Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 43, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31913333

RESUMEN

Digital Breast Tomosynthesis (DBT) is a modern 3D Computed Tomography X-ray technique for the early detection of breast tumors, which is receiving growing interest in the medical and scientific community. Since DBT performs incomplete sampling of data, the image reconstruction approaches based on iterative methods are preferable to the classical analytic techniques, such as the Filtered Back Projection algorithm, providing fewer artifacts. In this work, we consider a Model-Based Iterative Reconstruction (MBIR) method well suited to describe the DBT data acquisition process and to include prior information on the reconstructed image. We propose a gradient-based solver named Scaled Gradient Projection (SGP) for the solution of the constrained optimization problem arising in the considered MBIR method. Even if the SGP algorithm exhibits fast convergence, the time required on a serial computer for the reconstruction of a real DBT data set is too long for the clinical needs. In this paper we propose a parallel SGP version designed to perform the most expensive computations of each iteration on Graphics Processing Unit (GPU). We apply the proposed parallel approach on three different GPU boards, with computational performance comparable with that of the boards usually installed in commercial DBT systems. The numerical results show that the proposed GPU-based MBIR method provides accurate reconstructions in a time suitable for clinical trials.


Asunto(s)
Algoritmos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Gráficos por Computador , Mamografía/métodos , Modelos Teóricos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Femenino , Humanos , Imagenología Tridimensional/métodos , Fantasmas de Imagen , Intensificación de Imagen Radiográfica/métodos , Tomografía Computarizada por Rayos X/métodos
2.
Artículo en Inglés | MEDLINE | ID: mdl-29076644

RESUMEN

Immunofluorescence diagnostic systems cost is often dominated by high-sensitivity, low-noise CCD-based cameras that are used to acquire the fluorescence images. In this paper, we investigate the use of low-cost CMOS sensors in a point-of-care immunofluorescence diagnostic application for the detection and discrimination of 4 different serotypes of the Dengue virus in a set of human samples. A 2-phase postprocessing software pipeline is proposed, which consists in a first image-enhancement stage for resolution increasing and segmentation and a second diagnosis stage for the computation of the output concentrations. We present a novel variational coupled model for the joint super-resolution and segmentation stage and an automatic innovative image analysis for the diagnosis purpose. A specially designed forward backward-based numerical algorithm is introduced, and its convergence is proved under mild conditions. We present results on a cheap prototype CMOS camera compared with the results of a more expensive CCD device, for the detection of the Dengue virus with a low-cost OLED light source. The combination of the CMOS sensor and the developed postprocessing software allows to correctly identify the different Dengue serotype using an automatized procedure. The results demonstrate that our diagnostic imaging system enables camera cost reduction up to 99%, at an acceptable diagnostic accuracy, with respect to the reference CCD-based camera system. The correct detection and identification of the Dengue serotypes have been confirmed by standard diagnostic methods (RT-PCR and ELISA).


Asunto(s)
Técnica del Anticuerpo Fluorescente , Sistemas de Atención de Punto , Algoritmos , Humanos , Aumento de la Imagen , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA