Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806692

RESUMEN

Excitation/inhibition (E/I) balance plays important roles in mental disorders. Bioactive phospholipids like lysophosphatidic acid (LPA) are synthesized by the enzyme autotaxin (ATX) at cortical synapses and modulate glutamatergic transmission, and eventually alter E/I balance of cortical networks. Here, we analyzed functional consequences of altered E/I balance in 25 human subjects induced by genetic disruption of the synaptic lipid signaling modifier PRG-1, which were compared to 25 age and sex matched control subjects. Furthermore, we tested therapeutic options targeting ATX in a related mouse line. Using EEG combined with TMS in an instructed fear paradigm, neuropsychological analysis and an fMRI based episodic memory task, we found intermediate phenotypes of mental disorders in human carriers of a loss-of-function single nucleotide polymorphism of PRG-1 (PRG-1R345T/WT). Prg-1R346T/WT animals phenocopied human carriers showing increased anxiety, a depressive phenotype and lower stress resilience. Network analysis revealed that coherence and phase-amplitude coupling were altered by PRG-1 deficiency in memory related circuits in humans and mice alike. Brain oscillation phenotypes were restored by inhibtion of ATX in Prg-1 deficient mice indicating an interventional potential for mental disorders.

2.
Neuroimage ; 291: 120591, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552812

RESUMEN

Functional imaging has helped to understand the role of the human insula as a major processing network for integrating input with the current state of the body. However, these studies remain at a correlative level. Studies that have examined insula damage show lesion-specific performance deficits. Case reports have provided anecdotal evidence for deficits following insula damage, but group lesion studies offer a number of advances in providing evidence for functional representation of the insula. We conducted a systematic literature search to review group studies of patients with insula damage after stroke and identified 23 studies that tested emotional processing performance in these patients. Eight of these studies assessed emotional processing of visual (most commonly IAPS), auditory (e.g., prosody), somatosensory (emotional touch) and autonomic function (heart rate variability). Fifteen other studies looked at social processing, including emotional face recognition, gaming tasks and tests of empathy. Overall, there was a bias towards testing only patients with right-hemispheric lesions, making it difficult to consider hemisphere specificity. Although many studies included an overlay of lesion maps to characterise their patients, most did not differentiate lesion statistics between insula subunits and/or applied voxel-based associations between lesion location and impairment. This is probably due to small group sizes, which limit statistical comparisons. We conclude that multicentre analyses of lesion studies with comparable patients and performance tests are needed to definitively test the specific function of parts of the insula in emotional processing and social interaction.


Asunto(s)
Reconocimiento Facial , Accidente Cerebrovascular , Humanos , Imagen por Resonancia Magnética/métodos , Emociones/fisiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Empatía , Mapeo Encefálico/métodos
3.
Neuroimage ; 295: 120639, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38796977

RESUMEN

Data-based predictions of individual Cognitive Behavioral Therapy (CBT) treatment response are a fundamental step towards precision medicine. Past studies demonstrated only moderate prediction accuracy (i.e. ability to discriminate between responders and non-responders of a given treatment) when using clinical routine data such as demographic and questionnaire data, while neuroimaging data achieved superior prediction accuracy. However, these studies may be considerably biased due to very limited sample sizes and bias-prone methodology. Adequately powered and cross-validated samples are a prerequisite to evaluate predictive performance and to identify the most promising predictors. We therefore analyzed resting state functional magnet resonance imaging (rs-fMRI) data from two large clinical trials to test whether functional neuroimaging data continues to provide good prediction accuracy in much larger samples. Data came from two distinct German multicenter studies on exposure-based CBT for anxiety disorders, the Protect-AD and SpiderVR studies. We separately and independently preprocessed baseline rs-fMRI data from n = 220 patients (Protect-AD) and n = 190 patients (SpiderVR) and extracted a variety of features, including ROI-to-ROI and edge-functional connectivity, sliding-windows, and graph measures. Including these features in sophisticated machine learning pipelines, we found that predictions of individual outcomes never significantly differed from chance level, even when conducting a range of exploratory post-hoc analyses. Moreover, resting state data never provided prediction accuracy beyond the sociodemographic and clinical data. The analyses were independent of each other in terms of selecting methods to process resting state data for prediction input as well as in the used parameters of the machine learning pipelines, corroborating the external validity of the results. These similar findings in two independent studies, analyzed separately, urge caution regarding the interpretation of promising prediction results based on neuroimaging data from small samples and emphasizes that some of the prediction accuracies from previous studies may result from overestimation due to homogeneous data and weak cross-validation schemes. The promise of resting-state neuroimaging data to play an important role in the prediction of CBT treatment outcomes in patients with anxiety disorders remains yet to be delivered.


Asunto(s)
Trastornos de Ansiedad , Terapia Cognitivo-Conductual , Aprendizaje Automático , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Femenino , Masculino , Trastornos de Ansiedad/terapia , Trastornos de Ansiedad/diagnóstico por imagen , Trastornos de Ansiedad/fisiopatología , Adulto , Terapia Cognitivo-Conductual/métodos , Persona de Mediana Edad , Resultado del Tratamiento , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Adulto Joven , Terapia Implosiva/métodos
4.
Exp Brain Res ; 242(8): 1851-1859, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38842754

RESUMEN

OBJECTIVE: The role of ipsilateral descending motor pathways in voluntary movement of humans is still a matter of debate, with partly contradictory results. The aim of our study therefore was to examine the excitability of ipsilateral motor evoked potentials (iMEPs) regarding site and the specificity for unilateral and bilateral elbow flexion extension tasks. METHODS: MR-navigated transcranial magnetic stimulation mapping of the dominant hemisphere was performed in twenty healthy participants during tonic unilateral (iBB), bilateral homologous (bBB) or bilateral antagonistic elbow flexion-extension (iBB-cAE), the map center of gravity (CoG) and iMEP area from BB were obtained. RESULTS: The map CoG of the ipsilateral BB was located more anterior-laterally than the hotspot of the contralateral BB within the primary motor cortex, with a significant difference in CoG in iBB and iBB-cAE, but not bBB compared to the hotspot for the contralateral BB (each p < 0.05). However, different tasks had no effect on the size of the iMEPs. CONCLUSION: Our data demonstrated that excitability of ipsilateral and contralateral MEP differ spatially in a task-specific manner suggesting the involvement of different motor networks within the motor cortex.


Asunto(s)
Potenciales Evocados Motores , Lateralidad Funcional , Corteza Motora , Estimulación Magnética Transcraneal , Humanos , Potenciales Evocados Motores/fisiología , Masculino , Femenino , Adulto , Adulto Joven , Corteza Motora/fisiología , Lateralidad Funcional/fisiología , Electromiografía , Mapeo Encefálico
5.
Stroke ; 54(9): 2438-2441, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37465999

RESUMEN

BACKGROUND: Integrity of the corticospinal tract (CST) is an important biomarker for upper limb motor function following stroke. However, when structurally compromised, other tracts may become relevant for compensation or recovery of function. METHODS: We used the ENIGMA Stroke Recovery data set, a multicenter, retrospective, and cross-sectional collection of patients with upper limb impairment during the chronic phase of stroke to test the relevance of tracts in individuals with less and more severe (laterality index of CST fractional anisotropy ≥0.25) CST damage in an observational study design. White matter integrity was quantified using fractional anisotropy for the CST, the superior longitudinal fascicle, and the callosal fibers interconnecting the primary motor cortices between hemispheres. Optic radiations served as a control tract as they have no a priori relevance for the motor system. Pearson correlation was used for testing correlation with upper limb motor function (Fugl-Meyer upper extremity). RESULTS: From 1235 available data sets, 166 were selected (by imaging, Fugl-Meyer upper extremity, covariates, stroke location, and stage) for analyses. Only individuals with severe CST damage showed a positive association of fractional anisotropy in both callosal fibers interconnecting the primary motor cortices (r[21]=0.49; P=0.025) and superior longitudinal fascicle (r[21]=0.51; P=0.018) with Fugl-Meyer upper extremity. CONCLUSIONS: Our data support the notion that individuals with more severe damage of the CST depend on residual pathways for achieving better upper limb outcome than those with less affected CST.


Asunto(s)
Accidente Cerebrovascular , Sustancia Blanca , Humanos , Estudios Transversales , Estudios Retrospectivos , Sustancia Blanca/diagnóstico por imagen , Extremidad Superior , Tractos Piramidales/diagnóstico por imagen , Recuperación de la Función
6.
Neuroimage ; 247: 118827, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34923133

RESUMEN

Motives motivate human behavior. Most behaviors are driven by more than one motive, yet it is unclear how different motives interact and how such motive combinations affect the neural computation of the behaviors they drive. To answer this question, we induced two prosocial motives simultaneously (multi-motive condition) and separately (single motive conditions). After the different motive inductions, participants performed the same choice task in which they allocated points in favor of the other person (prosocial choice) or in favor of themselves (egoistic choice). We used fMRI to assess prosocial choice-related brain responses and drift diffusion modeling to specify how motive combinations affect individual components of the choice process. Our results showed that the combination of the two motives in the multi-motive condition increased participants' choice biases prior to the behavior itself. On the neural level, these changes in initial prosocial bias were associated with neural responses in the bilateral dorsal striatum. In contrast, the efficiency of the prosocial decision process was comparable between the multi-motive and the single-motive conditions. These findings provide insights into the computation of prosocial choices in complex motivational states, the motivational setting that drives most human behaviors.


Asunto(s)
Conducta de Elección/fisiología , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/fisiología , Imagen por Resonancia Magnética/métodos , Motivación/fisiología , Femenino , Humanos , Adulto Joven
7.
Hum Brain Mapp ; 43(1): 129-148, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32310331

RESUMEN

The goal of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well-powered meta- and mega-analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large-scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Accidente Cerebrovascular , Humanos , Estudios Multicéntricos como Asunto , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Rehabilitación de Accidente Cerebrovascular
8.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499694

RESUMEN

Neuroinflammatory mechanisms and maladaptive neuroplasticity underlie the progression of complex regional pain syndrome (CRPS), which is prototypical of central neuropathic pain conditions. While cortical maladaptive alterations are well described, little is known about the contribution of the brainstem to the pathophysiology. This study investigates the role of pain-modulatory brainstem pathways in CRPS using the nociceptive blink reflex (nBR), which not only provides a direct read-out of brainstem excitability and habituation to painful stimuli but may also be suitable for use as a diagnostic biomarker for CRPS. Thirteen patients with CRPS and thirteen healthy controls (HCs) participated in this prospective case-control study investigating the polysynaptic trigemino-cervical (R2) nBR response. The R2 area and its habituation were assessed following repeated supraorbital electrical stimulation. Between-group comparisons included evaluations of diagnostic characteristics as a potential biomarker for the disease. Patients with CRPS showed a substantial decrease in habituation on the stimulated (Cohen's d: 1.3; p = 0.012) and the non-stimulated side (Cohen's d: 1.1; p = 0.04). This is the first study to reveal altered nBR habituation as a pathophysiological mechanism and potential diagnostic biomarker in CRPS. We confirmed previous findings of altered nBR excitability, but the diagnostic accuracy was inferior. Future studies should investigate the nBR as a marker of progression to central mechanisms in CRPS and as a biomarker to predict treatment response or prognosis.


Asunto(s)
Síndromes de Dolor Regional Complejo , Dolor , Humanos , Estudios de Casos y Controles , Tronco Encefálico , Parpadeo
9.
Brain Cogn ; 150: 105705, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33652364

RESUMEN

Motor imagery practice is a current trend, but there is a need for a systematic integration of neuroscientific advances in the field. In this review, we describe the technique of motor imagery practice and its neural representation, considering different fields of application. The current practice of individualized motor imagery practice schemes often lacks systematization and is mostly based on experience. We review literature related to motor imagery practice in order to identify relevant modulators of practice effects like previous experience in motor training and motor imagery practice, the type of motor task to be trained, and strategies to increase sensory feedback during physical practice. Relevant discrepancies are identified between neuroscientific findings and practical consideration of these findings. To bridge these gaps, more effort should be directed at analyzing the brain network activities related to practically relevant motor imagery practice interventions.


Asunto(s)
Imaginación , Desempeño Psicomotor , Retroalimentación Sensorial , Humanos , Destreza Motora
10.
Clin Oral Investig ; 24(6): 2005-2013, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31520181

RESUMEN

OBJECTIVES: To investigate the effects on pain, movement kinematics, and cerebral representation by a 3-month mandibular splint therapy. MATERIAL AND METHODS: Thirteen patients with temporo-mandibular joint disease (TMD) and moderate pain intensity were investigated before (PRE), within (after 2 weeks, POST1) and after a period of 12 weeks (POST2) using functional magnetic resonance imaging (fMRI) of representation of occlusal movements on natural teeth and on an individually fitted mandibular splint. In addition, kinematic investigations of jaw movements, muscle electromyography and pain ratings using a pain diary (VAS-scale 0-100) were measured. RESULTS: Although the patient's pain ratings decreased about 60%, kinematic and electromyographic characteristics over therapy were not significantly altered. Over therapy, we observed a decrease of fMRI activation magnitude in the primary somatosensory cortex (S1) and secondary somatosensory cortex (S2) and insular cortex during occlusion. Left hemispheric anterior insula and the cerebellar fMRI activation decrease were associated with decrease in pain over time. CONCLUSIONS: Within the limitations of this pilot study, a reduction in both discriminative (primary and secondary somatosensory cortex) and affective (anterior insula) areas for pain processing suggest that altered pain anticipation is critical for the therapeutic effects of mandibular splint therapy after TMD. CLINICAL RELEVANCE: A 3-month mandibular splint therapy moderately decreases pain and anticipatory anterior insular activation.


Asunto(s)
Dolor Facial , Ferulas Oclusales , Férulas (Fijadores) , Dolor Facial/terapia , Humanos , Mandíbula , Proyectos Piloto
11.
Neuroimage ; 191: 470-480, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30790673

RESUMEN

Health-related quality of life is likely associated with the brain via processes relating to physiology, behavior, cognition, emotion and stress. Previous studies with small student or clinical samples have identified associations with gray matter volume in the anterior cingulate cortex, prefrontal cortex, insular cortex, (para)hippocampal area, amygdala, and precuneus. The present study investigated the association of gray matter volume of these brain areas with mental and physical components of health, as well as general health perception, measured with the 12-item Short Form Health Survey, in a large sample of 3027 participants from the Study of Health in Pomerania, using voxel-based morphometry for T1-weighted magnetic resonance imaging. Higher physical, but not mental, health-related quality of life and general health perception were associated with larger gray matter volume of the anterior cingulate cortex, medial prefrontal cortex, insular cortex, and the precuneus with a substantial decrease when controlling for lifestyle, comorbidity and symptoms. Age-stratified analyses revealed significantly higher partial correlations of physical health and left insular gray matter volume in the oldest age group. Our study emphasizes the importance of high medial prefrontal and anterior insula gray matter volume for health-related quality of life on the basis of a large sample size.


Asunto(s)
Envejecimiento/patología , Envejecimiento/psicología , Corteza Cerebral/patología , Sustancia Gris/patología , Calidad de Vida , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
12.
Neuroimage ; 197: 450-456, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31075391

RESUMEN

Voices and faces are the most common sources of threat in social anxiety (SA) where the fear of negative evaluation and social exclusion is the central element. SA itself is spectrally distributed among the general population and its clinical manifestation, termed social anxiety disorder, is one of the most common anxiety disorders. While heightened cerebral responses to angry or contemptuous facial or vocal expressions are well documented, it remains unclear if the brain of socially anxious individuals is generally more sensitive to voices and faces. Using functional magnetic resonance imaging, we investigated how SA affects the cerebral processing of voices and faces as compared to various other stimulus types in a study population with greatly varying SA (N = 50, 26 female). While cerebral voice-sensitivity correlated positively with SA in the left temporal voice area (TVA) and the left amygdala, an association of face-sensitivity and SA was observed in the right fusiform face area (FFA) and the face processing area of the right posterior superior temporal sulcus (pSTSFA). These results demonstrate that the increase of cerebral responses associated with social anxiety is not limited to facial or vocal expressions of social threat but that the respective sensory and emotion processing structures are also generally tuned to voices and faces.


Asunto(s)
Trastornos de Ansiedad/fisiopatología , Ansiedad/fisiopatología , Percepción Auditiva/fisiología , Encéfalo/fisiopatología , Percepción Visual/fisiología , Adulto , Expresión Facial , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Voz , Adulto Joven
13.
Hum Brain Mapp ; 40(7): 2174-2187, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30666737

RESUMEN

While the significance of auditory cortical regions for the development and maintenance of speech motor coordination is well established, the contribution of somatosensory brain areas to learned vocalizations such as singing is less well understood. To address these mechanisms, we applied intermittent theta burst stimulation (iTBS), a facilitatory repetitive transcranial magnetic stimulation (rTMS) protocol, over right somatosensory larynx cortex (S1) and a nonvocal dorsal S1 control area in participants without singing experience. A pitch-matching singing task was performed before and after iTBS to assess corresponding effects on vocal pitch regulation. When participants could monitor auditory feedback from their own voice during singing (Experiment I), no difference in pitch-matching performance was found between iTBS sessions. However, when auditory feedback was masked with noise (Experiment II), only larynx-S1 iTBS enhanced pitch accuracy (50-250 ms after sound onset) and pitch stability (>250 ms after sound onset until the end). Results indicate that somatosensory feedback plays a dominant role in vocal pitch regulation when acoustic feedback is masked. The acoustic changes moreover suggest that right larynx-S1 stimulation affected the preparation and involuntary regulation of vocal pitch accuracy, and that kinesthetic-proprioceptive processes play a role in the voluntary control of pitch stability in nonsingers. Together, these data provide evidence for a causal involvement of right larynx-S1 in vocal pitch regulation during singing.


Asunto(s)
Lateralidad Funcional/fisiología , Laringe/fisiología , Percepción de la Altura Tonal/fisiología , Canto/fisiología , Corteza Somatosensorial/fisiología , Ritmo Teta/fisiología , Estimulación Acústica/métodos , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Corteza Somatosensorial/diagnóstico por imagen , Estimulación Magnética Transcraneal/métodos , Adulto Joven
14.
Brain Cogn ; 131: 4-9, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30879493

RESUMEN

Biomarkers indicating characteristic alterations in the brains of pain patients would in comparison to behavioral examinations allow for earlier diagnoses of pain disease development, a more immediate monitoring of pain disease progression, and for the development of interventions to reverse or compensate for the alterations. To reveal causal relations between an observed alteration and the pain disease longitudinal examinations are essential. Resting-state fMRI examinations can readily be included in large longitudinal cohorts allowing to achieve sufficiently large patient samples even for rare diseases. Our literature review on longitudinal resting-state fMRI examinations of pain patients indicates that pain chronicity is predicted by alterations to the brain's reward system and default mode network. A brain wide reorganization of the resting-state networks is associated with the emergence of the chronic pain state. The functional connectivity of the left frontoparietal network predicts the evolution of pain intensity in the chronic state. Further investigations are necessary concerning the generalization of the biomarkers across the phases in pain development especially for the healthy state, across different pain etiologies, and their specificity to chronic pain. The currently acquired representative longitudinal cohorts will allow for clarification of those issues within the next decades.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Dolor Crónico/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Biomarcadores , Progresión de la Enfermedad , Humanos , Imagen por Resonancia Magnética , Descanso , Sensibilidad y Especificidad
15.
Eur J Neurosci ; 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29776018

RESUMEN

Continuous practice modulates those features of brain anatomy specifically associated with requirements of the respective training task. This study aimed to highlight brain structural changes going along with long-term experience in creative writing. To this end, we investigated the grey matter volume of 23 expert writers with voxel-based morphometry and compared it to 28 matched nonexpert controls. Expert writers had higher grey matter volume in the right superior frontal and middle frontal gyri (BA 9,10) as well as left middle frontal gyrus (BA 9, 10, 46), the bilateral medial dorsal nuclei of the thalamus and left posterior cerebellum. A regression analysis confirmed the association of enhanced grey matter volume in the right superior frontal gyrus (BA 10) with practice index of writing. In region-of-interest based regression analyses, we found associations of grey matter volume in the right Broca's analogue (BA 44) and right primary visual cortex (BA 17) with creativity ratings of the texts written during scanning, but not with a standardised verbal creativity test. Creative writing thus seems to be strongly connected to a prefronto-thalamic-cerebellar network that supports the continuous generation, organisation and revision of ideas that is necessary to write literary texts.

16.
Hum Brain Mapp ; 39(4): 1805-1813, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29322583

RESUMEN

Motor imagery (MI) is the mental simulation of action frequently used by professionals in different fields. However, with respect to performance, well-controlled functional imaging studies on MI training are sparse. We investigated changes in fMRI representation going along with performance changes of a finger sequence (error and velocity) after MI training in 48 healthy young volunteers. Before training, we tested the vividness of kinesthetic and visual imagery. During tests, participants were instructed to move or to imagine moving the fingers of the right hand in a specific order. During MI training, participants repeatedly imagined the sequence for 15 min. Imaging analysis was performed using a full-factorial design to assess brain changes due to imagery training. We also used regression analyses to identify those who profited from training (performance outcome and gain) with initial imagery scores (vividness) and fMRI activation magnitude during MI at pre-test (MIpre ). After training, error rate decreased and velocity increased. We combined both parameters into a common performance index. FMRI activation in the left inferior parietal lobe (IPL) was associated with MI and increased over time. In addition, fMRI activation in the right IPL during MIpre was associated with high initial kinesthetic vividness. High kinesthetic imagery vividness predicted a high performance after training. In contrast, occipital activation, associated with visual imagery strategies, showed a negative predictive value for performance. Our data echo the importance of high kinesthetic vividness for MI training outcome and consider IPL as a key area during MI and through MI training.


Asunto(s)
Imaginación/fisiología , Cinestesia/fisiología , Aprendizaje/fisiología , Destreza Motora/fisiología , Lóbulo Parietal/fisiología , Adulto , Mapeo Encefálico , Femenino , Dedos/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Lóbulo Parietal/diagnóstico por imagen
17.
Neuroimage ; 158: 196-204, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28669911

RESUMEN

Defensive behaviors in animals and humans vary dynamically with increasing proximity of a threat and depending upon the behavioral repertoire at hand. The current study investigated physiological and behavioral adjustments and associated brain activation when participants were exposed to dynamically approaching threat that was either inevitable or could be avoided by motor action. When the approaching threat was inevitable, attentive freezing was observed as indicated by fear bradycardia, startle potentiation, and a dynamic increase in activation of the anterior insula and the periaqueductal grey. In preparation for active avoidance a switch in defensive behavior was observed characterized by startle inhibition and heart rate acceleration along with potentiated activation of the amygdala and the periaqueductal grey. Importantly, the modulation of defensive behavior according to threat imminence and the behavioral option at hand was associated with activity changes in the ventromedial prefrontal cortex. These findings improve our understanding of brain mechanisms guiding human behavior during approaching threat depending on available resources.


Asunto(s)
Reacción de Prevención/fisiología , Encéfalo/fisiología , Miedo/fisiología , Mapeo Encefálico/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Adulto Joven
18.
Cerebellum ; 16(5-6): 945-950, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28612183

RESUMEN

Both histological and neuroimaging studies highlight the role of the cerebellum in multiple sclerosis (MS). There is at least some evidence for associations of cerebellar gray matter (GM) loss with motor and cognitive ability. We therefore correlated motor and cognitive ability scores (the multiple sclerosis functional composite MSFC) with regional cerebellar GM volumes. We used voxel-based morphometry (VBM) to assess the regional GM volume loss in a cohort of 45 MS patients. For the regression analysis, we used the clinical subscores of the multiple sclerosis functional composite (25-ft walk test (T25FW), nine-hole peg test (9HPT), paced auditory serial addition task (PASAT)). Decreased GM in distinct cerebellar areas was associated with different subscores of the MSFC in Larsell's lobule VI with the T25FW (t = 5.16), in lobule IX with the 9HPT (t = 3.95), and in lobule IX with the PASAT (t = 4.81). Regional volume decrease in distinct cerebellar areas involved in motor and cognitive domains were associated with clinical impairment in these fields. Our data confirm the relationship between cerebellar GM volume loss and disability, extending the knowledge in the functional neuroanatomical perspective.


Asunto(s)
Cerebelo/diagnóstico por imagen , Cognición , Sustancia Gris/diagnóstico por imagen , Trastornos del Movimiento/diagnóstico por imagen , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/fisiopatología , Adulto , Cerebelo/patología , Evaluación de la Discapacidad , Femenino , Estudios de Seguimiento , Sustancia Gris/patología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Destreza Motora , Trastornos del Movimiento/etiología , Trastornos del Movimiento/patología , Trastornos del Movimiento/fisiopatología , Esclerosis Múltiple/patología , Esclerosis Múltiple/psicología , Tamaño de los Órganos , Estudios Retrospectivos , Caminata
19.
Neuroimage ; 133: 477-483, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27034024

RESUMEN

In contrast to instrumental musicians, professional singers do not train on a specific instrument but perfect a motor system that has already been extensively trained during speech motor development. Previous functional imaging studies suggest that experience with singing is associated with enhanced somatosensory-based vocal motor control. However, experience-dependent structural plasticity in vocal musicians has rarely been studied. We investigated voxel-based morphometry (VBM) in 27 professional classical singers and compared gray matter volume in regions of the "singing-network" to an age-matched group of 28 healthy volunteers with no special singing experience. We found right hemispheric volume increases in professional singers in ventral primary somatosensory cortex (larynx S1) and adjacent rostral supramarginal gyrus (BA40), as well as in secondary somatosensory (S2) and primary auditory cortices (A1). Moreover, we found that earlier commencement with vocal training correlated with increased gray-matter volume in S1. However, in contrast to studies with instrumental musicians, this correlation only emerged in singers who began their formal training after the age of 14years, when speech motor development has reached its first plateau. Structural data thus confirm and extend previous functional reports suggesting a pivotal role of somatosensation in vocal motor control with increased experience in singing. Results furthermore indicate a sensitive period for developing additional vocal skills after speech motor coordination has matured.


Asunto(s)
Envejecimiento/patología , Corteza Auditiva/anatomía & histología , Sustancia Gris/anatomía & histología , Competencia Profesional , Canto , Corteza Somatosensorial/anatomía & histología , Adulto , Femenino , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Tamaño de los Órganos , Memoria Implícita , Análisis y Desempeño de Tareas , Adulto Joven
20.
Hum Brain Mapp ; 37(1): 262-72, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26467981

RESUMEN

Expert performance constitutes the endpoint of skill acquisition and is accompanied by widespread neuroplastic changes. To reveal common mechanisms of reorganization associated with long-term expertise in a cognitive domain (mental calculation, chess, language, memory, music without motor involvement), we used activation likelihood estimation meta-analysis and compared brain activation of experts to nonexperts. Twenty-six studies matched inclusion criteria, most of which reported an increase and not a decrease of activation foci in experts. Increased activation occurred in the left rolandic operculum (OP 4) and left primary auditory cortex and in bilateral premotor cortex in studies that used auditory stimulation. In studies with visual stimulation, experts showed enhanced activation in the right inferior parietal cortex (area PGp) and the right lingual gyrus. Experts' brain activation patterns seem to be characterized by enhanced or additional activity in domain-specific primary, association, and motor structures, confirming that learning is localized and very specialized.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Cognición/fisiología , Competencia Profesional , Algoritmos , Bases de Datos Factuales/estadística & datos numéricos , Femenino , Humanos , Funciones de Verosimilitud , Masculino , Neuroimagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA