Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(2): 660-676, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38038269

RESUMEN

Various origin mapping approaches have enabled genome-wide identification of origins of replication (ORI) in model organisms, but only a few studies have focused on divergent organisms. By employing three complementary approaches we provide a high-resolution map of ORIs in Plasmodium falciparum, the deadliest human malaria parasite. We profiled the distribution of origin of recognition complex (ORC) binding sites by ChIP-seq of two PfORC subunits and mapped active ORIs using NFS and SNS-seq. We show that ORIs lack sequence specificity but are not randomly distributed, and group in clusters. Licensing is biased towards regions of higher GC content and associated with G-quadruplex forming sequences (G4FS). While strong transcription likely enhances firing, active origins are depleted from transcription start sites. Instead, most accumulate in transcriptionally active gene bodies. Single molecule analysis of nanopore reads containing multiple initiation events, which could have only come from individual nuclei, showed a relationship between the replication fork pace and the distance to the nearest origin. While some similarities were drawn with the canonic eukaryote model, the distribution of ORIs in P. falciparum is likely shaped by unique genomic features such as extreme AT-richness-a product of evolutionary pressure imposed by the parasitic lifestyle.


Asunto(s)
Plasmodium falciparum , Origen de Réplica , Humanos , Sitios de Unión , Mapeo Cromosómico , Replicación del ADN , Genómica , Plasmodium falciparum/genética , Origen de Réplica/genética , Transcripción Genética
2.
PLoS Genet ; 16(7): e1008917, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32628663

RESUMEN

Mechanisms of transcriptional control in malaria parasites are still not fully understood. The positioning patterns of G-quadruplex (G4) DNA motifs in the parasite's AT-rich genome, especially within the var gene family which encodes virulence factors, and in the vicinity of recombination hotspots, points towards a possible regulatory role of G4 in gene expression and genome stability. Here, we carried out the most comprehensive genome-wide survey, to date, of G4s in the Plasmodium falciparum genome using G4Hunter, which identifies G4 forming sequences (G4FS) considering their G-richness and G-skewness. We show an enrichment of G4FS in nucleosome-depleted regions and in the first exon of var genes, a pattern that is conserved within the closely related Laverania Plasmodium parasites. Under G4-stabilizing conditions, i.e., following treatment with pyridostatin (a high affinity G4 ligand), we show that a bona fide G4 found in the non-coding strand of var promoters modulates reporter gene expression. Furthermore, transcriptional profiling of pyridostatin-treated parasites, shows large scale perturbations, with deregulation affecting for instance the ApiAP2 family of transcription factors and genes involved in ribosome biogenesis. Overall, our study highlights G4s as important DNA secondary structures with a role in Plasmodium gene expression regulation, sub-telomeric recombination and var gene biology.


Asunto(s)
G-Cuádruplex , Malaria/genética , Motivos de Nucleótidos/genética , Plasmodium falciparum/genética , Aminoquinolinas/farmacología , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Genoma/efectos de los fármacos , Humanos , Malaria/tratamiento farmacológico , Malaria/parasitología , Ácidos Picolínicos/farmacología , Plasmodium falciparum/patogenicidad , Regiones Promotoras Genéticas/genética , Ribosomas/efectos de los fármacos , Ribosomas/genética
3.
Blood ; 136(12): 1381-1393, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32589714

RESUMEN

Plasmodium falciparum gametocytes, the sexual stage responsible for malaria parasite transmission from humans to mosquitoes, are key targets for malaria elimination. Immature gametocytes develop in the human bone marrow parenchyma, where they accumulate around erythroblastic islands. Notably though, the interactions between gametocytes and this hematopoietic niche have not been investigated. Here, we identify late erythroblasts as a new host cell for P falciparum sexual stages and show that gametocytes can fully develop inside these nucleated cells in vitro and in vivo, leading to infectious mature gametocytes within reticulocytes. Strikingly, we found that infection of erythroblasts by gametocytes and parasite-derived extracellular vesicles delay erythroid differentiation, thereby allowing gametocyte maturation to coincide with the release of their host cell from the bone marrow. Taken together, our findings highlight new mechanisms that are pivotal for the maintenance of immature gametocytes in the bone marrow and provide further insights on how Plasmodium parasites interfere with erythropoiesis and contribute to anemia in malaria patients.


Asunto(s)
Eritroblastos/parasitología , Eritropoyesis , Interacciones Huésped-Parásitos , Malaria Falciparum/fisiopatología , Plasmodium falciparum/fisiología , Adulto , Médula Ósea/parasitología , Médula Ósea/fisiopatología , Células Cultivadas , Eritroblastos/patología , Femenino , Humanos , Malaria Falciparum/parasitología , Adulto Joven
4.
Cell Microbiol ; 23(4): e13303, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33340385

RESUMEN

Guanine-quadruplexes (G4s) are non-canonical DNA structures that can regulate key biological processes such as transcription, replication and telomere maintenance in several organisms including eukaryotes, prokaryotes and viruses. Recent reports have identified the presence of G4s within the AT-rich genome of Plasmodium falciparum, the protozoan parasite causing malaria. In Plasmodium, potential G4-forming sequences (G4FS) are enriched in the telomeric and sub-telomeric regions of the genome where they are associated with telomere maintenance and recombination events within virulence genes. However, there is a little understanding about the biological role of G4s and G4-binding proteins. Here, we provide the first snapshot of G4-interactome in P. falciparum using DNA pull-down assay followed by LC-MS/MS. Interestingly, we identified ~24 potential G4-binding proteins (G4-BP) that bind to a stable G4FS (AP2_G4). Furthermore, we characterised the role of G-strand binding protein 2 (PfGBP2), a putative telomere-binding protein in P. falciparum. We validated the interaction of PfGBP2 with G4 in vitro as well as in vivo. PfGBP2 is expressed throughout the intra-erythrocytic developmental cycle and is essential for the parasites in the presence of G4-stabilising ligand, pyridostatin. Gene knockout studies showed the role of PfGBP2 in the expression of var genes. Taken together, this study suggests that PfGBP2 is a bona fide G4-binding protein, which is likely to be involved in the regulation of G4-related functions in these malarial parasites. In addition, this study sheds light on this understudied G4 biology in P. falciparum.


Asunto(s)
G-Cuádruplex , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Plasmodium falciparum/genética , Proteínas Portadoras , Cromatografía Liquida , Humanos , Plasmodium falciparum/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Espectrometría de Masas en Tándem
5.
PLoS Biol ; 17(6): e3000308, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31181082

RESUMEN

Plasmodium falciparum is the main cause of disease and death from malaria. P. falciparum virulence resides in the ability of infected erythrocytes (IEs) to sequester in various tissues through the interaction between members of the polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesin family to various host receptors. Here, we investigated the effect of phosphorylation of variant surface antigen 2-CSA (VAR2CSA), a member of the PfEMP1 family associated to placental sequestration, on its capacity to adhere to chondroitin sulfate A (CSA) present on the placental syncytium. We showed that phosphatase treatment of IEs impairs cytoadhesion to CSA. MS analysis of recombinant VAR2CSA phosphosites prior to and after phosphatase treatment, as well as of native VAR2CSA expressed on IEs, identified critical phosphoresidues associated with CSA binding. Site-directed mutagenesis on recombinant VAR2CSA of 3 phosphoresidues localised within the CSA-binding region confirmed in vitro their functional importance. Furthermore, using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9), we generated a parasite line in which the phosphoresidue T934 is changed to alanine and showed that this mutation strongly impairs IEs cytoadhesion to CSA. Taken together, these results demonstrate that phosphorylation of the extracellular region of VAR2CSA plays a major role in IEs cytoadhesion to CSA and provide new molecular insights for strategies aiming to reduce the morbidity and mortality of PM.


Asunto(s)
Antígenos de Protozoos/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Animales , Variación Antigénica , Antígenos de Protozoos/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , Eritrocitos/parasitología , Femenino , Humanos , Malaria , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Parásitos , Fosforilación , Placenta , Plasmodium falciparum/genética , Embarazo , Unión Proteica
6.
PLoS Comput Biol ; 17(4): e1008909, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33861755

RESUMEN

Long regulatory elements (LREs), such as CpG islands, polydA:dT tracts or AU-rich elements, are thought to play key roles in gene regulation but, as opposed to conventional binding sites of transcription factors, few methods have been proposed to formally and automatically characterize them. We present here a computational approach named DExTER (Domain Exploration To Explain gene Regulation) dedicated to the identification of candidate LREs (cLREs) and apply it to the analysis of the genomes of P. falciparum and other eukaryotes. Our analyses show that all tested genomes contain several cLREs that are somewhat conserved along evolution, and that gene expression can be predicted with surprising accuracy on the basis of these long regions only. Regulation by cLREs exhibits very different behaviours depending on species and conditions. In P. falciparum and other Apicomplexan organisms as well as in Dictyostelium discoideum, the process appears highly dynamic, with different cLREs involved at different phases of the life cycle. For multicellular organisms, the same cLREs are involved in all tissues, but a dynamic behavior is observed along embryonic development stages. In P. falciparum, whose genome is known to be strongly depleted of transcription factors, cLREs are predictive of expression with an accuracy above 70%, and our analyses show that they are associated with both transcriptional and post-transcriptional regulation signals. Moreover, we assessed the biological relevance of one LRE discovered by DExTER in P. falciparum using an in vivo reporter assay. The source code (python) of DExTER is available at https://gite.lirmm.fr/menichelli/DExTER.


Asunto(s)
Genoma de Protozoos , Plasmodium falciparum/genética , Secuencias Reguladoras de Ácidos Nucleicos , Eucariontes/genética , Regulación de la Expresión Génica , Ontología de Genes , Genes Reporteros , Histonas/metabolismo , Procesamiento Postranscripcional del ARN , ARN sin Sentido/genética , ARN Mensajero/genética , Transcripción Genética
7.
Nature ; 520(7549): 683-7, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25874676

RESUMEN

Artemisinins are the cornerstone of anti-malarial drugs. Emergence and spread of resistance to them raises risk of wiping out recent gains achieved in reducing worldwide malaria burden and threatens future malaria control and elimination on a global level. Genome-wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by the PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase, as well as its lipid product phosphatidylinositol-3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signalling in which transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Resistencia a Medicamentos/genética , Estudio de Asociación del Genoma Completo , Modelos Moleculares , Mutación , Fosfatidilinositol 3-Quinasa/química , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
8.
J Antimicrob Chemother ; 74(11): 3231-3239, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31365085

RESUMEN

BACKGROUND: For almost a century, antimonials have remained the first-line drugs for the treatment of leishmaniasis. However, little is known about their mode of action and clinical resistance mechanisms. OBJECTIVES: We have previously shown that Leishmania nicotinamidase (PNC1) is an essential enzyme for parasite NAD+ homeostasis and virulence in vivo. Here, we found that parasites lacking the pnc1 gene (Δpnc1) are hypersusceptible to the active form of antimony (SbIII) and used these mutant parasites to better understand antimony's mode of action and the mechanisms leading to resistance. METHODS: SbIII-resistant WT and Δpnc1 parasites were selected in vitro by a stepwise selection method. NAD(H)/NADP(H) dosages and quantitative RT-PCR experiments were performed to explain the susceptibility differences observed between strains. WGS and a marker-free CRISPR/Cas9 base-editing approach were used to identify and validate the role of a new resistance mutation. RESULTS: NAD+-depleted Δpnc1 parasites were highly susceptible to SbIII and this phenotype could be rescued by NAD+ precursor or trypanothione precursor supplementation. Δpnc1 parasites could become resistant to SbIII by an unknown mechanism. WGS revealed a unique amino acid substitution (H451Y) in an EF-hand domain of an orphan calcium-dependent kinase, recently named SCAMK. When introduced into a WT reference strain by base editing, the H451Y mutation allowed Leishmania parasites to survive at extreme concentrations of SbIII, potentiating the rapid emergence of resistant parasites. CONCLUSIONS: These results establish that Leishmania SCAMK is a new central hub of antimony's mode of action and resistance development, and uncover the importance of drug tolerance mutations in the evolution of parasite drug resistance.


Asunto(s)
Sustitución de Aminoácidos , Antimonio/farmacología , Antiprotozoarios/farmacología , Leishmania/efectos de los fármacos , Nicotinamidasa/genética , Proteínas Protozoarias/genética , Sistemas CRISPR-Cas , Calcio/metabolismo , Resistencia a Medicamentos/genética , Edición Génica , Leishmania/enzimología , Leishmania/genética , Mutación , Pruebas de Sensibilidad Parasitaria
10.
Cell Microbiol ; 17(8): 1205-16, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25703704

RESUMEN

Plasmodium falciparum virulence is linked to its ability to sequester in post-capillary venules in the human host. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is the main variant surface antigen implicated in this process. Complete loss of parasite adhesion is linked to a large subtelomeric deletion on chromosome 9 in a number of laboratory strains such as D10 and T9-96. Similar to the cytoadherent reference line FCR3, D10 strain expresses PfEMP1 on the surface of parasitized erythrocytes, however without any detectable cytoadhesion. To investigate which of the deleted subtelomeric genes may be implicated in parasite adhesion, we selected 12 genes for D10 complementation studies that are predicted to code for proteins exported to the red blood cell. We identified a novel single copy gene (PF3D7_0936500) restricted to P. falciparum that restores adhesion to CD36, termed here virulence-associated protein 1 (Pfvap1). Protein knockdown and gene knockout experiments confirmed a role of PfVAP1 in the adhesion process in FCR3 parasites. PfVAP1 is co-exported with PfEMP1 into the host cell via vesicle-like structures called Maurer's clefts. This study identifies a novel highly conserved parasite molecule that contributes to parasite virulence possibly by assisting PfEMP1 to establish functional adhesion at the host cell surface.


Asunto(s)
Adhesión Celular , Eritrocitos/metabolismo , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Eritrocitos/parasitología , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Humanos , Unión Proteica , Eliminación de Secuencia
11.
Cell Microbiol ; 17(10): 1405-12, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25939677

RESUMEN

Protozoan pathogens that cause leishmaniasis in humans are relatively refractory to genetic manipulation. In this work, we implemented the CRISPR-Cas9 system in Leishmania parasites and demonstrated its efficient use for genome editing. The Cas9 endonuclease was expressed under the control of the Dihydrofolate Reductase-Thymidylate Synthase (DHFR-TS) promoter and the single guide RNA was produced under the control of the U6snRNA promoter and terminator. As a proof of concept, we chose to knockout a tandemly repeated gene family, the paraflagellar rod-2 locus. We were able to obtain null mutants in a single round of transfection. In addition, we confirmed the absence of off-target editions by whole genome sequencing of two independent clones. Our work demonstrates that CRISPR-Cas9-mediated gene knockout represents a major improvement in comparison with existing methods. Beyond gene knockout, this genome editing tool opens avenues for a multitude of functional studies to speed up research on leishmaniasis.


Asunto(s)
Sistemas CRISPR-Cas , Marcación de Gen/métodos , Genoma de Protozoos , Leishmania/genética , Biología Molecular/métodos , Parasitología/métodos , Eliminación de Gen , Recombinación Genética
12.
Malar J ; 15: 248, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-27129434

RESUMEN

BACKGROUND: The asexual intra-erythrocytic multiplication of the malaria parasite Plasmodium falciparum is regulated by various molecular mechanisms. In eukaryotic cells, protein kinases are known to play key roles in cell cycle regulation and signaling pathways. The activity of cAMP-dependent protein kinase (PKA) depends on A-kinase anchoring proteins (AKAPs) through protein interactions. While several components of the cAMP dependent pathway-including the PKA catalytic and regulatory subunits-have been characterized in P. falciparum, whether AKAPs are involved in this pathway remains unclear. Here, PfAKAL, an open reading frame of a potential AKAP-like protein in the P. falciparum genome was identified, and its protein partners and putative cellular functions characterized. METHODS: The expression of PfAKAL throughout the erythrocytic cycle of the 3D7 strain was assessed by RT-qPCR and the presence of the corresponding protein by immunofluorescence assays. In order to study physical interactions between PfAKAL and other proteins, pull down experiments were performed using a recombinant PfAKAL protein and parasite protein extracts, or with recombinant proteins. These interactions were also tested by combining biochemical and proteomic approaches. As phosphorylation could be involved in the regulation of protein complexes, both PfAKAL and Pf14-3-3I phosphorylation was studied using a radiolabel kinase activity assay. Finally, to identify a potential function of the protein, PfAKAL sequence was aligned and structurally modeled, revealing a conserved nucleotide-binding pocket; confirmed by qualitative nucleotide binding experiments. RESULTS: PfAKAL is the first AKAP-like protein in P. falciparum to be identified, and shares 23 % sequence identity with the central domain of human AKAP18δ. PfAKAL is expressed in mature asexual stages, merozoites and gametocytes. In spite of homology to AKAP18, biochemical and immunochemical analyses demonstrated that PfAKAL does not interact directly with the P. falciparum PKA regulatory subunit (PfPKA-R), but instead binds and colocalizes with Pf14-3-3I, which in turn interacts with PfPKA-R. In vivo, these different interactions could be regulated by phosphorylation, as PfPKA-R and Pf14-3-3I, but not PfAKAL, are phosphorylated in vitro by PKA. Interestingly, PfAKAL binds nucleotides such as AMP and cAMP, suggesting that this protein may be involved in the AMP-activated protein kinase (AMPK) pathway, or associated with phosphodiesterase activities. CONCLUSION: PfAKAL is an atypical AKAP that shares common features with human AKAP18, such as nucleotides binding. The interaction of PfAKAL with PfPKA-R could be indirectly mediated through a join interaction with Pf14-3-3I. Therefore, PfPKA localization could not depend on PfAKAL, but rather involves other partners.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/metabolismo , Secuencia de Aminoácidos , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Transducción de Señal
13.
BMC Genomics ; 15: 150, 2014 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-24559473

RESUMEN

BACKGROUND: Advances in high-throughput sequencing have led to the discovery of widespread transcription of natural antisense transcripts (NATs) in a large number of organisms, where these transcripts have been shown to play important roles in the regulation of gene expression. Likewise, the existence of NATs has been observed in Plasmodium but our understanding towards their genome-wide distribution remains incomplete due to the limited depth and uncertainties in the level of strand specificity of previous datasets. RESULTS: To gain insights into the genome-wide distribution of NATs in P. falciparum, we performed RNA-ligation based strand-specific RNA sequencing at unprecedented depth. Our data indicate that 78.3% of the genome is transcribed during blood-stage development. Moreover, our analysis reveals significant levels of antisense transcription from at least 24% of protein-coding genes and that while expression levels of NATs change during the intraerythrocytic developmental cycle (IDC), they do not correlate with the corresponding mRNA levels. Interestingly, antisense transcription is not evenly distributed across coding regions (CDSs) but strongly clustered towards the 3'-end of CDSs. Furthermore, for a significant subset of NATs, transcript levels correlate with mRNA levels of neighboring genes.Finally, we were able to identify the polyadenylation sites (PASs) for a subset of NATs, demonstrating that at least some NATs are polyadenylated. We also mapped the PASs of 3443 coding genes, yielding an average 3' untranslated region length of 523 bp. CONCLUSIONS: Our strand-specific analysis of the P. falciparum transcriptome expands and strengthens the existing body of evidence that antisense transcription is a substantial phenomenon in P. falciparum. For a subset of neighboring genes we find that sense and antisense transcript levels are intricately linked while other NATs appear to be regulated independently of mRNA transcription. Our deep strand-specific dataset will provide a valuable resource for the precise determination of expression levels as it separates sense from antisense transcript levels, which we find to often significantly differ. In addition, the extensive novel data on 3' UTR length will allow others to perform searches for regulatory motifs in the UTRs and help understand post-translational regulation in P. falciparum.


Asunto(s)
Plasmodium falciparum/genética , ARN sin Sentido , ARN Protozoario , Transcripción Genética , Regiones no Traducidas 3' , Núcleo Celular/metabolismo , Análisis por Conglomerados , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Poliadenilación , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
Nucleic Acids Res ; 40(7): 3066-77, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22167473

RESUMEN

In Plasmodium falciparum, perinuclear subtelomeric chromatin conveys monoallelic expression of virulence genes. However, proteins that directly bind to chromosome ends are poorly described. Here we identify a novel DNA/RNA-binding protein family that bears homology to the archaeal protein Alba (Acetylation lowers binding affinity). We isolated three of the four PfAlba paralogs as part of a molecular complex that is associated with the P. falciparum-specific TARE6 (Telomere-Associated Repetitive Elements 6) subtelomeric region and showed in electromobility shift assays (EMSAs) that the PfAlbas bind to TARE6 repeats. In early blood stages, the PfAlba proteins were enriched at the nuclear periphery and partially co-localized with PfSir2, a TARE6-associated histone deacetylase linked to the process of antigenic variation. The nuclear location changed at the onset of parasite proliferation (trophozoite-schizont), where the PfAlba proteins were also detectable in the cytoplasm in a punctate pattern. Using single-stranded RNA (ssRNA) probes in EMSAs, we found that PfAlbas bind to ssRNA, albeit with different binding preferences. We demonstrate for the first time in eukaryotes that Alba-like proteins bind to both DNA and RNA and that their intracellular location is developmentally regulated. Discovery of the PfAlbas may provide a link between the previously described subtelomeric non-coding RNA and the regulation of antigenic variation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Plasmodium falciparum/genética , Proteínas Protozoarias/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Arqueales/química , Citoplasma/química , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/química , Dimerización , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/ultraestructura , Estructura Terciaria de Proteína , Proteínas Protozoarias/análisis , Proteínas Protozoarias/química , ARN/metabolismo , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/química , Secuencias Repetitivas de Ácidos Nucleicos , Telómero/química
15.
BMC Biol ; 10: 5, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22293287

RESUMEN

BACKGROUND: Protein kinase CK2 is a pleiotropic serine/threonine protein kinase with hundreds of reported substrates, and plays an important role in a number of cellular processes. The cellular functions of Plasmodium falciparum CK2 (PfCK2) are unknown. The parasite's genome encodes one catalytic subunit, PfCK2α, which we have previously shown to be essential for completion of the asexual erythrocytic cycle, and two putative regulatory subunits, PfCK2ß1 and PfCK2ß2. RESULTS: We now show that the genes encoding both regulatory PfCK2 subunits (PfCK2ß1 and PfCK2ß2) cannot be disrupted. Using immunofluorescence and electron microscopy, we examined the intra-erythrocytic stages of transgenic parasite lines expressing hemagglutinin (HA)-tagged catalytic and regulatory subunits (HA-CK2α, HA-PfCK2ß1 or HA-PfCK2ß2), and localized all three subunits to both cytoplasmic and nuclear compartments of the parasite. The same transgenic parasite lines were used to purify PfCK2ß1- and PfCK2ß2-containing complexes, which were analyzed by mass spectrometry. The recovered proteins were unevenly distributed between various pathways, with a large proportion of components of the chromatin assembly pathway being present in both PfCK2ß1 and PfCK2ß2 precipitates, implicating PfCK2 in chromatin dynamics. We also found that chromatin-related substrates such as nucleosome assembly proteins (Naps), histones, and two members of the Alba family are phosphorylated by PfCK2α in vitro. CONCLUSIONS: Our reverse-genetics data show that each of the two regulatory PfCK2 subunits is required for completion of the asexual erythrocytic cycle. Our interactome study points to an implication of PfCK2 in many cellular pathways, with chromatin dynamics being identified as a major process regulated by PfCK2. This study paves the way for a kinome-wide interactomics-based approach to elucidate protein kinase function in malaria parasites.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Regulación de la Expresión Génica , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Quinasa de la Caseína II/genética , Hemaglutininas/química , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Espectrometría de Masas , Microscopía Electrónica , Microscopía Fluorescente , Fosforilación , Plasmodium falciparum/enzimología , Plasmodium falciparum/crecimiento & desarrollo
16.
Sci Rep ; 11(1): 852, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441725

RESUMEN

Plasmodium falciparum has evolved resistance to almost all front-line drugs including artemisinin, which threatens malaria control and elimination strategies. Oxidative stress and protein damage responses have emerged as key players in the generation of artemisinin resistance. In this study, we show that PfGCN5, a histone acetyltransferase, binds to the stress-responsive genes in a poised state and regulates their expression under stress conditions. Furthermore, we show that upon artemisinin exposure, genome-wide binding sites for PfGCN5 are increased and it is directly associated with the genes implicated in artemisinin resistance generation like BiP and TRiC chaperone. Interestingly, expression of genes bound by PfGCN5 was found to be upregulated during stress conditions. Moreover, inhibition of PfGCN5 in artemisinin-resistant parasites increases the sensitivity of the parasites to artemisinin treatment indicating its role in drug resistance generation. Together, these findings elucidate the role of PfGCN5 as a global chromatin regulator of stress-responses with a potential role in modulating artemisinin drug resistance and identify PfGCN5 as an important target against artemisinin-resistant parasites.


Asunto(s)
Histona Acetiltransferasas/genética , Plasmodium falciparum/genética , Estrés Fisiológico/genética , Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos/genética , Resistencia a Medicamentos/fisiología , Histona Acetiltransferasas/metabolismo , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/parasitología , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Factores de Transcripción p300-CBP/genética , Factores de Transcripción p300-CBP/metabolismo
17.
Int J Parasitol ; 50(12): 1011-1022, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32822677

RESUMEN

Epigenetic mechanisms such as histone acetylation and deacetylation participate in regulation of the genes involved in encystation of Entamoeba invadens. However, the histones and target residues involved, and whether the acetylation and deacetylation of the histones leads to the regulation of gene expression associated with the encystation of this parasite, remain unknown. In this study, we found that E. invadens histone H4 is acetylated in both stages of the parasite and is more highly acetylated during the trophozoite stage than in the cyst. Histone hyperacetylation induced by Trichostatin A negatively affects the encystation of E. invadens, and this inhibition is associated with the downregulation of the expression of genes implicated in the synthesis of chitin, polyamines, gamma-aminobutyric acid pathways and cyst wall proteins, all of which are important in the formation of cysts. Finally, in silico analysis and activity assays suggest that a class I histone deacetylase (EiHDAC3) could be involved in control of the expression of a subset of genes that are important in several pathways during encystation. Therefore, the identification of enzymes that acetylate and/or deacetylate histones that control encystation in E. invadens could be a promising therapeutic target for preventing transmission of other amoebic parasites such as E. histolytica, the causative agent of amoebiasis in humans.


Asunto(s)
Entamoeba , Histona Desacetilasas/metabolismo , Animales , Quitina/metabolismo , Entamoeba/enzimología , Humanos , Procesamiento Proteico-Postraduccional , Trofozoítos/enzimología
18.
Commun Biol ; 3(1): 726, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262483

RESUMEN

To ensure the transport of nutrients necessary for their survival, Plasmodium falciparum parasites increase erythrocyte permeability to diverse solutes. These new permeation pathways (NPPs) have been extensively characterized in the pathogenic asexual parasite stages, however the existence of NPPs has never been investigated in gametocytes, the sexual stages responsible for transmission to mosquitoes. Here, we show that NPPs are still active in erythrocytes infected with immature gametocytes and that this activity declines along gametocyte maturation. Our results indicate that NPPs are regulated by cyclic AMP (cAMP) signaling cascade, and that the decrease in cAMP levels in mature stages results in a slowdown of NPP activity. We also show that NPPs facilitate the uptake of artemisinin derivatives and that phosphodiesterase (PDE) inhibitors can reactivate NPPs and increase drug uptake in mature gametocytes. These processes are predicted to play a key role in P. falciparum gametocyte biology and susceptibility to antimalarials.


Asunto(s)
Permeabilidad de la Membrana Celular/fisiología , Eritrocitos/parasitología , Interacciones Huésped-Parásitos/fisiología , Estadios del Ciclo de Vida/fisiología , Plasmodium falciparum/patogenicidad , Antimaláricos/farmacocinética , Artemisininas/farmacocinética , Células Cultivadas , AMP Cíclico/metabolismo , Humanos , Inhibidores de Fosfodiesterasa , Transducción de Señal/fisiología
19.
Curr Opin Microbiol ; 10(6): 560-8, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18024150

RESUMEN

Protozoan pathogens have evolved countermeasures to avoid immune clearance and prolong the period of infection in their vertebrate hosts. The type and degree of immune escape strategies depends on the in vivo 'lifestyle' the pathogen has adopted. Here we describe how parasites use different strategies to coordinate their expression of phenotypic variation, which is used in many cases to fool the immune system, or to successfully invade new host cells. Recent insights using modern molecular biology techniques show that this is achieved via a coordinated manner of action of different epigenetic factors such as histone marks, subnuclear localization, or novel unknown mechanism(s). This emerging field may have an enormous impact on disease therapy.


Asunto(s)
Eucariontes/patogenicidad , Regulación de la Expresión Génica/genética , Factores de Virulencia/genética , Animales , Variación Antigénica/genética , Ensamble y Desensamble de Cromatina , Eucariontes/genética , Eucariontes/metabolismo , Interacciones Huésped-Parásitos , Humanos , Infecciones por Protozoos/inmunología , Infecciones por Protozoos/parasitología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Virulencia , Factores de Virulencia/metabolismo
20.
Brief Funct Genomics ; 18(5): 281-289, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31365053

RESUMEN

CRISPR/Cas9 approaches are revolutionizing our ability to perform functional genomics across a wide range of organisms, including the Plasmodium parasites that cause malaria. The ability to deliver single point mutations, epitope tags and gene deletions at increased speed and scale is enabling our understanding of the biology of these complex parasites, and pointing to potential new therapeutic targets. In this review, we describe some of the biological and technical considerations for designing CRISPR-based experiments, and discuss potential future developments that broaden the applications for CRISPR/Cas9 interrogation of the malaria parasite genome.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edición Génica , Plasmodium/genética , Proteína 9 Asociada a CRISPR/genética , Regulación de la Expresión Génica , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA