Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Mater ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413810

RESUMEN

Pills are a cornerstone of medicine but can be challenging to swallow. While liquid formulations are easier to ingest, they lack the capacity to localize therapeutics with excipients nor act as controlled release devices. Here we describe drug formulations based on liquid in situ-forming tough (LIFT) hydrogels that bridge the advantages of solid and liquid dosage forms. LIFT hydrogels form directly in the stomach through sequential ingestion of a crosslinker solution of calcium and dithiol crosslinkers, followed by a drug-containing polymer solution of alginate and four-arm poly(ethylene glycol)-maleimide. We show that LIFT hydrogels robustly form in the stomachs of live rats and pigs, and are mechanically tough, biocompatible and safely cleared after 24 h. LIFT hydrogels deliver a total drug dose comparable to unencapsulated drug in a controlled manner, and protect encapsulated therapeutic enzymes and bacteria from gastric acid-mediated deactivation. Overall, LIFT hydrogels may expand access to advanced therapeutics for patients with difficulty swallowing.

2.
Proc Natl Acad Sci U S A ; 117(22): 11987-11994, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32424082

RESUMEN

Chronic hepatitis C virus (HCV) infection is a leading cause of cirrhosis worldwide and kills more Americans than 59 other infections, including HIV and tuberculosis, combined. While direct-acting antiviral (DAA) treatments are effective, limited uptake of therapy, particularly in high-risk groups, remains a substantial barrier to eliminating HCV. We developed a long-acting DAA system (LA-DAAS) capable of prolonged dosing and explored its cost-effectiveness. We designed a retrievable coil-shaped LA-DAAS compatible with nasogastric tube administration and the capacity to encapsulate and release gram levels of drugs while resident in the stomach. We formulated DAAs in drug-polymer pills and studied the release kinetics for 1 mo in vitro and in vivo in a swine model. The LA-DAAS was equipped with ethanol and temperature sensors linked via Bluetooth to a phone application to provide patient engagement. We then performed a cost-effectiveness analysis comparing LA-DAAS to DAA alone in various patient groups, including people who inject drugs. Tunable release kinetics of DAAs was enabled for 1 mo with drug-polymer pills in vitro, and the LA-DAAS safely and successfully provided at least month-long release of sofosbuvir in vivo. Temperature and alcohol sensors could interface with external sources for at least 1 mo. The LA-DAAS was cost-effective compared to DAA therapy alone in all groups considered (base case incremental cost-effectiveness ratio $39,800). We believe that the LA-DAA system can provide a cost-effective and patient-centric method for HCV treatment, including in high-risk populations who are currently undertreated.


Asunto(s)
Antivirales/administración & dosificación , Sistemas de Liberación de Medicamentos , Hepatitis C Crónica/tratamiento farmacológico , Animales , Antivirales/farmacocinética , Bencimidazoles/administración & dosificación , Bencimidazoles/farmacocinética , Carbamatos , Análisis Costo-Beneficio , Modelos Animales de Enfermedad , Portadores de Fármacos/farmacocinética , Sistemas de Liberación de Medicamentos/economía , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Fluorenos/administración & dosificación , Fluorenos/farmacocinética , Hepacivirus/efectos de los fármacos , Imidazoles/administración & dosificación , Imidazoles/farmacocinética , Cirrosis Hepática/tratamiento farmacológico , Modelos Animales , Pirrolidinas , Ribavirina/administración & dosificación , Ribavirina/farmacocinética , Sofosbuvir/administración & dosificación , Sofosbuvir/farmacocinética , Porcinos , Valina/análogos & derivados
3.
Nat Mater ; 20(8): 1085-1092, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34127823

RESUMEN

Implantable drug depots have the capacity to locally meet therapeutic requirements by maximizing local drug efficacy and minimizing potential systemic side effects. Tubular organs including the gastrointestinal tract, respiratory tract and vasculature all manifest with endoluminal disease. The anatomic distribution of localized drug delivery for these organs using existing therapeutic modalities is limited. Application of local depots in a circumferential and extended longitudinal fashion could transform our capacity to offer effective treatment across a range of conditions. Here we report the development and application of a kirigami-based stent platform to achieve this. The stents comprise a stretchable snake-skin-inspired kirigami shell integrated with a fluidically driven linear soft actuator. They have the capacity to deposit drug depots circumferentially and longitudinally in the tubular mucosa of the gastrointestinal tract across millimetre to multi-centimetre length scales, as well as in the vasculature and large airways. We characterize the mechanics of kirigami stents for injection, and their capacity to engage tissue in a controlled manner and deposit degradable microparticles loaded with therapeutics by evaluating these systems ex vivo and in vivo in swine. We anticipate such systems could be applied for a range of endoluminal diseases by simplifying dosing regimens while maximizing drug on-target effects through the sustained release of therapeutics and minimizing systemic side effects.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Stents , Animales , Porcinos
4.
Nano Lett ; 19(5): 3379-3385, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30974058

RESUMEN

Mesoporous colloidal nanospheres with tailorable asymmetric nanostructures and multimetallic elemental compositions are building blocks in next-generation heterogeneous catalysts. Introducing structural asymmetry into metallic mesoporous frameworks has never been demonstrated, but it would be beneficial because the asymmetry enables the spatial control of catalytic interfaces, facilitates the electron/mass transfer and assists in the removal of poisonous intermediates. Herein, we describe a simple bottom-up strategy to generate uniform sub-100 nm multimetallic asymmetric bowl-shaped mesoporous nanospheres (BMSs). This method uses a surfactant-directed "dual"-template to control the kinetics of metal reduction on the surface of a vesicle, forming mesoporous metal islands on its surface whose spherical cone angle can be precisely controlled. The asymmetric BMS mesostructures with different spherical cone angles (structural asymmetries) and elemental compositions are demonstrated. The high surface area and asymmetric nature of the metal surfaces are shown to enhance catalytic performance in the alcohol oxidation reactions. The findings described here offer novel and interesting opportunities for rational design and synthesis of hierarchically asymmetric nanostructures with desired functions for a wide range of applications.

5.
J Am Chem Soc ; 141(10): 4252-4256, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30807129

RESUMEN

We report polymer-promoted cooperative catalysis of Cu for oxygen activation. A series of random copolymers containing dipicolylamine as binding motifs are designed to coordinate type-3 Cu sites. The Cu-copolymers show a 6-8-fold activity enhancement, compared to the molecular complex of Cu with an identical coordination site. Michaelis-Menten analysis demonstrates that the kinetic enhancement results from flexible polymer-promoted cooperative catalysis among multi-Cu sites despite the imposed thermodynamic barrier. These observations provide guidance for the bioinspired design of metallopolymers as soluble catalysts with high activity.

6.
Chemistry ; 24(11): 2565-2569, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29315889

RESUMEN

We report the use of phosphorus-doped carbon (P-C) as support to grow ultrasmall (1-3 nm) and ligand-free precious metal nanocrystals (PMNCs) via chemical reduction. We show that the valence states of surface phosphorus species are critical in tuning the affinity between the carbon support and metal precursors, which rationally controls the loading size and uniformity of resultant PMNCs. Five kinds of PMNCs, including Ru, Ag, Au, Rh, and Pd, were grown in situ to demonstrate the key role of surface phosphorus sites on the P-C support. As a proof-of-concept application, Ru nanocatalysts with an average diameter of 1.0±0.2 nm supported on P-C were examined for the electrocatalytic hydrogen evolution reaction (HER). Ultrasmall and ligand-free Ru nanocatalysts exhibited superior HER activity and stability compared to its counterparts with surface agents or larger sizes. An overpotential of 27.6 mV (vs. reversible hydrogen electrode) for Ru nanocatalysts was achieved at a current density of 10 mA cm-2 . This novel method opens a new avenue to immobilize ligand-free and well-dispersed PMNCs on carbon; and, more importantly, it provides a new library of supported PMNCs with high catalytic activity.

7.
Small ; 13(20)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28371251

RESUMEN

New synthetic methods capable of controlling structural and compositional complexities of asymmetric nanoparticles (NPs) are very challenging but highly desired. A simple and general synthetic approach to designing sophisticated asymmetric NPs by anisotropically patterning the surface of isotropic metallic NPs with amphiphilic block copolymers (BCPs) is reported. The selective galvanic replacement and seed-mediated growth of a second metal can be achieved on the exposed surface of metal NPs, resulting in the formation of nanobowls and Janus-type metal-metal dimers, respectively. Using Ag and Au NPs tethered with amphiphilic block copolymers of poly(ethylene oxide)-block-polystyrene (PEO-b-PS), anisotropic surface patterning of metallic NPs (e.g., Ag and Au) is shown to be driven by thermodynamical phase segregation of BCP ligands on isotropic metal NPs. Two proof-of-concept experiments are given on, i) synthesis of Au nanobowls by a selective galvanic replacement reaction on Janus-type patched Ag/polymer NPs; and ii) preparation of Au-Pd heterodimers and Au-Au homodimers by a seed-mediated growth on Janus-type patched Au/polymer NPs. The method shows remarkable versatility; and it can be easily handled in aqueous solution. This synthetic strategy stands out as the new methodology to design and synthesis asymmetric metal NPs with sophisticated topologies.

8.
J Pharm Sci ; 113(3): 718-724, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37690778

RESUMEN

Triggerable coatings, such as pH-responsive polymethacrylate copolymers, can be used to protect the active pharmaceutical ingredients contained within oral solid dosage forms from the acidic gastric environment and to facilitate drug delivery directly to the intestine. However, gastrointestinal pH can be highly variable, which can reduce delivery efficiency when using pH-responsive drug delivery technologies. We hypothesized that biomaterials susceptible to proteolysis could be used in combination with other triggerable polymers to develop novel enteric coatings. Bioinformatic analysis suggested that silk fibroin is selectively degradable by enzymes in the small intestine, including chymotrypsin, but resilient to gastric pepsin. Based on the analysis, we developed a silk fibroin-polymethacrylate copolymer coating for oral dosage forms. In vitro and in vivo studies demonstrated that capsules coated with this novel silk fibroin formulation enable pancreatin-dependent drug release. We believe that this novel formulation and extensions thereof have the potential to produce more effective and personalized oral drug delivery systems for vulnerable populations including patients that have impaired and highly variable intestinal physiology.


Asunto(s)
Fibroínas , Humanos , Pancreatina , Sistemas de Liberación de Medicamentos , Ácidos Polimetacrílicos , Polímeros , Seda
9.
Nat Biomed Eng ; 8(3): 278-290, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38378821

RESUMEN

In vitro systems that accurately model in vivo conditions in the gastrointestinal tract may aid the development of oral drugs with greater bioavailability. Here we show that the interaction profiles between drugs and intestinal drug transporters can be obtained by modulating transporter expression in intact porcine tissue explants via the ultrasound-mediated delivery of small interfering RNAs and that the interaction profiles can be classified via a random forest model trained on the drug-transporter relationships. For 24 drugs with well-characterized drug-transporter interactions, the model achieved 100% concordance. For 28 clinical drugs and 22 investigational drugs, the model identified 58 unknown drug-transporter interactions, 7 of which (out of 8 tested) corresponded to drug-pharmacokinetic measurements in mice. We also validated the model's predictions for interactions between doxycycline and four drugs (warfarin, tacrolimus, digoxin and levetiracetam) through an ex vivo perfusion assay and the analysis of pharmacologic data from patients. Screening drugs for their interactions with the intestinal transportome via tissue explants and machine learning may help to expedite drug development and the evaluation of drug safety.


Asunto(s)
Intestinos , Aprendizaje Automático , Humanos , Animales , Ratones , Porcinos , Preparaciones Farmacéuticas/metabolismo , Interacciones Farmacológicas , Disponibilidad Biológica
10.
Med ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663403

RESUMEN

BACKGROUND: Dosing of chemotherapies is often calculated according to the weight and/or height of the patient or equations derived from these, such as body surface area (BSA). Such calculations fail to capture intra- and interindividual pharmacokinetic variation, which can lead to order of magnitude variations in systemic chemotherapy levels and thus under- or overdosing of patients. METHODS: We designed and developed a closed-loop drug delivery system that can dynamically adjust its infusion rate to the patient to reach and maintain the drug's target concentration, regardless of a patient's pharmacokinetics (PK). FINDINGS: We demonstrate that closed-loop automated drug infusion regulator (CLAUDIA) can control the concentration of 5-fluorouracil (5-FU) in rabbits according to a range of concentration-time profiles (which could be useful in chronomodulated chemotherapy) and over a range of PK conditions that mimic the PK variability observed clinically. In one set of experiments, BSA-based dosing resulted in a concentration 7 times above the target range, while CLAUDIA keeps the concentration of 5-FU in or near the targeted range. Further, we demonstrate that CLAUDIA is cost effective compared to BSA-based dosing. CONCLUSIONS: We anticipate that CLAUDIA could be rapidly translated to the clinic to enable physicians to control the plasma concentration of chemotherapy in their patients. FUNDING: This work was supported by MIT's Karl van Tassel (1925) Career Development Professorship and Department of Mechanical Engineering and the Bridge Project, a partnership between the Koch Institute for Integrative Cancer Research at MIT and the Dana-Farber/Harvard Cancer Center.

11.
Adv Healthc Mater ; 12(27): e2301033, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37314859

RESUMEN

Patient adherence to chronic therapies can be suboptimal, leading to poor therapeutic outcomes. Dosage forms that enable reduction in dosing frequency stand to improve patient adherence. Variation in gastrointestinal transit time, inter-individual differences in gastrointestinal physiology and differences in physicochemical properties of drugs represent challenges to the development of such systems. To this end, a small intestine-targeted drug delivery system is developed, where prolonged gastrointestinal retention and sustained release are achieved through tissue adhesion of drug pills mediated by an essential intestinal enzyme catalase. Here proof-of-concept pharmacokinetics is demonstrated in the swine model for two drugs, hydrophilic amoxicillin and hydrophobic levodopa. It is anticipated that this system can be applicable for many drugs with a diverse of physicochemical characteristics.


Asunto(s)
Adhesivos , Sistemas de Liberación de Medicamentos , Humanos , Animales , Porcinos , Preparaciones Farmacéuticas , Tracto Gastrointestinal , Intestino Delgado
12.
Sci Adv ; 8(21): eabm8478, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35622910

RESUMEN

Administering medicines to 0- to 5-year-old children in a resource-limited environment requires dosage forms that circumvent swallowing solids, avoid on-field reconstitution, and are thermostable, cheap, versatile, and taste masking. We present a strategy that stands to solve this multifaceted problem. As many drugs lack adequate water solubility, our formulations used oils, whose textures could be modified with gelling agents to form "oleogels." In a clinical study, we showed that the oleogels can be formulated to be as fluid as thickened beverages and as stiff as yogurt puddings. In swine, oleogels could deliver four drugs ranging three orders of magnitude in their water solubilities and two orders of magnitude in their partition coefficients. Oleogels could be stabilized at 40°C for prolonged durations and used without redispersion. Last, we developed a macrofluidic system enabling fixed and metered dosing. We anticipate that this platform could be adopted for pediatric dosing, palliative care, and gastrointestinal disease applications.


Asunto(s)
Alimentos , Aceites , Animales , Niño , Preescolar , Sistemas de Liberación de Medicamentos , Geles , Humanos , Porcinos , Agua
13.
Biomaterials ; 288: 121703, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36030104

RESUMEN

Intravesical instillation is an efficient drug delivery route for the local treatment of various urological conditions. Nevertheless, intravesical instillation is associated with several challenges, including pain, urological infection, and frequent clinic visits for catheterization; these difficulties support the need for a simple and easy intravesical drug delivery platform. Here, we propose a novel biodegradable intravesical device capable of long-term, local drug delivery without a retrieval procedure. The intravesical device is composed of drug encapsulating biodegradable polycaprolactone (PCL) microcapsules and connected by a bioabsorbable Polydioxanone (PDS) suture with NdFeB magnets in the end. The device is easily inserted into the bladder and forms a 'ring' shape optimized for maximal mechanical stability as informed by finite element analysis. In this study, inserted devices were retained in a swine model for 4 weeks. Using this device, we evaluated the system's capacity for delivery of lidocaine and resiquimod and demonstrated prolonged drug release. Moreover, a cost-effectiveness analysis supports device implementation compared to the standard of care. Our data support that this device can be a versatile drug delivery platform for urologic medications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Vejiga Urinaria , Administración Intravesical , Animales , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Porcinos , Vejiga Urinaria/metabolismo
14.
Sci Transl Med ; 14(651): eabl4135, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35767653

RESUMEN

Carbon monoxide (CO) has long been considered a toxic gas but is now a recognized bioactive gasotransmitter with potent immunomodulatory effects. Although inhaled CO is currently under investigation for use in patients with lung disease, this mode of administration can present clinical challenges. The capacity to deliver CO directly and safely to the gastrointestinal (GI) tract could transform the management of diseases affecting the GI mucosa such as inflammatory bowel disease or radiation injury. To address this unmet need, inspired by molecular gastronomy techniques, we have developed a family of gas-entrapping materials (GEMs) for delivery of CO to the GI tract. We show highly tunable and potent delivery of CO, achieving clinically relevant CO concentrations in vivo in rodent and swine models. To support the potential range of applications of foam GEMs, we evaluated the system in three distinct disease models. We show that a GEM containing CO dose-dependently reduced acetaminophen-induced hepatocellular injury, dampened colitis-associated inflammation and oxidative tissue injury, and mitigated radiation-induced gut epithelial damage in rodents. Collectively, foam GEMs have potential paradigm-shifting implications for the safe therapeutic use of CO across a range of indications.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Monóxido de Carbono/uso terapéutico , Colitis/tratamiento farmacológico , Gases , Inflamación/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Porcinos
15.
Adv Sci (Weinh) ; 8(24): e2102861, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34713599

RESUMEN

Continuous monitoring in the intensive care setting has transformed the capacity to rapidly respond with interventions for patients in extremis. Noninvasive monitoring has generally been limited to transdermal or intravascular systems coupled to transducers including oxygen saturation or pressure. Here it is hypothesized that gastric fluid (GF) and gases, accessible through nasogastric (NG) tubes, commonly found in intensive care settings, can provide continuous access to a broad range of biomarkers. A broad characterization of biomarkers in swine GF coupled to time-matched serum is conducted . The relationship and kinetics of GF-derived analyte level dynamics is established by correlating these to serum levels in an acute renal failure and an inducible stress model performed in swine. The ability to monitor ketone levels and an inhaled anaesthetic agent (isoflurane) in vivo is demonstrated with novel NG-compatible sensor systems in swine. Gastric access remains a main stay in the care of the critically ill patient, and here the potential is established to harness this establishes route for analyte evaluation for clinical management.


Asunto(s)
Lesión Renal Aguda/metabolismo , Anestésicos por Inhalación/metabolismo , Jugo Gástrico/metabolismo , Isoflurano/metabolismo , Monitoreo Fisiológico/métodos , Animales , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Intubación Gastrointestinal , Cetonas/metabolismo , Estómago/metabolismo , Porcinos
16.
Sci Adv ; 7(48): eabj4624, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34826238

RESUMEN

Diurnal variation in enzymes, hormones, and other biological mediators has long been recognized in mammalian physiology. Developments in pharmacobiology over the past few decades have shown that timing drug delivery can enhance drug efficacy. Here, we report the development of a battery-free, refillable, subcutaneous, and trocar-compatible implantable system that facilitates chronotherapy by enabling tight control over the timing of drug administration in response to external mechanical actuation. The external wearable system is coupled to a mobile app to facilitate control over dosing time. Using this system, we show the efficacy of bromocriptine on glycemic control in a diabetic rat model. We also demonstrate that antihypertensives can be delivered through this device, which could have clinical applications given the recognized diurnal variation of hypertension-related complications. We anticipate that implants capable of chronotherapy will have a substantial impact on our capacity to enhance treatment effectiveness for a broad range of chronic conditions.

17.
Nat Nanotechnol ; 16(6): 725-733, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33767382

RESUMEN

Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display drug-loading capacities of up to 95%. There is currently no understanding of which of the millions of small-molecule combinations can result in the formation of these nanoparticles. Here we report the integration of machine learning with high-throughput experimentation to enable the rapid and large-scale identification of such nanoformulations. We identified 100 self-assembling drug nanoparticles from 2.1 million pairings, each including one of 788 candidate drugs and one of 2,686 approved excipients. We further characterized two nanoparticles, sorafenib-glycyrrhizin and terbinafine-taurocholic acid both ex vivo and in vivo. We anticipate that our platform can accelerate the development of safer and more efficacious nanoformulations with high drug-loading capacities for a wide range of therapeutics.


Asunto(s)
Portadores de Fármacos/química , Ensayos Analíticos de Alto Rendimiento/métodos , Nanopartículas/química , Sorafenib/farmacología , Terbinafina/farmacología , Animales , Candida albicans/efectos de los fármacos , Simulación por Computador , Portadores de Fármacos/síntesis química , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Dispersión Dinámica de Luz , Excipientes/química , Femenino , Ácido Glicirrínico/química , Humanos , Aprendizaje Automático , Ratones Endogámicos , Absorción Cutánea , Sorafenib/química , Sorafenib/farmacocinética , Ácido Taurocólico/química , Terbinafina/química , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Clin Transl Gastroenterol ; 11(12): e00229, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33512801

RESUMEN

INTRODUCTION: Bile acids, such as chenodeoxycholic acid, play an important role in digestion but are also involved in intestinal motility, fluid homeostasis, and humoral activity. Colonic delivery of sodium chenodeoxycholate (CDC) has demonstrated clinical efficacy in treating irritable bowel syndrome with constipation but was associated with a high frequency of abdominal pain. We hypothesized that these adverse effects were triggered by local super-physiological CDC levels caused by an unfavorable pharmacokinetic profile of the delayed release formulation. METHODS: We developed novel release matrix systems based on hydroxypropyl methylcellulose (HPMC) for sustained release of CDC. These included standard HPMC formulations as well as bi-layered formulations to account for potential delivery failures due to low colonic fluid in constipated patients. We evaluated CDC release profiles in silico (pharmacokinetic modeling), in vitro and in vivo in swine (pharmacokinetics, rectal manometry). RESULTS: For the delayed release formulation in vitro release studies demonstrated pH triggered dose dumping which was associated with giant colonic contractions in vivo. Release from the bi-layered HPMC systems provided controlled release of CDC while minimizing the frequency of giant contractions and providing enhanced exposure as compared to standard HPMC formulations in vivo. DISCUSSION: Bi-phasic CDC release could help treat constipation while mitigating abdominal pain observed in previous clinical trials. Further studies are necessary to demonstrate the therapeutic potential of these systems in humans.


Asunto(s)
Ácido Quenodesoxicólico/administración & dosificación , Portadores de Fármacos/química , Derivados de la Hipromelosa/química , Animales , Ácido Quenodesoxicólico/farmacocinética , Colon/química , Colon/metabolismo , Simulación por Computador , Estreñimiento/tratamiento farmacológico , Estreñimiento/etiología , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Liberación de Fármacos , Femenino , Humanos , Concentración de Iones de Hidrógeno , Mucosa Intestinal/química , Mucosa Intestinal/metabolismo , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/tratamiento farmacológico , Modelos Animales , Modelos Biológicos , Peristaltismo/efectos de los fármacos , Porcinos
19.
Cancer Res ; 80(22): 5024-5034, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32998997

RESUMEN

The aggressive primary brain tumor glioblastoma (GBM) is characterized by aberrant metabolism that fuels its malignant phenotype. Diverse genetic subtypes of malignant glioma are sensitive to selective inhibition of the NAD+ salvage pathway enzyme nicotinamide phosphoribosyltransferase (NAMPT). However, the potential impact of NAD+ depletion on the brain tumor microenvironment has not been elaborated. In addition, systemic toxicity of NAMPT inhibition remains a significant concern. Here we show that microparticle-mediated intratumoral delivery of NAMPT inhibitor GMX1778 induces specific immunologic changes in the tumor microenvironment of murine GBM, characterized by upregulation of immune checkpoint PD-L1, recruitment of CD3+, CD4+, and CD8+ T cells, and reduction of M2-polarized immunosuppressive macrophages. NAD+ depletion and autophagy induced by NAMPT inhibitors mediated the upregulation of PD-L1 transcripts and cell surface protein levels in GBM cells. NAMPT inhibitor modulation of the tumor immune microenvironment was therefore combined with PD-1 checkpoint blockade in vivo, significantly increasing the survival of GBM-bearing animals. Thus, the therapeutic impacts of NAMPT inhibition extended beyond neoplastic cells, shaping surrounding immune effectors. Microparticle delivery and release of NAMPT inhibitor at the tumor site offers a safe and robust means to alter an immune tumor microenvironment that could potentiate checkpoint immunotherapy for glioblastoma. SIGNIFICANCE: Microparticle-mediated local inhibition of NAMPT modulates the tumor immune microenvironment and acts cooperatively with anti-PD-1 checkpoint blockade, offering a combination immunotherapy strategy for the treatment of GBM.


Asunto(s)
Antígeno B7-H1/metabolismo , Neoplasias Encefálicas/terapia , Cianuros/administración & dosificación , Citocinas/antagonistas & inhibidores , Glioblastoma/terapia , Guanidinas/administración & dosificación , NAD/efectos de los fármacos , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Microambiente Tumoral/efectos de los fármacos , Acrilamidas/administración & dosificación , Animales , Autofagia , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Movimiento Celular , Cianuros/efectos adversos , Preparaciones de Acción Retardada , Portadores de Fármacos/síntesis química , Glioblastoma/inmunología , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Guanidinas/efectos adversos , Humanos , Inyecciones Intralesiones , Macrófagos/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ratones , NAD/análisis , NAD/deficiencia , Piperidinas/administración & dosificación , Polímeros/síntesis química , ARN Mensajero/metabolismo , Transducción de Señal , Microambiente Tumoral/inmunología , Regulación hacia Arriba/efectos de los fármacos
20.
Sci Transl Med ; 12(558)2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32848090

RESUMEN

Epithelial tissues line the organs of the body, providing an initial protective barrier as well as a surface for nutrient and drug absorption. Here, we identified enzymatic components present in the gastrointestinal epithelium that can serve as selective means for tissue-directed polymerization. We focused on the small intestine, given its role in drug and nutrient absorption and identified catalase as an essential enzyme with the potential to catalyze polymerization and growth of synthetic biomaterial layers. We demonstrated that the polymerization of dopamine by catalase yields strong tissue adhesion. We characterized the mechanism and specificity of the polymerization in segments of the gastrointestinal tracts of pigs and humans ex vivo. Moreover, we demonstrated proof of concept for application of these gastrointestinal synthetic epithelial linings for drug delivery, enzymatic immobilization for digestive supplementation, and nutritional modulation through transient barrier formation in pigs. This catalase-based approach to in situ biomaterial generation may have broad indications for gastrointestinal applications.


Asunto(s)
Tracto Gastrointestinal , Intestino Delgado , Animales , Epitelio , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA