Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673914

RESUMEN

Plant viral nanoparticles (VNPs) are attractive to nanomedicine researchers because of their safety, ease of production, resistance, and straightforward functionalization. In this paper, we developed and successfully purified a VNP derived from turnip mosaic virus (TuMV), a well-known plant pathogen, that exhibits a high affinity for immunoglobulins G (IgG) thanks to its functionalization with the Z domain of staphylococcal Protein A via gene fusion. We selected cetuximab as a model IgG to demonstrate the versatility of this novel TuMV VNP by developing a fluorescent nanoplatform to mark tumoral cells from the Cal33 line of a tongue squamous cell carcinoma. Using confocal microscopy, we observed that fluorescent VNP-cetuximab bound selectively to Cal33 and was internalized, revealing the potential of this nanotool in cancer research.


Asunto(s)
Nanopartículas , Humanos , Nanopartículas/química , Línea Celular Tumoral , Potyvirus , Inmunoglobulina G/metabolismo , Cetuximab/farmacología , Cetuximab/química , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo
2.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894963

RESUMEN

There is a clear need to expand the toolkit of adequate mouse models and cell lines available for preclinical studies of high-grade neuroendocrine lung carcinoma (small cell lung carcinoma (SCLC) and large cell neuroendocrine carcinoma (LCNEC)). SCLC and LCNEC are two highly aggressive tumor types with dismal prognoses and few therapeutic options. Currently, there is an extreme paucity of material, particularly in the case of LCNEC. Given the lack of murine cell lines and transplant models of LCNEC, the need is imperative. In this study, we generated and examined new models of LCNEC and SCLC transplantable cell lines derived from our previously developed primary mouse LCNEC and SCLC tumors. RNA-seq analysis demonstrated that our cell lines and syngeneic tumors maintained the transcriptome program from the original transgenic primary tumor and displayed strong similarities to human SCLC or LCNEC. Importantly, the SCLC transplanted cell lines showed the ability to metastasize and mimic this characteristic of the human condition. In summary, we generated mouse cell line tools that allow further basic and translational research as well as preclinical testing of new treatment strategies for SCLC and LCNEC. These tools retain important features of their human counterparts and address the lack of LCNEC disease models.


Asunto(s)
Carcinoma de Células Grandes , Carcinoma Neuroendocrino , Carcinoma de Células Pequeñas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Animales , Ratones , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma de Células Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/patología , Carcinoma de Células Grandes/genética , Carcinoma de Células Grandes/patología , Pulmón/patología
3.
Oral Dis ; 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35951471

RESUMEN

OBJECTIVES: This study aimed to investigate the clinical and prognostic relevance of the Hippo-YAP transactivators YAP1 and TAZ in oral squamous cell carcinoma, and their possible relationship with PI3K/mTOR pathway activation. MATERIALS AND METHODS: Immunohistochemical analysis of YAP1, TAZ, PIK3CA (p110α), p-AKT (Ser473), and p-S6 (Ser235) was performed in paraffin-embedded tissue specimens from 165 OSCC patients. Correlations between protein expression and clinical data were further assessed. RESULTS: YAP1 expression was detected in both cytoplasm and nucleus of tumor cells, whereas TAZ expression was only found in the nucleus. Nuclear YAP1 was significantly associated with tumor size (p = 0.03), neck lymph node metastasis (p = 0.02), TNM stage (p = 0.02), and poor differentiation (p = 0.04). Nuclear TAZ was associated with tobacco (p = 0.03) and alcohol consumption (p = 0.04), and poor tumor differentiation (p = 0.04). There was a positive significant correlation between nuclear and cytoplasmic YAP1, nuclear TAZ, p110α expression, and mTORC1 activation p-S6 (S235). Combined expression of nuclear and cytoplasmic YAP1 was prognostic in both univariate and multivariate analyses. Active nuclear YAP1 was significantly and independently associated with poor disease-specific (p = 0.005, HR = 2.520; 95% CI = 1.319-4.816) and overall survival (p = 0.015, HR = 2.126; 95% CI = 1.155-3.916). CONCLUSION: Nuclear YAP1 is an independent predictor of poor survival in oral squamous cell carcinoma.

4.
Proc Natl Acad Sci U S A ; 116(44): 22300-22306, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31611390

RESUMEN

High-grade neuroendocrine lung malignancies (large-cell neuroendocrine cell carcinoma, LCNEC, and small-cell lung carcinoma, SCLC) are among the most deadly lung cancer conditions with no optimal clinical management. The biological relationships between SCLC and LCNEC are still largely unknown and a current matter of debate as growing molecular data reveal high heterogeneity with potential therapeutic consequences. Here we describe murine models of high-grade neuroendocrine lung carcinomas generated by the loss of 4 tumor suppressors. In an Rbl1-null background, deletion of Rb1, Pten, and Trp53 floxed alleles after Ad-CMVcre infection in a wide variety of lung epithelial cells produces LCNEC. Meanwhile, inactivation of these genes using Ad-K5cre in basal cells leads to the development of SCLC, thus differentially influencing the lung cancer type developed. So far, a defined model of LCNEC has not been reported. Molecular and transcriptomic analyses of both models revealed strong similarities to their human counterparts. In addition, a 68Ga-DOTATOC-based molecular-imaging method provides a tool for detection and monitoring the progression of the cancer. These data offer insight into the biology of SCLC and LCNEC, providing a useful framework for development of compounds and preclinical investigations in accurate immunocompetent models.


Asunto(s)
Carcinoma de Células Pequeñas/genética , Genes Supresores de Tumor , Neoplasias Pulmonares/genética , Tumores Neuroendocrinos/genética , Animales , Carcinoma de Células Pequeñas/diagnóstico por imagen , Carcinoma de Células Pequeñas/patología , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Ratones , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/patología , Octreótido/análogos & derivados , Compuestos Organometálicos , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Tomografía de Emisión de Positrones , Radiofármacos , Proteínas de Unión a Retinoblastoma/genética , Proteínas de Unión a Retinoblastoma/metabolismo , Proteína p107 Similar a la del Retinoblastoma/genética , Proteína p107 Similar a la del Retinoblastoma/metabolismo , Transcriptoma , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
Int J Mol Sci ; 19(7)2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29933569

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, and although new therapeutic approaches have been recently evaluated, overall patient survival is still poor. Thus, new effective and selective clinical treatments are urgently needed. An analysis of data from large-scale, high-throughput drug screening cell line projects identified Bosutinib, a Src/Abl inhibitor that is currently used for the treatment of chronic myelogenous leukemia, as a candidate drug to treat HNSCC. Using a panel of HNSCC-derived cell lines, we found that treatment with Bosutinib reduced cell proliferation and induced apoptosis of sensitive cell lines. The drug rapidly inhibited Src and EGFR (epidermal growth factor receptor) phosphorylation, and sensitivity to Bosutinib was correlated with the activation status of EGFR. Similar findings were observed in in vivo xenograft assays using HNSCC derived cells. Moreover, in the presence of mutations in PIK3CA, the combination of Bosutinib with the PI3Kα inhibitor Alpelisib showed a synergistic effect. These results suggest that Bosutinib could be a new effective drug for the treatment of HNSCC, particularly in tumors with high EGFR activity. Its combination with Alpelisib could especially benefit patients bearing activating mutations of PIK3CA.


Asunto(s)
Compuestos de Anilina/farmacología , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Nitrilos/farmacología , Quinolinas/farmacología , Tiazoles/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Combinación de Medicamentos , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias de Cabeza y Cuello/enzimología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Humanos , Inyecciones Subcutáneas , Ratones , Ratones Desnudos , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-abl/genética , Proteínas Proto-Oncogénicas c-abl/metabolismo , Transducción de Señal , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
6.
Stem Cells ; 32(7): 1917-28, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24504902

RESUMEN

Hair follicle stem cells (HF-SCs) alternate between periods of quiescence and proliferation, to finally differentiate into all the cell types that constitute the hair follicle. Also, they have been recently identified as cells of origin in skin cancer. HF-SCs localize in a precise region of the hair follicle, the bulge, and molecular markers for this population have been established. Thus, HF-SCs are good model to study the potential role of oncogenic activations on SC physiology. Expression of a permanently active form of Akt (myrAkt) in basal cells leads to Akt hyperactivation specifically in the CD34(+)Itga6(H) population. This activation causes bulge stem cells to exit from quiescence increasing their response to proliferative stimuli and affecting some functions such as cell migration. HF-SC identity upon Akt activation is preserved; in this sense, increased proliferation does not result in stem cell exhaustion with age suggesting that Akt activation does not affect self-renewal an important aspect for normal tissue maintenance and cancer development. Genome-wide transcriptome analysis of HF-SC isolated from myrAkt and wild-type epidermis underscores changes in metabolic pathways characteristic of cancer cells. These differences manifest during a two-step carcinogenesis protocol in which Akt activation in HF-SCs results in increased tumor development and malignant transformation.


Asunto(s)
Carcinogénesis/metabolismo , Epidermis/enzimología , Neoplasias Cutáneas/enzimología , Células Madre/enzimología , Animales , Proliferación Celular , Células Cultivadas , Activación Enzimática , Epidermis/patología , Queratinocitos/enzimología , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-akt , Repitelización , Transducción de Señal
7.
Cancers (Basel) ; 14(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35954335

RESUMEN

Lung cancer remains the leading cause of cancer deaths worldwide. Among the Non-Small Cell Carcinoma (NSCLC) category, Adenocarcinoma (ADC) represents the most common type, with different reported driver mutations, a bunch of models described and therapeutic options. Meanwhile, Pulmonary Sarcomatoid Carcinoma (PSC) is one of the rarest, with very poor outcomes, scarce availability of patient material, no effective therapies and no models available for preclinical research. Here, we describe that the combined deletion of Pten and Trp53 in the lungs of adult conditional mice leads to the development of both ADC and PSC irrespective of the lung targeted cell type after naphthalene induced airway epithelial regeneration. Although this model shows long latency periods and incomplete penetrance for tumor development, it is the first PSC mouse model reported so far, and sheds light on the relationships between ADC and PSC and their cells of origin. Moreover, human ADC show strong transcriptomic similarities to the mouse PSC, providing a link between both tumor types and the human ADC.

8.
Nanomedicine (Lond) ; 17(14): 999-1012, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-36004616

RESUMEN

Background: Filamentous plant virus-derived nanoparticles are biodegradable and noninfectious to humans. Their structure is also amenable to chemical modifications. They constitute an appealing material for biomedical applications including imaging and drug delivery. We had previously used turnip mosaic virus-derived nanoparticles (TuMV-NPs) to increase antibody-sensing in vivo, to prevent biofilm formation and to build biological nanoscaffolds. Materials & methods: We analyzed TuMV-NP biodistribution and tumor homing using in vivo imaging. We studied in vitro the interaction with human cancer cell lines and the antiproliferative effect of epigallocatechin gallate-functionalized TuMV-NPs. Results & conclusion: TuMV-NPs are efficiently internalized by human cells and show good tumor homing. The antiproliferative effect of epigallocatechin gallate-TuMV-NPs suggests that they could offer a potential anticancer therapy.


Cancer is the second leading cause of death worldwide, just behind cardiovascular disease. It accounts for nearly 10 million deaths annually, and new strategies to improve early detection and drug delivery are urgently needed. Nanoparticles are small structures within the nanometer range (1 billionth of a meter) that can be used to deliver either an imaging probe (tracer) to allow the detection of a tumor or drugs to kill tumor cells. There are many types of nanoparticles; those based on plant viruses are especially appealing for biomedical purposes because they are biodegradable and noninfectious to humans. Also, their physicochemical properties, such as symmetry, uniformity and loading capacity, make them excellent nanocarriers. We report here for the first time the ability of nanoparticles derived from the turnip mosaic virus (TuMV), a well-known virus naturally infecting cruciferous plants (e.g., broccoli, turnip, radish, cabbage) but not humans, to deliver a fluorescent imaging probe that allows tumor detection in vivo. Moreover, TuMV nanoparticles were used to deliver a natural chemotherapeutic agent of plant origin to different types of tumor cells (lung, colorectal, breast, and head and neck), showing increased antiproliferative capacity compared to the nonvehiculized drug.


Asunto(s)
Nanopartículas , Potyvirus , Humanos , Polifenoles/farmacología , Distribución Tisular
9.
Oral Oncol ; 134: 106184, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36191479

RESUMEN

Fanconi anemia (FA) patients frequently develop oral squamous cell carcinoma (OSCC). This cancer in FA patients is diagnosed within the first 3-4 decades of life, very often preceded by lesions that suffer a malignant transformation. In addition, they respond poorly to current treatments due to toxicity or multiple recurrences. Translational research on new chemopreventive agents and therapeutic strategies has been unsuccessful partly due to scarcity of disease models or failure to fully reproduce the disease. Here we report that Fanca gene knockout mice (Fanca-/-) frequently display pre-malignant lesions in the oral cavity. Moreover, when these animals were crossed with animals having conditional deletion of Trp53 gene in oral mucosa (K14cre;Trp53F2-10/F2-10), they spontaneously developed OSCC with high penetrance and a median latency of less than ten months. Tumors were well differentiated and expressed markers of squamous differentiation, such as keratins K5 and K10. In conclusion, Fanca and Trp53 genes cooperate to suppress oral cancer in mice, and Fanca-/-;K14cre;Trp53F2-10/F2-10 mice constitute the first animal model of spontaneous OSCC in FA.


Asunto(s)
Carcinoma de Células Escamosas , Anemia de Fanconi , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Animales , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Modelos Animales de Enfermedad , Anemia de Fanconi/complicaciones , Anemia de Fanconi/genética , Anemia de Fanconi/patología , Queratinas , Ratones , Ratones Noqueados , Neoplasias de la Boca/genética , Carcinoma de Células Escamosas de Cabeza y Cuello
10.
BMC Dermatol ; 11: 9, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21510892

RESUMEN

BACKGROUND: Skin diseases are a major health problem. Some of the most severe conditions involve genetic disorders, including cancer. Several of these human diseases have been modelled in genetically modified mice, thus becoming a highly valuable preclinical tool for the treatment of these pathologies. However, development of three-dimensional models of skin using keratinocytes from normal and/or genetically modified mice has been hindered by the difficulty to subculture murine epidermal keratinocytes. METHODS: We have generated a murine epidermal cell line by serially passaging keratinocytes isolated from the back skin of adult mice. We have termed this cell line COCA. Cell culture is done in fully defined media and does not require feeder cells or any other coating methods. RESULTS: COCA retained its capacity to differentiate and stratify in response to increased calcium concentration in the cell culture medium for more than 75 passages. These cells, including late passage, can form epidermis-like structures in three-dimensional in vitro models with a well-preserved pattern of proliferation and differentiation. Furthermore, these cells form epidermis in grafting assays in vivo, and do not develop tumorigenic ability. CONCLUSIONS: We propose that COCA constitutes a good experimental system for in vitro and in vivo skin modelling. Also, cell lines from genetically modified mice of interest in skin biology could be established using the method we have developed. COCA keratinocytes would be a suitable control, within a similar background, when studying the biological implications of these alterations.


Asunto(s)
Línea Celular , Células Epidérmicas , Queratinocitos/citología , Ratones , Animales , Calcio/farmacología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Línea Celular/efectos de los fármacos , Línea Celular/trasplante , Cruzamientos Genéticos , Medios de Cultivo , Femenino , Fibroblastos/citología , Cariotipificación , Queratinocitos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Desnudos , Poliploidía , Translocación Genética
11.
J Am Soc Nephrol ; 21(4): 610-21, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20110383

RESUMEN

Apoptosis contributes to the development of diabetic nephropathy (DN), but the mechanisms that lead to diabetes-induced cell death are not fully understood. Here, we combined a functional genomics screen for cDNAs that induce apoptosis in vitro with transcriptional profiling of renal biopsies from patients with DN. Twelve of the 138 full-length cDNAs that induced cell death in human embryonic kidney cells matched upregulated mRNA transcripts in tissue from human DN. Confirmatory screens identified induction of BASP1 in tubular cross sections of human DN tissue. In vitro, apoptosis-inducing conditions such as serum deprivation, high concentrations of glucose, and proinflammatory cytokines increased BASP1 mRNA and protein in human tubular epithelial cells. In normal cells, BASP1 localized to the cytoplasm, but in apoptotic cells, it colocalized with actin in the periphery. Overexpression of BASP1 induced cell death with features of apoptosis; conversely, small interfering RNA (siRNA)-mediated knockdown of BASP1 protected tubular cells from apoptosis. Supporting possible involvement of BASP1 in renal disease other than DN, we also observed significant upregulation of renal BASP1 in spontaneously hypertensive rats and a trend toward increased tubulointerstitial BASP1 mRNA in human hypertensive nephropathy. In summary, a combined functional genomics approach identified BASP1 as a proapoptotic factor in DN and possibly also in hypertensive nephropathy.


Asunto(s)
Apoptosis , Nefropatías Diabéticas/patología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Proteínas Represoras/fisiología , Animales , Apoptosis/genética , Células Cultivadas , Humanos , Ratas
12.
Oral Oncol ; 117: 105310, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33901766

RESUMEN

OBJECTIVE: Epithelial-mesenchymal transition (EMT) is considered the initial step in the invasion-metastasis cascade. The aim of this systematic review was to study the signature of genes involved in the EMT process in oral cancer (OC) confirmed by protein expression and its possible relationship with oral squamous cell carcinoma (OSCC) prognostic variables. MATERIALS AND METHODS: A search of the scientific literature was carried out with no start date restriction until 17 September 2020 in the electronic databases Pubmed/MEDLINE, Web of Science, Cochrane Library and Scopus, following specific eligibility criteria. The methodological quality of the included studies was assessed using the Newcastle-Ottawa tool. RESULTS: A total of 8 retrospective cohort studies were included, all of them performed in China and with low risk of bias. Overexpression of the genes HNRNPC, ITGA5, HMGA2 and SRSF3, and low expression of ALDH3A1 and ARID2 promote EMT in OC. The more advanced clinical stages of the TNM classification were significantly associated with overexpression of HNRNPC, ITGA5, HMGA2 and SRSF3, and low expression of ARID2. CONCLUSIONS: HNRNPC, ITGA5, HMGA2, SRSF3, ALDH3A1 and ARID2 genes were associated with EMT process. Over- or under-expression of these genes is associated with worse stages of OSCC and/or worse prognosis of the tumor. Further studies on this topic are needed in different countries to be able to confirm these results, since the detection of these genes can help to know which tumors have a worse prognosis.


Asunto(s)
Neoplasias de la Boca , Carcinoma de Células Escamosas de Cabeza y Cuello , Transición Epitelial-Mesenquimal/genética , Humanos , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Estudios Retrospectivos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Factores de Transcripción/metabolismo
13.
Genes (Basel) ; 12(4)2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918752

RESUMEN

Fanconi anemia (FA) patients have an exacerbated risk of head and neck squamous cell carcinoma (HNSCC). Treatment is challenging as FA patients display enhanced toxicity to standard treatments, including radio/chemotherapy. Therefore, better therapies as well as new disease models are urgently needed. We have used CRISPR/Cas9 editing tools in order to interrupt the human FANCA gene by the generation of insertions/deletions (indels) in exon 4 in two cancer cell lines from sporadic HNSCC having no mutation in FA-genes: CAL27 and CAL33 cells. Our approach allowed efficient editing, subsequent purification of single-cell clones, and Sanger sequencing validation at the edited locus. Clones having frameshift indels in homozygosis did not express FANCA protein and were selected for further analysis. When compared with parental CAL27 and CAL33, FANCA-mutant cell clones displayed a FA-phenotype as they (i) are highly sensitive to DNA interstrand crosslink (ICL) agents such as mitomycin C (MMC) or cisplatin, (ii) do not monoubiquitinate FANCD2 upon MMC treatment and therefore (iii) do not form FANCD2 nuclear foci, and (iv) they display increased chromosome fragility and G2 arrest after diepoxybutane (DEB) treatment. These FANCA-mutant clones display similar growth rates as their parental cells. Interestingly, mutant cells acquire phenotypes associated with more aggressive disease, such as increased migration in wound healing assays. Therefore, CAL27 and CAL33 cells with FANCA mutations are phenocopies of FA-HNSCC cells.


Asunto(s)
Proteína del Grupo de Complementación A de la Anemia de Fanconi/deficiencia , Anemia de Fanconi/patología , Edición Génica , Neoplasias de Cabeza y Cuello/patología , Mutación , Fenotipo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Movimiento Celular , Proliferación Celular , Daño del ADN , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Neoplasias de Cabeza y Cuello/genética , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Células Tumorales Cultivadas , Cicatrización de Heridas
14.
Mol Cancer ; 9: 193, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20630075

RESUMEN

BACKGROUND: The epidermal specific ablation of Trp53 gene leads to the spontaneous development of aggressive tumors in mice through a process that is accelerated by the simultaneous ablation of Rb gene. Since alterations of p53-dependent pathway are common hallmarks of aggressive, poor prognostic human cancers, these mouse models can recapitulate the molecular features of some of these human malignancies. RESULTS: To evaluate this possibility, gene expression microarray analysis was performed in mouse samples. The mouse tumors display increased expression of cell cycle and chromosomal instability associated genes. Remarkably, they are also enriched in human embryonic stem cell gene signatures, a characteristic feature of human aggressive tumors. Using cross-species comparison and meta-analytical approaches, we also observed that spontaneous mouse tumors display robust similarities with gene expression profiles of human tumors bearing mutated TP53, or displaying poor prognostic outcome, from multiple body tissues. We have obtained a 20-gene signature whose genes are overexpressed in mouse tumors and can identify human tumors with poor outcome from breast cancer, astrocytoma and multiple myeloma. This signature was consistently overexpressed in additional mouse tumors using microarray analysis. Two of the genes of this signature, AURKA and UBE2C, were validated in human breast and cervical cancer as potential biomarkers of malignancy. CONCLUSIONS: Our analyses demonstrate that these mouse models are promising preclinical tools aimed to search for malignancy biomarkers and to test targeted therapies of prospective use in human aggressive tumors and/or with p53 mutation or inactivation.


Asunto(s)
Perfilación de la Expresión Génica , Neoplasias/genética , Neoplasias Cutáneas/genética , Proteína p53 Supresora de Tumor/genética , Animales , Humanos , Ratones
15.
Curr Mol Med ; 9(3): 353-64, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19355916

RESUMEN

The epidermis is the stratified epithelium that covers and protects the body from external damage. This tissue undergoes continuous cell renewal throughout the life of the individual at the expense of a pool of pluripotent cells, some of them lie in a well defined niche in the hair follicle known as the bulge. Epidermal tumours are the most frequent type of cancer in human populations, as a consequence, the development and progression of these tumours have been extensively characterised and a number of mouse models generated. Over the last years several findings suggest that a subset of cells, named cancer stem cells, could play an important role in tumour development; however, the identity of these cells remains unknown in most cases. Understanding the biology of these cells and their implication in tumour development and progression is crucial to design therapies aimed to target cancer stem cells. In this scenario, the epidermis emerges as a good model to gain deeper insight into the role of adult stem cells in carcinogenesis. Here we summarise recent findings in the field using genetically manipulated mice and how these can be translated to humans.


Asunto(s)
Epidermis/patología , Células Madre Neoplásicas/fisiología , Neoplasias Cutáneas/etiología , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Epidérmicas , Células Epiteliales/citología , Células Epiteliales/fisiología , Folículo Piloso/citología , Folículo Piloso/metabolismo , Humanos , Mutación , Transducción de Señal/fisiología , Neoplasias Cutáneas/patología
16.
Cancers (Basel) ; 13(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375066

RESUMEN

Neuroendocrine lung tumors comprise a range of malignancies that extend from benign tumorlets to the most prevalent and aggressive Small Cell Lung Carcinoma (SCLC). They also include low-grade Typical Carcinoids (TC), intermediate-grade Atypical Carcinoids (AC) and high-grade Large Cell Neuroendocrine Carcinoma (LCNEC). Optimal treatment options have not been adequately established: surgical resection when possible is the choice for AC and TC, and for SCLC chemotherapy and very recently, immune checkpoint inhibitors. Some mouse models have been generated based on the molecular alterations identified in genomic analyses of human tumors. With the exception of SCLC, there is a limited availability of (preclinical) models making their development an unmet need for the understanding of the molecular mechanisms underlying these diseases. For SCLC, these models are crucial for translational research and novel drug testing, given the paucity of human material from surgery. The lack of early detection systems for lung cancer point them out as suitable frameworks for the identification of biomarkers at the initial stages of tumor development and for testing molecular imaging methods based on somatostatin receptors. Here, we review the relevant models reported to date, their impact on the understanding of the biology of the tumor subtypes and their relationships, as well as the effect of the analyses of the genetic landscape of the human tumors and molecular imaging tools in their development.

17.
Methods Mol Biol ; 2109: 45-53, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31087286

RESUMEN

Epidermal stem cells are responsible for normal tissue homeostasis and contribute to tissue regeneration during injury. Several assays measuring stem cell frequency and function can be used to assess epidermal stem cell potential. However, the ultimate assay that accounts for stemness is the capacity to sustain in vivo long-term tissue regeneration and maintenance. We can use this type of analysis to interrogate whether a specific genetic alteration (e.g., activation or inactivation of any gene thought to be involved in stem cell quiescence or proliferation) confers increased or decreased stem cell potential.


Asunto(s)
Queratinocitos/citología , Queratinocitos/trasplante , Células Madre/citología , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Epidermis/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Queratinocitos/metabolismo , Ratones , Regeneración
18.
In Vivo ; 23(5): 653-60, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19779097

RESUMEN

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is a common human neoplasia, of poor prognosis and survival, which frequently displays Akt overactivation. Previously, we reported that mice expressing high levels of constitutively Akt activity (myrAkt) in oral epithelia develop lesions and tumors in the oral cavity. MATERIALS AND METHODS: Functional genomics of primary keratinocytes from different transgenic mouse lines and immunostaining of mouse and human samples were performed in order to identify and validate putative biomarkers of oral cancer progression. RESULTS: The expression of KLF4 was found to be increased only in tumor prone samples from mice bearing overactivation of Akt. Such increased expression was confirmed in oral dysplasias and tumors arising in those mice. Tissue microarray analysis of human samples confirmed the association between active Akt and increased KLF4 expression. CONCLUSION: These data support the notion that KLF4 is potentially a reliable marker of HNSCC, and that myrAkt transgenic mice are valuable tools for preclinical research of HNSCC.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Mucosa Bucal/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Western Blotting , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Modelos Animales de Enfermedad , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Mucosa Bucal/patología , Proteínas Proto-Oncogénicas c-akt/genética , ARN Mensajero/metabolismo , Análisis de Matrices Tisulares , Regulación hacia Arriba
19.
J Am Soc Nephrol ; 19(5): 904-14, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18287563

RESUMEN

Apoptotic cell death contributes to diabetic nephropathy (DN), but its role is not well understood. The tubulointerstitium from DN biopsy specimens was microdissected, and expression profiles of genes related to apoptosis were analyzed. A total of 112 (25%) of 455 cell death-related genes were found to be significantly differentially regulated. Among those that showed the greatest changes in regulation were two death receptors, OPG (the gene encoding osteoprotegerin) and Fas, and the death ligand TRAIL. Glomerular and proximal tubular TRAIL expression, assessed by immunohistochemistry, was higher in DN kidneys than controls and was associated with clinical and histologic severity of disease. In vitro, proinflammatory cytokines but not glucose alone regulated TRAIL expression in the human proximal tubular cell line HK-2. TRAIL induced tubular cell apoptosis in a dosage-dependant manner, an effect that was more marked in the presence of high levels of glucose and proinflammatory cytokines. TRAIL also activated NF-kappaB, and inhibition of NF-kappaB sensitized cells to TRAIL-induced apoptosis. It is proposed that TRAIL-induced cell death could play an important role in the progression of human DN.


Asunto(s)
Apoptosis/fisiología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/fisiopatología , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Apoptosis/efectos de los fármacos , Biopsia , Línea Celular , Supervivencia Celular/fisiología , Nefropatías Diabéticas/patología , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Femenino , Regulación de la Expresión Génica , Glucosa/farmacología , Humanos , Inmunohistoquímica , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/fisiología , Ligandos , Masculino , Persona de Mediana Edad , FN-kappa B/metabolismo , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , ARN Mensajero/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
20.
J Clin Med ; 8(12)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31817001

RESUMEN

Head and neck cancer affects the upper aerodigestive tract and is the sixth leading cancer worldwide by incidence and the seventh by cause of death. Despite significant advances in surgery and chemotherapy, molecularly targeted therapeutic options for this type of cancer are scarce and long term survival rates remain low. Recently, comprehensive genomic studies have highlighted the most commonly altered genes and signaling pathways in this cancer. The Hippo-YAP pathway has been identified as a key oncogenic pathway in multiple tumors. Expression of genes controlled by the Hippo downstream transcriptional coactivators YAP (Yes-associated protein 1) and TAZ (WWTR1, WW domain containing transcription regulator 1) is widely deregulated in human cancer including head and neck squamous cell carcinoma (HNSCC). Interestingly, YAP/TAZ signaling might not be as essential for the normal homeostasis of adult tissues as for oncogenic growth, altogether making the pathway an amenable therapeutic target in cancer. Recent advances in the role of Hippo-YAP pathway in HNSCC have provided evidence that genetic alterations frequent in this type of cancer such as PIK3CA (phosphatidylinositide 3-kinase catalytic subunit alpha) overexpression or FAT1 (FAT atypical cadherin 1) functional loss can result in YAP activation. We discuss current therapeutic options targeting this pathway which are currently in use for other tumor types.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA