in context with the work from other researchers indicate that the there are at least two determinants of binding specificity in the binding site of effector modules. Finally, our analysis of the histone peptides sheds light on the structural transition experienced by histone tails upon effector binding, showing that it may vary depending on the local properties of the sequence stretch considered, thus allowing us to identify an additional specificity determinant for this interaction. Overall, the results of our analysis contribute to clarify the origins of specificity: different regions of the binding site and, in particular, differences in the disorder-order transitions experienced by different histone sequence stretches upon binding.


Asunto(s)
Histonas/química , Histonas/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Humanos , Ligandos , Modelos Moleculares , Péptidos/química , Unión Proteica , Estructura Terciaria de Proteína , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA