RESUMEN
Disruption of the Transient Receptor Potential (TRP) mucolipin 1 (TRPML1) channel results in the neurodegenerative disorder mucolipidosis type IV (MLIV), a lysosomal storage disease with severe motor impairments. The mechanisms underlying MLIV are poorly understood and there is no treatment. Here, we report a Drosophila MLIV model, which recapitulates the key disease features, including abnormal intracellular accumulation of macromolecules, motor defects, and neurodegeneration. The basis for the buildup of macromolecules was defective autophagy, which resulted in oxidative stress and impaired synaptic transmission. Late-apoptotic cells accumulated in trpml mutant brains, suggesting diminished cell clearance. The accumulation of late-apoptotic cells and motor deficits were suppressed by expression of trpml(+) in neurons, glia, or hematopoietic cells. We conclude that the neurodegeneration and motor defects result primarily from decreased clearance of apoptotic cells. Since hematopoietic cells in humans are involved in clearance of apoptotic cells, our results raise the possibility that bone marrow transplantation may limit the progression of MLIV.
Asunto(s)
Apoptosis , Modelos Animales de Enfermedad , Drosophila/metabolismo , Mucolipidosis/metabolismo , Animales , Humanos , Enfermedades Neurodegenerativas/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismoRESUMEN
A systematic Drosophila forward genetic screen for photoreceptor synaptic transmission mutants identified no-on-and-no-off transient C (nonC) based on loss of retinal synaptic responses to light stimulation. The cloned gene encodes phosphatidylinositol-3-kinase-like kinase (PIKK) Smg1, a regulatory kinase of the nonsense-mediated decay (NMD) pathway. The Smg proteins act in an mRNA quality control surveillance mechanism to selectively degrade transcripts containing premature stop codons, thereby preventing the translation of truncated proteins with dominant-negative or deleterious gain-of-function activities. At the neuromuscular junction (NMJ) synapse, an extended allelic series of Smg1 mutants show impaired structural architecture, with decreased terminal arbor size, branching and synaptic bouton number. Functionally, loss of Smg1 results in a ~50% reduction in basal neurotransmission strength, as well as progressive transmission fatigue and greatly impaired synaptic vesicle recycling during high-frequency stimulation. Mutation of other NMD pathways genes (Upf2 and Smg6) similarly impairs neurotransmission and synaptic vesicle cycling. These findings suggest that the NMD pathway acts to regulate proper mRNA translation to safeguard synapse morphology and maintain the efficacy of synaptic function.
Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Células Fotorreceptoras de Invertebrados/metabolismo , Terminales Presinápticos/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Proteínas de Drosophila/genética , Prueba de Complementación Genética , Pruebas Genéticas , Fototransducción/genética , Morfogénesis/genética , Unión Neuromuscular/fisiología , Células Fotorreceptoras de Invertebrados/patología , Terminales Presinápticos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Retina/crecimiento & desarrollo , Retina/patología , Eliminación de Secuencia/genética , Transmisión Sináptica/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/patologíaRESUMEN
A systematic forward genetic Drosophila screen for electroretinogram mutants lacking synaptic transients identified the fuseless (fusl) gene, which encodes a predicted eight-pass transmembrane protein in the presynaptic membrane. Null fusl mutants display >75% reduction in evoked synaptic transmission but, conversely, an approximately threefold increase in the frequency and amplitude of spontaneous synaptic vesicle fusion events. These neurotransmission defects are rescued by a wild-type fusl transgene targeted only to the presynaptic cell, demonstrating a strictly presynaptic requirement for Fusl function. Defects in FM dye turnover at the synapse show a severely impaired exo-endo synaptic vesicle cycling pool. Consistently, ultrastructural analyses reveal accumulated vesicles arrested in clustered and docked pools at presynaptic active zones. In the absence of Fusl, calcium-dependent neurotransmitter release is dramatically compromised and there is little enhancement of synaptic efficacy with elevated external Ca(2+) concentrations. These defects are causally linked with severe loss of the Cacophony voltage-gated Ca(2+) channels, which fail to localize normally at presynaptic active zone domains in the absence of Fusl. These data indicate that Fusl regulates assembly of the presynaptic active zone Ca(2+) channel domains required for efficient coupling of the Ca(2+) influx and synaptic vesicle exocytosis during neurotransmission.
Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Proteínas de Drosophila/fisiología , Exocitosis/fisiología , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/fisiología , Animales , Animales Modificados Genéticamente , Membrana Celular/fisiología , Drosophila , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Electrorretinografía/métodos , Embrión no Mamífero , Potenciales Evocados Visuales/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/fisiología , Análisis por Micromatrices , Mutación/fisiología , Proteínas del Tejido Nervioso/fisiología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/fisiología , Unión Neuromuscular/ultraestructura , Técnicas de Placa-Clamp/métodos , Estimulación Luminosa/métodos , Terminales Presinápticos/ultraestructura , Interferencia de ARN/fisiología , Transmisión Sináptica/fisiología , Visión Ocular/genética , Vías Visuales/anatomía & histología , Vías Visuales/metabolismoRESUMEN
Noninvasive genomic assessments of the fetus while in utero have been made possible by the analysis of cell-free fetal DNA fragments from the serum of pregnant women, as part of a noninvasive prenatal testing screening strategy. Between 7% and 10% of total cell-free DNA in the maternal blood comes from placental trophoblasts, allowing for identification of the DNA associated with the fetal component of the placenta. Using simple venipuncture in the outpatient setting, this cell-free, extracellular fetal DNA can be isolated in the maternal serum from a single blood draw as early as the seventh week of gestation.
Asunto(s)
Trastornos de los Cromosomas/diagnóstico , Diagnóstico Prenatal/métodos , Aneuploidia , Trastornos de los Cromosomas/epidemiología , ADN/sangre , Femenino , Humanos , Valor Predictivo de las Pruebas , Embarazo , Factores de Riesgo , Sensibilidad y EspecificidadRESUMEN
Retrograde bone morphogenetic protein signaling mediated by the Glass bottom boat (Gbb) ligand modulates structural and functional synaptogenesis at the Drosophila melanogaster neuromuscular junction. However, the molecular mechanisms regulating postsynaptic Gbb release are poorly understood. In this study, we show that Drosophila Rich (dRich), a conserved Cdc42-selective guanosine triphosphatase-activating protein (GAP), inhibits the Cdc42-Wsp pathway to stimulate postsynaptic Gbb release. Loss of dRich causes synaptic undergrowth and strongly impairs neurotransmitter release. These presynaptic defects are rescued by targeted postsynaptic expression of wild-type dRich but not a GAP-deficient mutant. dRich inhibits the postsynaptic localization of the Cdc42 effector Wsp (Drosophila orthologue of mammalian Wiskott-Aldrich syndrome protein, WASp), and manifestation of synaptogenesis defects in drich mutants requires Wsp signaling. In addition, dRich regulates postsynaptic organization independently of Cdc42. Importantly, dRich increases Gbb release and elevates presynaptic phosphorylated Mad levels. We propose that dRich coordinates the Gbb-dependent modulation of synaptic growth and function with postsynaptic development.