Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(23): e115008, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37964598

RESUMEN

The main goals and challenges for the life science communities in the Open Science framework are to increase reuse and sustainability of data resources, software tools, and workflows, especially in large-scale data-driven research and computational analyses. Here, we present key findings, procedures, effective measures and recommendations for generating and establishing sustainable life science resources based on the collaborative, cross-disciplinary work done within the EOSC-Life (European Open Science Cloud for Life Sciences) consortium. Bringing together 13 European life science research infrastructures, it has laid the foundation for an open, digital space to support biological and medical research. Using lessons learned from 27 selected projects, we describe the organisational, technical, financial and legal/ethical challenges that represent the main barriers to sustainability in the life sciences. We show how EOSC-Life provides a model for sustainable data management according to FAIR (findability, accessibility, interoperability, and reusability) principles, including solutions for sensitive- and industry-related resources, by means of cross-disciplinary training and best practices sharing. Finally, we illustrate how data harmonisation and collaborative work facilitate interoperability of tools, data, solutions and lead to a better understanding of concepts, semantics and functionalities in the life sciences.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Investigación Biomédica , Programas Informáticos , Flujo de Trabajo
2.
NMR Biomed ; 36(6): e4715, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35187749

RESUMEN

Since the inception of CEST MRI in the 1990s, a number of compounds have been identified as suitable for generating contrast, including paramagnetic lanthanide complexes, hyperpolarized atom cages and, most interesting, diamagnetic compounds. In the past two decades, there has been a major emphasis in this field on the identification and application of diamagnetic compounds that have suitable biosafety profiles for usage in medical applications. Even in the past five years there has been a tremendous growth in their numbers, with more and more emphasis being placed on finding those that can be ultimately used for patient studies on clinical 3 T scanners. At this point, a number of endogenous compounds present in tissue have been identified, and also natural and synthetic organic compounds that can be administered to highlight pathology via CEST imaging. Here we will provide a very extensive snapshot of the types of diamagnetic compound that can generate CEST MRI contrast, together with guidance on their utility on typical preclinical and clinical scanners and a review of the applications that might benefit the most from this new technology.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos
3.
Inorg Chem ; 61(42): 16650-16663, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36205705

RESUMEN

Fe(II) and Ni(II) paraCEST contrast agents containing the di-pyridine macrocyclic ligand 2,2',2″-(3,7,10-triaza-1,5(2,6)-dipyridinacycloundecaphane-3,7,10-triyl)triacetamide (DETA) are reported here. Both [Fe(DETA)]2+ and [Ni(DETA)]2+ complexes were structurally characterized. Crystallographic data revealed the seven-coordinated distorted pentagonal bipyramidal geometry of the [Fe(DETA)]·(BF4)2·MeCN complex with five coordinated nitrogen atoms from the macrocyclic ring and two coordinated oxygen atoms from two amide pendant arms. The [Ni(DETA)]·Cl2·2H2O complex was six-coordinated in nature with a distorted octahedral geometry. Four coordinated nitrogen atoms were from the macrocyclic ring, and two coordinated oxygen atoms were from two amide pendant arms. [Fe(DETA)]2+ exhibited well-resolved sharp proton resonances, whereas very broad proton resonances were observed in the case of [Ni(DETA)]2+ due to the long electronic relaxation times. The CEST peaks for the [Fe(DETA)]2+ complex showed one highly downfield-shifted and intense peak at 84 ppm with another shifted but less intense peak at 28 ppm with good CEST contrast efficiency at body temperature, whereas [Ni(DETA)]2+ showed only one highly shifted intense peak at 78 ppm from the bulk water protons. Potentiometric titrations were performed to determine the protonation constants of the ligand and the thermodynamic stability constant of the [M(DETA)]2+ (M = Fe, Co, Ni, Cu, Zn) species at 25.0 °C and I = 0.15 mol·L-1 NaClO4. Metal exchange studies confirmed the stability of the complexes in acidic medium in the presence of physiologically relevant anions and an equimolar concentration of Zn(II) ions.


Asunto(s)
Medios de Contraste , Protones , Ligandos , Medios de Contraste/química , Estructura Molecular , DEET , Cristalografía por Rayos X , Piridinas/química , Amidas/química , Compuestos Ferrosos/química , Oxígeno , Nitrógeno , Agua
4.
MAGMA ; 35(1): 87-104, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35032288

RESUMEN

Cancer is one of the most devastating diseases that the world is currently facing, accounting for 10 million deaths in 2020 (WHO). In the last two decades, advanced medical imaging has played an ever more important role in the early detection of the disease, as it increases the chances of survival and the potential for full recovery. To date, dynamic glucose-enhanced (DGE) MRI using glucose-based chemical exchange saturation transfer (glucoCEST) has demonstrated the sensitivity to detect both D-glucose and glucose analogs, such as 3-oxy-methyl-D-glucose (3OMG) uptake in tumors. As one of the recent international efforts aiming at pushing the boundaries of translation of the DGE MRI technique into clinical practice, a multidisciplinary team of eight partners came together to form the "glucoCEST Imaging of Neoplastic Tumors (GLINT)" consortium, funded by the Horizon 2020 European Commission. This paper summarizes the progress made to date both by these groups and others in increasing our knowledge of the underlying mechanisms related to this technique as well as translating it into clinical practice.


Asunto(s)
Glucosa , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos
5.
J Digit Imaging ; 35(4): 860-875, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35304674

RESUMEN

Molecular imaging generates large volumes of heterogeneous biomedical imagery with an impelling need of guidelines for handling image data. Although several successful solutions have been implemented for human epidemiologic studies, few and limited approaches have been proposed for animal population studies. Preclinical imaging research deals with a variety of machinery yielding tons of raw data but the current practices to store and distribute image data are inadequate. Therefore, standard tools for the analysis of large image datasets need to be established. In this paper, we present an extension of XNAT for Preclinical Imaging Centers (XNAT-PIC). XNAT is a worldwide used, open-source platform for securely hosting, sharing, and processing of clinical imaging studies. Despite its success, neither tools for importing large, multimodal preclinical image datasets nor pipelines for processing whole imaging studies are yet available in XNAT. In order to overcome these limitations, we have developed several tools to expand the XNAT core functionalities for supporting preclinical imaging facilities. Our aim is to streamline the management and exchange of image data within the preclinical imaging community, thereby enhancing the reproducibility of the results of image processing and promoting open science practices.


Asunto(s)
Diagnóstico por Imagen , Procesamiento de Imagen Asistido por Computador , Animales , Diagnóstico por Imagen/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Reproducibilidad de los Resultados
6.
Br J Cancer ; 124(1): 207-216, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33257841

RESUMEN

BACKGROUND: Tumour acidosis is considered to play a central role in promoting cancer invasion and migration, but few studies have investigated in vivo how tumour pH correlates with cancer invasion. This study aims to determine in vivo whether tumour acidity is associated with cancer metastatic potential. METHODS: Breast cancer cell lines with different metastatic potentials have been characterised for several markers of aggressiveness and invasiveness. Murine tumour models have been developed and assessed for lung metastases and tumour acidosis has been assessed in vivo by a magnetic resonance imaging-based chemical exchange saturation transfer (CEST) pH imaging approach. RESULTS: The higher metastatic potential of 4T1 and TS/A primary tumours, in comparison to the less aggressive TUBO and BALB-neuT ones, was confirmed by the highest expression of cancer cell stem markers (CD44+CD24-), highlighting their propensity to migrate and invade, coinciding with the measurement obtained by in vitro assays. MRI-CEST pH imaging successfully discriminated the more aggressive 4T1 and TS/A tumours that displayed a more acidic pH. Moreover, the observed higher tumour acidity was significantly correlated with an increased number of lung metastases. CONCLUSIONS: The findings of this study indicate that the extracellular acidification is associated with the metastatic potential.


Asunto(s)
Neoplasias de la Mama/química , Neoplasias de la Mama/patología , Invasividad Neoplásica/patología , Animales , Línea Celular Tumoral , Femenino , Concentración de Iones de Hidrógeno , Imagen por Resonancia Magnética/métodos , Ratones , Ratones Endogámicos BALB C
7.
Magn Reson Med ; 85(6): 3479-3496, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33496986

RESUMEN

PURPOSE: Chemical exchange saturation transfer MRI provides new approaches for investigating tumor microenvironment, including tumor acidosis that plays a key role in tumor progression and resistance to therapy. Following iopamidol injection, the detection of the contrast agent inside the tumor tissue allows measurements of tumor extracellular pH. However, accurate tumor pH quantifications are hampered by the low contrast efficiency of the CEST technique and by the low SNR of the acquired CEST images, hence in a reduced detectability of the injected agent. This work aims to investigate a novel denoising method for improving both tumor pH quantification and accuracy of CEST-MRI pH imaging. METHODS: An hybrid denoising approach was investigated for CEST-MRI pH imaging based on the combination of the nonlocal mean filter and the anisotropic diffusion tensor method. The denoising approach was tested in simulated and in vitro data and compared with previously reported methods for CEST imaging and with established denoising approaches. Finally, it was validated with in vivo data to improve the accuracy of tumor pH maps. RESULTS: The proposed method outperforms current denoising methods in CEST contrast quantification and detection of the administered contrast agent at several increasing noise levels with simulated data. In addition, it achieved a better pH quantification in in vitro data and demonstrated a marked improvement in contrast detection and a substantial improvement in tumor pH accuracy in in vivo data. CONCLUSION: The proposed approach effectively reduces the noise in CEST images and increases the sensitivity detection in CEST-MRI pH imaging.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias , Anisotropía , Humanos , Concentración de Iones de Hidrógeno , Yopamidol , Neoplasias/diagnóstico por imagen , Fantasmas de Imagen , Microambiente Tumoral
8.
Magn Reson Med ; 86(2): 995-1007, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33764575

RESUMEN

PURPOSE: The aim of this study was to investigate two clinically approved plasma volume expanders (dextran 70 and voluven) as macromolecular MRI-chemical exchange saturation transfer (CEST) contrast agents to assess tumor vascular properties. METHODS: CEST contrast efficiency of both molecules (6% w/v) was measured in vitro at various irradiation saturation powers (1-6 µT for 5 s) and pH values (range, 5.5-7.9) and the exchange rate of hydroxyl protons was calculated. In vivo studies in a murine adenocarcinoma model (n = 4 mice for each contrast agent) upon i.v. injection provided CEST-derived perfusion tumor properties that were compared with those obtained with a gadolinium-based blood-pool agent (Gd-AAZTA-Madec). RESULTS: In vitro measurements showed a marked CEST contrast dependency to pH, with higher CEST contrast at lower pH values for both molecules. The measured prototropic exchange rates confirmed a base-catalyzed exchange rate that was faster for dextran 70 in comparison to voluven. Both molecules showed a similar CEST contrast increase (ΔST% > 3%) in the tumor tissue up to 30 min postinjection, with heterogeneous accumulation. In tumors receiving both CEST and T1 -weighted agents, a voxel-by-voxel analysis indicated moderate spatial correlation of perfusion properties between voluven/dextran 70 and Gd-AAZTA-Madec, suggesting different distribution patterns according to their molecular size. CONCLUSIONS: The obtained results showed that both voluven and dextran 70 can be exploited as MRI-CEST contrast agents for evaluating tumor enhancement properties. Their increased accumulation in tumors and prolonged contrast enhancement promote their use as blood-pool MRI-CEST agents to examine tumor vascularization.


Asunto(s)
Medios de Contraste , Neoplasias , Animales , Gadolinio , Imagen por Resonancia Magnética , Ratones , Neoplasias/diagnóstico por imagen , Sustitutos del Plasma
9.
Magn Reson Med ; 85(3): 1335-1349, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33031591

RESUMEN

PURPOSE: Chemical exchange saturation transfer MRI can provide accurate pH images, but the slow scan time (due to long saturation periods and multiple offsets sampling) reduce both the volume coverage and spatial resolution capability, hence the possibility to interrogate the heterogeneity in tumors and organs. To overcome these limitations, we propose a fast multislice CEST-MRI sequence with high pH accuracy and spatial resolution. METHODS: The sequence first uses a long saturation pulse to induce the steady-state CEST contrast and a second short saturation pulse repeated after each image acquisition to compensate for signal losses based on an uneven irradiation scheme combined with a single-shot rapid acquisition with refocusing echoes readout. Sequence sensitivity and accuracy in measuring pH was optimized by simulation and assessed by in vitro studies in pH-varying phantoms. In vivo validation was performed in two applications by acquiring multislice pH images covering the whole tumors and kidneys after iopamidol injection. RESULTS: Simulated and in vivo data showed comparable contrast efficiency and pH responsiveness by reducing saturation time. The experimental data from a homogeneous, pH-varying, iopamidol-containing phantom show that the sequence produced a uniform CEST contrast across slices and accurate values across slices in less than 10 minutes. In vivo measurements allowed us to quantify the 3D pH gradients of tumors and kidneys, with pH ranges comparable with the literature. CONCLUSION: The proposed fast multislice CEST-MRI sequence allows volumetric acquisitions with good pH sensitivity, accuracy, and spatial resolution for several in vivo pH imaging applications.


Asunto(s)
Yopamidol , Imagen por Resonancia Magnética , Simulación por Computador , Concentración de Iones de Hidrógeno , Fantasmas de Imagen
10.
NMR Biomed ; 34(12): e4602, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34423470

RESUMEN

D-Glucose and 3-O-Methyl-D-glucose (3OMG) have been shown to provide contrast in magnetic resonance imaging-chemical exchange saturation transfer (MRI-CEST) images. However, a systematic comparison between these two molecules has yet to be performed. The current study deals with the assessment of the effect of pH, saturation power level (B1 ) and magnetic field strength (B0 ) on the MRI-CEST contrast with the aim of comparing the in vivo CEST contrast detectability of these two agents in the glucoCEST procedure. Phosphate-buffered solutions of D-Glucose or 3OMG (20 mM) were prepared at different pH values and Z-spectra were acquired at several B1 levels at 37°C. In vivo glucoCEST images were obtained at 3 and 7 T over a period of 30 min after injection of D-Glucose or 3OMG (at doses of 1.5 or 3 g/kg) in a murine melanoma tumor model (n = 3-5 mice for each molecule, dose and B0 field). A markedly different pH dependence of CEST response was observed in vitro for D-Glucose and 3OMG. The glucoCEST contrast enhancement in the tumor region following intravenous administration (at the 3 g/kg dose) was comparable for both molecules: 1%-2% at 3 T and 2%-3% at 7 T. The percentage change in saturation transfer that resulted was almost constant for 3OMG over the 30-min period, whereas a significant increase was detected for D-Glucose. Our results show similar CEST contrast efficiency but different temporal kinetics for the metabolizable and the nonmetabolizable glucose derivatives in a tumor murine model when administered at the same doses.


Asunto(s)
3-O-Metilglucosa/química , Glucosa/química , Imagen por Resonancia Magnética/métodos , Melanoma Experimental/diagnóstico por imagen , Animales , Línea Celular Tumoral , Concentración de Iones de Hidrógeno , Campos Magnéticos , Masculino , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL
11.
Cancer Metastasis Rev ; 38(1-2): 25-49, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30762162

RESUMEN

Cancer cells are characterized by a metabolic shift in cellular energy production, orchestrated by the transcription factor HIF-1α, from mitochondrial oxidative phosphorylation to increased glycolysis, regardless of oxygen availability (Warburg effect). The constitutive upregulation of glycolysis leads to an overproduction of acidic metabolic products, resulting in enhanced acidification of the extracellular pH (pHe ~ 6.5), which is a salient feature of the tumor microenvironment. Despite the importance of pH and tumor acidosis, there is currently no established clinical tool available to image the spatial distribution of tumor pHe. The purpose of this review is to describe various imaging modalities for measuring intracellular and extracellular tumor pH. For each technique, we will discuss main advantages and limitations, pH accuracy and sensitivity of the applied pH-responsive probes and potential translatability to the clinic. Particular attention is devoted to methods that can provide pH measurements at high spatial resolution useful to address the task of tumor heterogeneity and to studies that explored tumor pH imaging for assessing treatment response to anticancer therapies.


Asunto(s)
Acidosis/diagnóstico por imagen , Acidosis/metabolismo , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Acidosis/patología , Animales , Humanos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética/métodos , Neoplasias/patología
12.
NMR Biomed ; 33(6): e4287, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32153058

RESUMEN

Several factors can lead to acute kidney injury, but damage following ischemia and reperfusion injuries is the main risk factor and usually develops into chronic disease. MRI has often been proposed as a method with which to assess renal function. It does so by measuring the renal perfusion of an injected Gd-based contrast agent. The use of pH-responsive agents as part of the CEST (chemical exchange saturation transfer)-MRI technique has recently shown that pH homeostasis is also an important indicator of kidney functionality. However, there is still a need for methods that can provide more than one type of information following the injection of a single contrast agent for the characterization of renal function. Herein we propose, for the first time, dynamic CEST acquisition following iopamidol injection to quantify renal function by assessing both perfusion and pH homeostasis. The aim of this study is to assess renal functionality in a murine unilateral ischemia-reperfusion injury model at two time points (3 and 7 days) after acute kidney injury. The renal-perfusion estimates measured with iopamidol were compared with those obtained with a gadolinium-based agent, via a dynamic contrast enhanced (DCE)-MRI approach, to validate the proposed method. Compared with the contralateral kidneys, the clamped ones showed a significant decrease in renal perfusion, as measured using the DCE-MRI approach, which is consistent with reduced filtration capability. Dynamic CEST-MRI findings provided similar results, indicating that the clamped kidneys displayed significantly reduced renal filtration that persisted up to 7 days after the damage. In addition, CEST-MRI pH imaging showed that the clamped kidneys displayed significantly increased pH values, reflecting the disturbance to pH homeostasis. Our results demonstrate that a single CEST-MRI contrast agent can provide multiple types of information related to renal function and can discern healthy kidneys from pathological ones by combining perfusion measurements with renal pH mapping.


Asunto(s)
Riñón/diagnóstico por imagen , Riñón/patología , Imagen por Resonancia Magnética , Perfusión , Daño por Reperfusión/diagnóstico por imagen , Enfermedad Aguda , Animales , Medios de Contraste/química , Modelos Animales de Enfermedad , Gadolinio/química , Concentración de Iones de Hidrógeno , Modelos Lineales , Ratones
13.
Arterioscler Thromb Vasc Biol ; 39(8): 1602-1613, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31189431

RESUMEN

OBJECTIVE: The early embryo implantation is characterized by enhanced uterine vascular permeability at the site of blastocyst attachment, followed by extracellular-matrix remodeling and angiogenesis. Two TG (transglutaminase) isoenzymes, TG2 (tissue TG) and FXIII (factor XIII), catalyze covalent cross-linking of the extracellular-matrix. However, their specific role during embryo implantation is not fully understood. Approach and Results: For mapping the distribution as well as the enzymatic activities of TG2 and FXIII towards blood-borne and resident extracellular-matrix substrates, we synthetized selective and specific low molecular weight substrate analogs for each of the isoenzymes. The implantation sites were challenged by genetically modifying the trophoblast cells in the outer layer of blastocysts, to either overexpress or deplete TG2 or FXIII, and the angiogenic response was studied by dynamic contrast-enhanced-magnetic resonance imaging. Dynamic contrast-enhanced-magnetic resonance imaging revealed a decrease in the permeability of decidual vasculature surrounding embryos in which FXIII were overexpressed in trophoblast cell. Reduction in decidual blood volume fraction was demonstrated when either FXIII or TG2 were overexpressed in embryonic trophoblast cell and was elevated when trophoblast cell was depleted of FXIII. These results were corroborated by histological analysis. CONCLUSIONS: In this study, we report on the isoenzyme-specific roles of TG2 and FXIII during the early days of mouse pregnancy and further reveal their involvement in decidual angiogenesis. Our results reveal an important magnetic resonance imaging-detectable function of embryo-derived TG2 and FXIII on regulating maternal angiogenesis during embryo implantation in mice.Visual Overview: An online visual overview is available for this article.


Asunto(s)
Implantación del Embrión/fisiología , Factor XIII/fisiología , Proteínas de Unión al GTP/fisiología , Imagen por Resonancia Magnética/métodos , Neovascularización Fisiológica/fisiología , Transglutaminasas/fisiología , Animales , Femenino , Fibrinógeno/fisiología , Ratones , Embarazo , Proteína Glutamina Gamma Glutamiltransferasa 2
15.
Magn Reson Med ; 81(3): 1935-1946, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30257047

RESUMEN

PURPOSE: Prostate cancer (PCa) is the most widespread tumor affecting males in Western countries. We propose a novel MRI molecular tetrameric probe based on the heptadentate gadolinium (Gd)-AAZTA (6-amino-6-methylperhydro-1,4-diazepinetetraacetic acid) that is able to in vivo detect PCa through the recognition of the fibrin-fibronectin (FB-FN) complex. METHODS: The peptide CREKA (Cys-Arg-Glu-Lys-Ala), targeting the FB-FN complex in the reactive stroma of the tumor, was synthesized by solid phase peptide synthesis (SPPS) and conjugated to the tetramer dL-(Gd-AAZTA)4 . The resulting probe was characterized by 1 H relaxometry, tested in vitro on FB clots and in vivo on an orthotopic mouse model of PCa. RESULTS: CREKA-dL-(Gd-AAZTA)4 showed a remarkable relaxivity of 18.2 m MGd-1s-1 (0.47 T, 25°C) because of the presence of 2 water molecules (q = 2) in the inner coordination sphere of each Gd3+ ion, whose rotational motion (τR ) is lengthened as the result of the relatively high molecular weight. The probe displayed a detectable affinity for plasma-derived FB clots. On intravenous injection of the probe in an orthotopic mouse model of PCa, a significant increase in the prostate T1 contrast (~40%) was observed. The MRI signal appears statistically higher either with respect to the one observed for the control probes and to the one detected when CREKA-dL-(Gd-AAZTA)4 was administered to healthy animals. CONCLUSIONS: This study demonstrated the ability of the CREKA-dL-(Gd-AAZTA)4 probe to specifically localize in prostate tumor after injection. The high relaxivity of the probe allows the reduction of the injected dose to 20 µmolGd /kg, yielding a good in vivo contrast enhancement in the region of prostate tumor.


Asunto(s)
Adenocarcinoma/diagnóstico por imagen , Medios de Contraste , Imagen por Resonancia Magnética , Neoplasias de la Próstata/diagnóstico por imagen , Acetatos/química , Adenocarcinoma/patología , Animales , Azepinas/química , Biomarcadores de Tumor , Línea Celular Tumoral , Fibrina/química , Fibronectinas/química , Gadolinio/química , Humanos , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Péptidos/química , Neoplasias de la Próstata/patología , Unión Proteica , Espectrometría de Masa por Ionización de Electrospray
16.
NMR Biomed ; 32(9): e4113, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31313865

RESUMEN

AIMS: To determine individual glucose hydroxyl exchange rates at physiological conditions and use this information for numerical optimization of glucoCEST/CESL preparation. To give guidelines for in vivo glucoCEST/CESL measurement parameters at clinical and ultra-high field strengths. METHODS: Five glucose solution samples at different pH values were measured at 14.1 T at various B1 power levels. Multi-B1 -Z-spectra Bloch-McConnell fits at physiological pH were further improved by the fitting of Z-spectra of five pH values simultaneously. The obtained exchange rates were used in a six-pool Bloch-McConnell simulation including a tissue-like water pool and semi-solid MT pool with different CEST and CESL presaturation pulse trains. In vivo glucose injection experiments were performed in a tumor mouse model at 7 T. RESULTS AND DISCUSSION: Glucose Z-spectra could be fitted with four exchanging pools at 0.66, 1.28, 2.08 and 2.88 ppm. Corresponding hydroxyl exchange rates could be determined at pH = 7.2, T = 37°C and 1X PBS. Simulation of saturation transfer for this glucose system in a gray matter-like and a tumor-like system revealed optimal pulses at different field strengths of 9.4, 7 and 3 T. Different existing sequences and approaches are simulated and discussed. The optima found could be experimentally verified in an animal model at 7 T. CONCLUSION: For the determined fast exchange regime, presaturation pulses in the spin-lock regime (long recover time, short yet strong saturation) were found to be optimal. This study gives an estimation for optimization of the glucoCEST signal in vivo on the basis of glucose exchange rate at physiological conditions.


Asunto(s)
Glucosa/análisis , Radical Hidroxilo/análisis , Imagen por Resonancia Magnética , Animales , Simulación por Computador , Femenino , Glucosa/química , Xenoinjertos , Concentración de Iones de Hidrógeno , Ratones Endogámicos BALB C
17.
Chem Biodivers ; 16(11): e1900322, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31544357

RESUMEN

The synthesis of poly[N,N-bis(3-aminopropyl)glycine] (PAPGly) dendrons Gd-based contrast agents (GdCAs) via an orthogonal protection of the different functional groups and an activation/coupling strategy wherein a specific number of synthetic steps add a generation to the existing dendron has been described. The aim of this protocol is to build up two different generations of dendrons (G-0 or dendron's core, and G-1) with peripheral NH2 groups to conjugate a 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) derivative and afterwards to chelate with Gd3+ paramagnetic ions. These complexes, which have a well-defined molecular weight, are of relevance to MRI as an attempt to gain higher 1 H relaxivity by slowing down the rotation of molecule compared to monomeric Gd(III) complexes used as contrast agents and to increase the number of paramagnetic centers present in one molecular structure. From the study of their water 1 H longitudinal relaxation rate at different magnetic fields (NMRD, Nuclear Magnetic Relaxation Dispersion) and by evaluating the variable temperature 17 O-NMR data we determined the parameters characterizing the water exchange rate and the rotational correlation time of each complex, both affecting 1 H relaxivity. Furthermore, these two novel PAPGly GdCAs were objects of i) an in vivo study to determine their biodistributions in healthy C57 mice at several time points, and ii) the Dynamic Contrast-Enhanced MRI (DCE-MRI) approach to assess their contrast efficiency measured in the tumor region of C57BL/6 mice transplanted subcutaneously with B16-F10 melanoma cells. The aim of the comparison of these two dendrons GdCAs, having different molecular weights (MW), is to understand how MW and relaxivity may influence the contrast enhancement capabilities in vivo at low magnetic field (1 T). Significant contrast enhancement was observed in several organs (vessel, spleen and liver), already at 5 min post-injection, for the investigated CAs. Moreover, these CAs induced a marked contrast enhancement in the tumor region, thanks to the enhanced permeability retention effect of those macromolecular structures.


Asunto(s)
Medios de Contraste/química , Gadolinio/química , Melanoma/química , Compuestos Organometálicos/química , Animales , Medios de Contraste/síntesis química , Medios de Contraste/farmacocinética , Gadolinio/farmacocinética , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Melanoma/diagnóstico por imagen , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Neoplasias Experimentales/química , Neoplasias Experimentales/diagnóstico por imagen , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/farmacocinética , Distribución Tisular
18.
Magn Reson Med ; 79(3): 1553-1558, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28686805

RESUMEN

PURPOSE: To extend the pH detection range of iopamidol-based ratiometric chemical exchange saturation transfer (CEST) MRI at sub-high magnetic field and establish quantitative renal pH MRI. METHODS: Chemical exchange saturation transfer imaging was performed on iopamidol phantoms with pH of 5.5 to 8.0 and in vivo on rat kidneys (n = 5) during iopamidol administration at a 4.7 T. Iopamidol CEST effects were described using a multipool Lorentzian model. A generalized ratiometric analysis was conducted by ratioing resolved iopamidol CEST effects at 4.3 and 5.5 ppm obtained under 1.0 and 2.0 µT, respectively. The pH detection range was established for both the standard ratiometric analysis and the proposed resolved approach. Renal pH was mapped in vivo with regional pH assessed by one-way analysis of variance. RESULTS: Good-fitting performance was observed in multipool Lorentzian resolving of CEST effects (R2 s > 0.99). The proposed approach extends the in vitro pH detection range to 5.5 to 7.5 at 4.7 T. In vivo renal pH was measured to be 7.0 ± 0.1, 6.8 ± 0.1, and 6.5 ± 0.2 for cortex, medulla and calyx, respectively (P < 0.05). CONCLUSIONS: The proposed ratiometric approach extended the iopamidol pH detection range, enabling the renal pH mapping in vivo, which is promising for pH imaging studies at sub-high or low fields with potential clinical applicability. Magn Reson Med 79:1553-1558, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Medios de Contraste/uso terapéutico , Procesamiento de Imagen Asistido por Computador/métodos , Yopamidol/uso terapéutico , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Algoritmos , Animales , Concentración de Iones de Hidrógeno , Masculino , Fantasmas de Imagen , Ratas , Ratas Wistar
19.
NMR Biomed ; 31(6): e3920, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29672976

RESUMEN

A novel MRI contrast is proposed which enables the selective detection of endogenous bulk mobile proteins in vivo. Such a non-invasive imaging technique may be of particular interest for many diseases associated with pathological alterations of protein expression, such as cancer and neurodegenerative disorders. Specificity to mobile proteins was achieved by the selective measurement of intramolecular spin diffusion and the removal of semi-solid macromolecular signal components by a correction procedure. For this purpose, the approach of chemical exchange saturation transfer (CEST) was extended to a radiofrequency (RF) irradiation scheme at two different frequency offsets (dualCEST). Using protein model solutions, it was demonstrated that the dualCEST technique allows the calculation of an image contrast which is exclusively sensitive to changes in concentration, molecular size and the folding state of mobile proteins. With respect to application in humans, dualCEST overcomes the selectivity limitations at relatively low magnetic field strengths, and thus enables examinations on clinical MR scanners. The feasibility of dualCEST examinations in humans was verified by a proof-of-principle examination of a brain tumor patient at 3 T. With its specificity for the mobile fraction of the proteome, its comparable sensitivity to conventional water proton MRI and its applicability to clinical MR scanners, this technique represents a further step towards the non-invasive imaging of proteomic changes in humans.


Asunto(s)
Imagen por Resonancia Magnética , Proteínas/análisis , Humanos , Sustancias Macromoleculares/análisis , Masculino , Persona de Mediana Edad , Procesamiento de Señales Asistido por Computador
20.
NMR Biomed ; 30(7)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28370530

RESUMEN

Acute kidney injury (AKI) in mice caused by sustained ischemia followed by reperfusion is associated with acute tubular necrosis and renal dysfunctional blood flow. Although the principal role of the kidney is the maintenance of acid-base balance, current imaging approaches are unable to assess this important parameter, and clinical biomarkers are not robust enough in evaluating the severity of kidney damage. Therefore, novel noninvasive imaging approaches are needed to assess the acid-base homeostasis in vivo. This study investigates the usefulness of MRI-chemical exchange saturation transfer (CEST) pH imaging (through iopamidol injection) in characterizing moderate and severe AKI in mice following unilateral ischemia reperfusion injury. Moderate (20 min) and severe (40 min) ischemia were induced in Balb/C mice, which were imaged at several time points thereafter (Days 0, 1, 2, 7). A significant increase of renal pH values was observed as early as one day after the ischemia reperfusion damage for both moderate and severe ischemia. MRI-CEST pH imaging distinguished the evolution of moderate from severe AKI. A recovery of normal renal pH values was observed for moderate AKI, whereas a persisting renal pH increase was observed for severe AKI on Day 7. Renal filtration fraction was significantly lower for clamped kidneys (0.54-0.57) in comparison to contralateral kidneys (0.84-0.86) following impairment of glomerular filtration. The severe AKI group showed a reduced filtration fraction even after 7 days (0.38 for the clamped kidneys). Notably, renal pH values were significantly correlated with the histopathological score. In conclusion, MRI-CEST pH mapping is a valid tool for the noninvasive evaluation of both acid-base balance and renal filtration in patients with ischemia reperfusion injury.


Asunto(s)
Desequilibrio Ácido-Base/diagnóstico por imagen , Lesión Renal Aguda/diagnóstico por imagen , Concentración de Iones de Hidrógeno , Riñón/química , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Animales , Homeostasis , Interpretación de Imagen Asistida por Computador/métodos , Pruebas de Función Renal/métodos , Ratones , Ratones Endogámicos BALB C , Espectroscopía de Protones por Resonancia Magnética/métodos , Daño por Reperfusión/diagnóstico por imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA