Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
EMBO J ; 43(6): 993-1014, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38378890

RESUMEN

Entry into mitosis has been classically attributed to the activation of a cyclin B/Cdk1 amplification loop via a partial pool of this kinase becoming active at the end of G2 phase. However, how this initial pool is activated is still unknown. Here we discovered a new role of the recently identified PP2A-B55 inhibitor FAM122A in triggering mitotic entry. Accordingly, depletion of the orthologue of FAM122A in C. elegans prevents entry into mitosis in germline stem cells. Moreover, data from Xenopus egg extracts strongly suggest that FAM122A-dependent inhibition of PP2A-B55 could be the initial event promoting mitotic entry. Inhibition of this phosphatase allows subsequent phosphorylation of early mitotic substrates by cyclin A/Cdk, resulting in full cyclin B/Cdk1 and Greatwall (Gwl) kinase activation. Subsequent to Greatwall activation, Arpp19/ENSA become phosphorylated and now compete with FAM122A, promoting its dissociation from PP2A-B55 and taking over its phosphatase inhibition role until the end of mitosis.


Asunto(s)
Caenorhabditis elegans , Proteínas Serina-Treonina Quinasas , Animales , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Mitosis , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Ciclina B/metabolismo
2.
J Cell Sci ; 131(20)2018 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30355803

RESUMEN

Mitosis is controlled by a subtle balance between kinase and phosphatase activities that involve the master mitotic kinase cyclin-B-Cdk1 and its antagonizing protein phosphatase 2A-B55 (PP2A-B55). Importantly, the Greatwall (Gwl; known as Mastl in mammals, Rim15 in budding yeast and Ppk18 in fission yeast) kinase pathway regulates PP2A-B55 activity by phosphorylating two proteins, cAMP-regulated phosphoprotein 19 (Arpp19) and α-endosulfine (ENSA). This phosphorylation turns these proteins into potent inhibitors of PP2A-B55, thereby promoting a correct timing and progression of mitosis. In this Cell Science at a Glance article and the accompanying poster, we discuss how Gwl is regulated in space and time, and how the Gwl-Arpp19-ENSA-PP2A-B55 pathway plays an essential role in the control of M and S phases from yeast to human. We also summarize how Gwl modulates oncogenic properties of cells and how nutrient deprivation influences Gwl activity.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/genética , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Humanos
3.
J Cell Sci ; 129(7): 1329-39, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26906418

RESUMEN

Entry into mitosis is induced by the activation of cyclin-B-Cdk1 and Greatwall (Gwl; also known as MASTL in mammals) kinases. Cyclin-B-Cdk1 phosphorylates mitotic substrates, whereas Gwl activation promotes the phosphorylation of the small proteins Arpp19 and ENSA. Phosphorylated Arpp19 and/or ENSA bind to and inhibit PP2A comprising the B55 subunit (PP2A-B55; B55 is also known as PPP2R2A), the phosphatase responsible for cyclin-B-Cdk1 substrate dephosphorylation, allowing the stable phosphorylation of mitotic proteins. Upon mitotic exit, cyclin-B-Cdk1 and Gwl kinases are inactivated, and mitotic substrates are dephosphorylated. Here, we have identified protein phosphatase-1 (PP1) as the phosphatase involved in the dephosphorylation of the activating site (Ser875) of Gwl. Depletion of PP1 from meioticXenopusegg extracts maintains phosphorylation of Ser875, as well as the full activity of this kinase, resulting in a block of meiotic and mitotic exit. By contrast, preventing the reactivation of PP2A-B55 through the addition of a hyperactive Gwl mutant (GwlK72M) mainly affected Gwl dephosphorylation on Thr194, resulting in partial inactivation of Gwl and in the incomplete exit from mitosis or meiosis. We also show that when PP2A-B55 is fully reactivated by depleting Arpp19, this protein phosphatase is able to dephosphorylate both activating sites, even in the absence of PP1.


Asunto(s)
Meiosis/fisiología , Mitosis/fisiología , Fosfoproteínas/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Ciclina B/metabolismo , Activación Enzimática , Femenino , Masculino , Óvulo/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Xenopus , Proteínas de Xenopus/genética
4.
Mol Cell Proteomics ; 14(8): 2194-212, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26055452

RESUMEN

Entry into mitosis is driven by the coordinated phosphorylation of thousands of proteins. For the cell to complete mitosis and divide into two identical daughter cells it must regulate dephosphorylation of these proteins in a highly ordered, temporal manner. There is currently a lack of a complete understanding of the phosphorylation changes that occur during the initial stages of mitotic exit in human cells. Therefore, we performed a large unbiased, global analysis to map the very first dephosphorylation events that occur as cells exit mitosis. We identified and quantified the modification of >16,000 phosphosites on >3300 unique proteins during early mitotic exit, providing up to eightfold greater resolution than previous studies. The data have been deposited to the ProteomeXchange with identifier PXD001559. Only a small fraction (∼ 10%) of phosphorylation sites were dephosphorylated during early mitotic exit and these occurred on proteins involved in critical early exit events, including organization of the mitotic spindle, the spindle assembly checkpoint, and reformation of the nuclear envelope. Surprisingly this enrichment was observed across all kinase consensus motifs, indicating that it is independent of the upstream phosphorylating kinase. Therefore, dephosphorylation of these sites is likely determined by the specificity of phosphatase/s rather than the activity of kinase/s. Dephosphorylation was significantly affected by the amino acids at and surrounding the phosphorylation site, with several unique evolutionarily conserved amino acids correlating strongly with phosphorylation status. These data provide a potential mechanism for the specificity of phosphatases, and how they co-ordinate the ordered events of mitotic exit. In summary, our results provide a global overview of the phosphorylation changes that occur during the very first stages of mitotic exit, providing novel mechanistic insight into how phosphatase/s specifically regulate this critical transition.


Asunto(s)
Mitosis , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteómica/métodos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Anafase , Secuencia Conservada , Evolución Molecular , Células HeLa , Humanos , Metafase , Modelos Biológicos , Datos de Secuencia Molecular , Fosfopéptidos/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Reproducibilidad de los Resultados , Especificidad por Sustrato
5.
PLoS Genet ; 9(7): e1003575, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23861665

RESUMEN

Entry into mitosis is triggered by cyclinB/Cdk1, whose activity is abruptly raised by a positive feedback loop. The Greatwall kinase phosphorylates proteins of the endosulfine family and allows them to bind and inhibit the main Cdk1-counteracting PP2A-B55 phosphatase, thereby promoting mitotic entry. In contrast to most eukaryotic systems, Cdc14 is the main Cdk1-antagonizing phosphatase in budding yeast, while the PP2A(Cdc55) phosphatase promotes, instead of preventing, mitotic entry by participating to the positive feedback loop of Cdk1 activation. Here we show that budding yeast endosulfines (Igo1 and Igo2) bind to PP2A(Cdc55) in a cell cycle-regulated manner upon Greatwall (Rim15)-dependent phosphorylation. Phosphorylated Igo1 inhibits PP2A(Cdc55) activity in vitro and induces mitotic entry in Xenopus egg extracts, indicating that it bears a conserved PP2A-binding and -inhibitory activity. Surprisingly, deletion of IGO1 and IGO2 in yeast cells leads to a decrease in PP2A phosphatase activity, suggesting that endosulfines act also as positive regulators of PP2A in yeast. Consistently, RIM15 and IGO1/2 promote, like PP2A(Cdc55), timely entry into mitosis under temperature-stress, owing to the accumulation of Tyr-phosphorylated Cdk1. In addition, they contribute to the nuclear export of PP2A(Cdc55), which has recently been proposed to promote mitotic entry. Altogether, our data indicate that Igo proteins participate in the positive feedback loop for Cdk1 activation. We conclude that Greatwall, endosulfines, and PP2A are part of a regulatory module that has been conserved during evolution irrespective of PP2A function in the control of mitosis. However, this conserved module is adapted to account for differences in the regulation of mitotic entry in different organisms.


Asunto(s)
Proteínas de Ciclo Celular/genética , Mitosis/genética , Proteínas Quinasas/genética , Proteína Fosfatasa 2/genética , Proteínas de Saccharomyces cerevisiae/genética , Animales , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina B/metabolismo , Óvulo/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 2/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Extractos de Tejidos/genética , Xenopus/genética
6.
Proc Natl Acad Sci U S A ; 110(43): 17374-9, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24101512

RESUMEN

Greatwall is a protein kinase involved in the inhibition of protein phosphatase 2 (PP2A)-B55 complexes to maintain the mitotic state. Although its biochemical activity has been deeply characterized in Xenopus, its specific relevance during the progression of mitosis is not fully understood. By using a conditional knockout of the mouse ortholog, Mastl, we show here that mammalian Greatwall is essential for mouse embryonic development and cell cycle progression. Yet, Greatwall-null cells enter into mitosis with normal kinetics. However, these cells display mitotic collapse after nuclear envelope breakdown (NEB) characterized by defective chromosome condensation and prometaphase arrest. Intriguingly, Greatwall is exported from the nucleus to the cytoplasm in a CRM1-dependent manner before NEB. This export occurs after the nuclear import of cyclin B-Cdk1 complexes, requires the kinase activity of Greatwall, and is mediated by Cdk-, but not Polo-like kinase 1-dependent phosphorylation. The mitotic collapse observed in Greatwall-deficient cells is partially rescued after concomitant depletion of B55 regulatory subunits, which are mostly cytoplasmic before NEB. These data suggest that Greatwall is an essential protein in mammals required to prevent mitotic collapse after NEB.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Membrana Nuclear/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Mamíferos/embriología , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Ratones Noqueados , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Interferencia de ARN , Homología de Secuencia de Aminoácido , Factores de Tiempo
7.
Methods Mol Biol ; 2740: 187-210, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38393477

RESUMEN

During eukaryotic cell division a microtubule-based structure, the mitotic spindle, aligns and segregates chromosomes between daughter cells. Understanding how this cellular structure is assembled and coordinated in space and in time requires measuring microtubule dynamics and visualizing spindle assembly with high temporal and spatial resolution. Visualization is often achieved by the introduction and the detection of molecular probes and fluorescence microscopy. Microtubules and mitotic spindles are highly conserved across eukaryotes; however, several technical limitations have restricted these investigations to only a few species. The ability to monitor microtubule and chromosome choreography in a wide range of species is fundamental to reveal conserved mechanisms or unravel unconventional strategies that certain forms of life have developed to ensure faithful partitioning of chromosomes during cell division. Here, we describe a technique based on injection of purified proteins that enables the visualization of microtubules and chromosomes with a high contrast in several divergent marine embryos. We also provide analysis methods and tools to extract microtubule dynamics and monitor spindle assembly. These techniques can be adapted to a wide variety of species in order to measure microtubule dynamics and spindle assembly kinetics when genetic tools are not available or in parallel to the development of such techniques in non-model organisms.


Asunto(s)
Microtúbulos , Huso Acromático , Huso Acromático/metabolismo , Microtúbulos/metabolismo , Ciclo Celular , División Celular , Cromosomas/metabolismo , Tubulina (Proteína)/metabolismo , Mitosis
8.
EMBO J ; 28(18): 2786-93, 2009 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-19680222

RESUMEN

Greatwall (GW) is a new kinase that has an important function in the activation and the maintenance of cyclin B-Cdc2 activity. Although the mechanism by which it induces this effect is unknown, it has been suggested that GW could maintain cyclin B-Cdc2 activity by regulating its activation loop. Using Xenopus egg extracts, we show that GW depletion promotes mitotic exit, even in the presence of a high cyclin B-Cdc2 activity by inducing dephosphorylation of mitotic substrates. These results indicate that GW does not maintain the mitotic state by regulating the cyclin B-Cdc2 activation loop but by regulating a phosphatase. This phosphatase is PP2A; we show that (1) PP2A binds GW, (2) the inhibition or the specific depletion of this phosphatase from mitotic extracts rescues the phenotype induced by GW inactivation and (3) the PP2A-dependent dephosphorylation of cyclin B-Cdc2 substrates is increased in GW-depleted Xenopus egg extracts. These results suggest that mitotic entry and maintenance is not only mediated by the activation of cyclin B-Cdc2 but also by the regulation of PP2A by GW.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Mitosis , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis/metabolismo , Animales , Núcleo Celular/metabolismo , Humanos , Masculino , Microcistinas/metabolismo , Modelos Biológicos , Ácido Ocadaico/metabolismo , Oocitos/metabolismo , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Espermatozoides/metabolismo , Proteínas de Xenopus/química
9.
Nat Cell Biol ; 8(10): 1084-94, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16964245

RESUMEN

Xenopus RINGO/Speedy (XRINGO) is a potent inducer of oocyte meiotic maturation that can directly activate Cdk1 and Cdk2. Here, we show that endogenous XRINGO protein accumulates transiently during meiosis I entry and then is downregulated. This tight regulation of XRINGO expression is the consequence of two interconnected mechanisms: processing and degradation. XRINGO processing involves recognition of at least three distinct phosphorylated recognition motifs by the SCF(betaTrCP) ubiquitin ligase, followed by proteasome-mediated limited degradation, resulting in an amino-terminal XRINGO fragment. XRINGO processing is directly stimulated by several kinases, including protein kinase A and glycogen synthase kinase-3beta, and may contribute to the maintenance of G2 arrest. On the other hand, XRINGO degradation after meiosis I is mediated by the ubiquitin ligase Siah-2, which probably requires phosphorylation of XRINGO on Ser 243 and may be important for the omission of S phase at the meiosis-I-meiosis-II transition in Xenopus oocytes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Fase G2 , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Meiosis , Oocitos/citología , Oocitos/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Ligasas SKP Cullina F-box/metabolismo , Xenopus laevis
10.
Proc Natl Acad Sci U S A ; 107(28): 12564-9, 2010 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-20538976

RESUMEN

Here we show that the functional human ortholog of Greatwall protein kinase (Gwl) is the microtubule-associated serine/threonine kinase-like protein, MAST-L. This kinase promotes mitotic entry and maintenance in human cells by inhibiting protein phosphatase 2A (PP2A), a phosphatase that dephosphorylates cyclin B-Cdc2 substrates. The complete depletion of Gwl by siRNA arrests human cells in G2. When the levels of this kinase are only partially depleted, however, cells enter into mitosis with multiple defects and fail to inactivate the spindle assembly checkpoint (SAC). The ability of cells to remain arrested in mitosis by the SAC appears to be directly proportional to the amount of Gwl remaining. Thus, when Gwl is only slightly reduced, cells arrest at prometaphase. More complete depletion correlates with the premature dephosphorylation of cyclin B-Cdc2 substrates, inactivation of the SAC, and subsequent exit from mitosis with severe cytokinesis defects. These phenotypes appear to be mediated by PP2A, as they could be rescued by either a double Gwl/PP2A knockdown or by the inhibition of this phosphatase with okadaic acid. These results suggest that the balance between cyclin B-Cdc2 and PP2A must be tightly regulated for correct mitotic entry and exit and that Gwl is crucial for mediating this regulation in somatic human cells.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Ciclina B/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ciclo Celular/genética , Ciclina B1 , Humanos , Mitosis/efectos de los fármacos , Ácido Ocadaico/metabolismo , Ácido Ocadaico/farmacología , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas/genética , Proteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
11.
ACS Chem Biol ; 18(5): 1039-1046, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37097827

RESUMEN

p21Cip1 (p21) is a universal cyclin-dependent kinase (CDK) inhibitor that halts cell proliferation and tumor growth by multiple mechanisms. The expression of p21 is often downregulated in cancer cells as a result of the loss of function of transcriptional activators, such as p53, or the increased degradation rate of the protein. To identify small molecules that block the ubiquitin-mediated degradation of p21 as a future avenue for cancer drug discovery, we have screened a compound library using a cell-based reporter assay of p21 degradation. This led to the identification of a benzodiazepine series of molecules that induce the accumulation of p21 in cells. Using a chemical proteomic strategy, we identified the ubiquitin-conjugating enzyme UBCH10 as a cellular target of this benzodiazepine series. We show that an optimized benzodiazepine analogue inhibits UBCH10 ubiquitin-conjugating activity and substrate proteolysis by the anaphase-promoting complex.


Asunto(s)
Benzodiazepinas , Enzimas Ubiquitina-Conjugadoras , Enzimas Ubiquitina-Conjugadoras/química , Benzodiazepinas/farmacología , Proteómica , Ubiquitina/metabolismo , Núcleo Celular/metabolismo
12.
J Cell Sci ; 123(Pt 13): 2281-91, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20554897

RESUMEN

Recent results indicate that regulating the balance between cyclin-B-Cdc2 kinase, also known as M-phase-promoting factor (MPF), and protein phosphatase 2A (PP2A) is crucial to enable correct mitotic entry and exit. In this work, we studied the regulatory mechanisms controlling the cyclin-B-Cdc2 and PP2A balance by analysing the activity of the Greatwall kinase and PP2A, and the different components of the MPF amplification loop (Myt1, Wee1, Cdc25) during the first embryonic cell cycle. Previous data indicated that the Myt1-Wee1-Cdc25 equilibrium is tightly regulated at the G2-M and M-G1 phase transitions; however, no data exist regarding the regulation of this balance during M phase and interphase. Here, we demonstrate that constant regulation of the cyclin-B-Cdc2 amplification loop is required for correct mitotic division and to promote correct timing of mitotic entry. Our results show that removal of Cdc25 from metaphase-II-arrested oocytes promotes mitotic exit, whereas depletion of either Myt1 or Wee1 in interphase egg extracts induces premature mitotic entry. We also provide evidence that, besides the cyclin-B-Cdc2 amplification loop, the Greatwall-PP2A pathway must also be tightly regulated to promote correct first embryonic cell division. When PP2A is prematurely inhibited in the absence of cyclin-B-Cdc2 activation, endogenous cyclin-A-Cdc2 activity induces irreversible aberrant mitosis in which there is, first, partial transient phosphorylation of mitotic substrates and, second, subsequent rapid and complete degradation of cyclin A and cyclin B, thus promoting premature and rapid exit from mitosis.


Asunto(s)
Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Factor Promotor de Maduración/metabolismo , Metafase/fisiología , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas de Xenopus/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina A/metabolismo , Ciclina B/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Xenopus laevis , Fosfatasas cdc25/metabolismo
13.
Front Cell Dev Biol ; 10: 967909, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105360

RESUMEN

Cells require major physical changes to induce a proper repartition of the DNA. Nuclear envelope breakdown, DNA condensation and spindle formation are promoted at mitotic entry by massive protein phosphorylation and reversed at mitotic exit by the timely and ordered dephosphorylation of mitotic substrates. This phosphorylation results from the balance between the activity of kinases and phosphatases. The role of kinases in the control of mitosis has been largely studied, however, the impact of phosphatases has long been underestimated. Recent data have now established that the regulation of phosphatases is crucial to confer timely and ordered cellular events required for cell division. One major phosphatase involved in this process is the phosphatase holoenzyme PP2A-B55. This review will be focused in the latest structural, biochemical and enzymatic insights provided for PP2A-B55 phosphatase as well as its regulators and mechanisms of action.

14.
Oncogene ; 41(1): 1-14, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34686773

RESUMEN

PP2A is a major serine/threonine phosphatase class involved in the regulation of cell signaling through the removal of protein phosphorylation. This class of phosphatases is comprised of different heterotrimeric complexes displaying distinct substrate specificities. The present review will focus on one specific heterocomplex, the phosphatase PP2A-B55. Herein, we will report the direct substrates of this phosphatase identified to date, and its impact on different cell signaling cascades. We will additionally describe its negative regulation by its inhibitors Arpp19 and ENSA and their upstream kinase Greatwall. Finally, we will describe the essential molecular features defining PP2A-B55 substrate specificity that confer the correct temporal pattern of substrate dephosphorylation. The main objective of this review is to provide the reader with a unique source compiling all the knowledge of this particular holoenzyme that has evolved as a key enzyme for cell homeostasis and cancer development.


Asunto(s)
Proteína Fosfatasa 2/metabolismo , Transducción de Señal/genética , Humanos
15.
Elife ; 112022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35044298

RESUMEN

Clathrin-mediated endocytosis (CME) is a central trafficking pathway in eukaryotic cells regulated by phosphoinositides. The plasma membrane phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) plays an instrumental role in driving CME initiation. The F-BAR domain-only protein 1 and 2 complex (FCHo1/2) is among the early proteins that reach the plasma membrane, but the exact mechanisms triggering its recruitment remain elusive. Here, we show the molecular dynamics of FCHo2 self-assembly on membranes by combining minimal reconstituted in vitro and cellular systems. Our results indicate that PI(4,5)P2 domains assist FCHo2 docking at specific membrane regions, where it self-assembles into ring-like-shaped protein patches. We show that the binding of FCHo2 on cellular membranes promotes PI(4,5)P2 clustering at the boundary of cargo receptors and that this accumulation enhances clathrin assembly. Thus, our results provide a mechanistic framework that could explain the recruitment of early PI(4,5)P2-interacting proteins at endocytic sites.


Asunto(s)
Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitosis/genética , Proteínas de Unión a Ácidos Grasos/genética , Línea Celular Tumoral , Proteínas de Unión a Ácidos Grasos/metabolismo , Humanos
16.
Nat Commun ; 12(1): 3565, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117214

RESUMEN

Arpp19 is a potent PP2A-B55 inhibitor that regulates this phosphatase to ensure the stable phosphorylation of mitotic/meiotic substrates. At G2-M, Arpp19 is phosphorylated by the Greatwall kinase on S67. This phosphorylated Arpp19 form displays a high affinity to PP2A-B55 and a slow dephosphorylation rate, acting as a competitor of PP2A-B55 substrates. The molecular determinants conferring slow dephosphorylation kinetics to S67 are unknown. PKA also phosphorylates Arpp19. This phosphorylation performed on S109 is essential to maintain prophase I-arrest in Xenopus oocytes although the underlying signalling mechanism is elusive. Here, we characterize the molecular determinants conferring high affinity and slow dephosphorylation to S67 and controlling PP2A-B55 inhibitory activity of Arpp19. Moreover, we show that phospho-S109 restricts S67 phosphorylation by increasing its catalysis by PP2A-B55. Finally, we discover a double feed-back loop between these two phospho-sites essential to coordinate the temporal pattern of Arpp19-dependent PP2A-B55 inhibition and Cyclin B/Cdk1 activation during cell division.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas/metabolismo , Proteína Fosfatasa 2/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Hidrolasas de Éster Carboxílico/genética , División Celular/fisiología , Ciclina B/metabolismo , Retroalimentación , Femenino , Meiosis , Mitosis , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas/genética , Fosforilación , Proteína Fosfatasa 2/genética , Xenopus , Proteínas de Xenopus , Xenopus laevis/metabolismo
17.
Biomolecules ; 10(11)2020 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-33266510

RESUMEN

Protein phosphorylation is a post-translational modification essential for the control of the activity of most enzymes in the cell. This protein modification results from a fine-tuned balance between kinases and phosphatases. PP2A is one of the major serine/threonine phosphatases that is involved in the control of a myriad of different signaling cascades. This enzyme, often misregulated in cancer, is considered a tumor suppressor. In this review, we will focus on PP2A-B55, a particular holoenzyme of the family of the PP2A phosphatases whose specific role in cancer development and progression has only recently been highlighted. The discovery of the Greatwall (Gwl)/Arpp19-ENSA cascade, a new pathway specifically controlling PP2A-B55 activity, has been shown to be frequently altered in cancer. Herein, we will review the current knowledge about the mechanisms controlling the formation and the regulation of the activity of this phosphatase and its misregulation in cancer.


Asunto(s)
Neoplasias/enzimología , Neoplasias/genética , Proteína Fosfatasa 2/farmacocinética , Animales , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/química , Proteína Fosfatasa 2/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
18.
Sci Rep ; 9(1): 2861, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814557

RESUMEN

Reprogramming of cultured cells using Xenopus egg extract involves controlling four major steps: plasma membrane permeabilization, egg factors import into the nucleus, membrane resealing, and cell proliferation. Using propidium iodide to assess plasma membrane permeability, we established that 90% of the cultured fin cells were permeabilized by digitonin without any cell losses. We showed that egg extract at metaphase II stage was essential to maintain nuclear import function in the permeabilized cells, as assessed with a fusion GFP protein carrying the nuclear import signal NLS. Moreover, the Xenopus-egg-specific Lamin B3 was detected in 87% of the cell nuclei, suggesting that other egg extract reprogramming factors of similar size could successfully enter the nucleus. Lamin B3 labelling was maintained in most cells recovered 24 h after membrane resealing with calcium, and cells successfully resumed cell cycle in culture. In contrast, permeabilized cells that were not treated with egg extract failed to proliferate in culture and died, implying that egg extract provided factor essential to the survival of those cells. To conclude, fish fin cells were successfully primed for treatment with reprogramming factors, and egg extract was shown to play a major role in their survival and recovery after permeabilization.


Asunto(s)
Reprogramación Celular/efectos de los fármacos , Mezclas Complejas/farmacología , Carpa Dorada/metabolismo , Óvulo/química , Animales , Técnicas de Cultivo de Célula , Células Cultivadas , Mezclas Complejas/química , Xenopus laevis
19.
J Cell Biol ; 218(2): 541-558, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30626720

RESUMEN

Greatwall (GWL) is an essential kinase that indirectly controls PP2A-B55, the phosphatase counterbalancing cyclin B/CDK1 activity during mitosis. In Xenopus laevis egg extracts, GWL-mediated phosphorylation of overexpressed ARPP19 and ENSA turns them into potent PP2A-B55 inhibitors. It has been shown that the GWL/ENSA/PP2A-B55 axis contributes to the control of DNA replication, but little is known about the role of ARPP19 in cell division. By using conditional knockout mouse models, we investigated the specific roles of ARPP19 and ENSA in cell division. We found that Arpp19, but not Ensa, is essential for mouse embryogenesis. Moreover, Arpp19 ablation dramatically decreased mouse embryonic fibroblast (MEF) viability by perturbing the temporal pattern of protein dephosphorylation during mitotic progression, possibly by a drop of PP2A-B55 activity inhibition. We show that these alterations are not prevented by ENSA, which is still expressed in Arpp19 Δ/Δ MEFs, suggesting that ARPP19 is essential for mitotic division. Strikingly, we demonstrate that unlike ARPP19, ENSA is not required for early embryonic development. Arpp19 knockout did not perturb the S phase, unlike Ensa gene ablation. We conclude that, during mouse embryogenesis, the Arpp19 and Ensa paralog genes display specific functions by differentially controlling cell cycle progression.


Asunto(s)
Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mitosis/fisiología , Fosfoproteínas/metabolismo , Fase S/fisiología , Animales , Embrión de Mamíferos/citología , Desarrollo Embrionario/fisiología , Fibroblastos/citología , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Noqueados , Fosfoproteínas/genética , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Xenopus laevis
20.
Dev Cell ; 45(5): 637-650.e7, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29870721

RESUMEN

Mitosis is induced by the activation of the cyclin B/cdk1 feedback loop that creates a bistable state. The triggering factor promoting active cyclin B/cdk1 switch has been assigned to cyclin B/cdk1 accumulation during G2. However, this complex is rapidly inactivated by Wee1/Myt1-dependent phosphorylation of cdk1 making unlikely a triggering role of this kinase in mitotic commitment. Here we show that cyclin A/cdk1 kinase is the factor triggering mitosis. Cyclin A/cdk1 phosphorylates Bora to promote Aurora A-dependent Plk1 phosphorylation and activation and mitotic entry. We demonstrate that Bora phosphorylation by cyclin A/cdk1 is both necessary and sufficient for mitotic commitment. Finally, we identify a site in Bora whose phosphorylation by cyclin A/cdk1 is required for mitotic entry. We constructed a mathematical model confirming the essential role of this kinase in mitotic commitment. Overall, our results uncover the molecular mechanism by which cyclin A/cdk1 triggers mitotic entry.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina A/metabolismo , Mitosis/fisiología , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/genética , Ciclina A/genética , Activación Enzimática , Femenino , Modelos Teóricos , Fosforilación , Proteínas de Xenopus/genética , Xenopus laevis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA