Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Methods ; 200: 15-22, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33189829

RESUMEN

Asparagines in proteins deamidate spontaneously, which changes the chemical structure of a protein and often affects its function. Current prediction algorithms for asparagine deamidation require a structure as an input or are too slow to be applied at a proteomic scale. We present NGOME-Lite, a new version of our sequence-based predictor for spontaneous asparagine deamidation that is faster by over two orders of magnitude at a similar degree of accuracy. The algorithm takes into account intrinsic sequence propensities and slowing down of deamidation by local structure. NGOME-Lite can run in a proteomic analysis mode that provides the half-time of the intact form of each protein, predicted by taking into account sequence propensities and structural protection or sequence propensities only, and a structure protection factor. The detailed analysis mode also provides graphical output for all Asn residues in the query sequence. We applied NGOME-Lite to over 257,000 sequences in 38 proteomes and found that different taxa differ in their predicted deamidation dynamics. Spontaneous protein deamidation is faster in Eukarya than in Bacteria because of a higher degree of structural protection in the latter. Predicted protein deamidation half-lifes correlate with protein turnover in human, mouse, rat, C. elegans and budding yeast but not in two plants and two bacteria. NGOME-Lite is implemented in a docker container available at https://ngome.proteinphysiologylab.org.


Asunto(s)
Proteoma , Proteómica , Amidas/química , Animales , Asparagina/química , Asparagina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ratones , Proteoma/genética , Ratas
2.
Redox Biol ; 11: 38-50, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27863297

RESUMEN

Infection with oncogenic human papillomavirus induces deregulation of cellular redox homeostasis. Virus replication and papillomavirus-induced cell transformation require persistent expression of viral oncoproteins E7 and E6 that must retain their functionality in a persistent oxidative environment. Here, we dissected the molecular mechanisms by which E7 oncoprotein can sense and manage the potentially harmful oxidative environment of the papillomavirus-infected cell. The carboxy terminal domain of E7 protein from most of the 79 papillomavirus viral types of alpha genus, which encloses all the tumorigenic viral types, is a cysteine rich domain that contains two classes of cysteines: strictly conserved low reactive Zn+2 binding and degenerate reactive cysteine residues that can sense reactive oxygen species (ROS). Based on experimental data obtained from E7 proteins from the prototypical viral types 16, 18 and 11, we identified a couple of low pKa nucleophilic cysteines that can form a disulfide bridge upon the exposure to ROS and regulate the cytoplasm to nucleus transport. From sequence analysis and phylogenetic reconstruction of redox sensing states we propose that reactive cysteine acquisition through evolution leads to three separate E7s protein families that differ in the ROS sensing mechanism: non ROS-sensitive E7s; ROS-sensitive E7s using only a single or multiple reactive cysteine sensing mechanisms and ROS-sensitive E7s using a reactive-resolutive cysteine couple sensing mechanism.


Asunto(s)
Cisteína/metabolismo , Neoplasias/genética , Estrés Oxidativo/genética , Proteínas E7 de Papillomavirus/metabolismo , Nucléolo Celular/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Cisteína/genética , Citoplasma/metabolismo , Disulfuros/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Oxidación-Reducción , Proteínas E7 de Papillomavirus/genética , Transporte de Proteínas/genética , Replicación Viral/genética
3.
Philos Trans R Soc Lond B Biol Sci ; 368(1632): 20130019, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24218632

RESUMEN

The developmental brain gene NPAS3 stands out as a hot spot in human evolution because it contains the largest number of human-specific, fast-evolving, conserved, non-coding elements. In this paper we studied 2xHAR142, one of these elements that is located in the fifth intron of NPAS3. Using transgenic mice, we show that the mouse and chimp 2xHAR142 orthologues behave as transcriptional enhancers driving expression of the reporter gene lacZ to a similar NPAS3 expression subdomain in the mouse central nervous system. Interestingly, the human 2xHAR142 orthologue drives lacZ expression to an extended expression pattern in the nervous system. Thus, molecular evolution of 2xHAR142 provides the first documented example of human-specific heterotopy in the forebrain promoted by a transcriptional enhancer and suggests that it may have contributed to assemble the unique properties of the human brain.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Evolución Molecular , Regulación de la Expresión Génica/genética , Proteínas del Tejido Nervioso/genética , Prosencéfalo/metabolismo , Factores de Transcripción/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Biología Computacional , Secuencia Conservada/genética , Cartilla de ADN/genética , Galactósidos , Humanos , Inmunohistoquímica , Hibridación in Situ , Indoles , Operón Lac/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Pan troglodytes/genética , Elementos de Nucleótido Esparcido Corto/genética , Especificidad de la Especie , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA