Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Langmuir ; 39(40): 14441-14450, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37747810

RESUMEN

Sulfites can pollute the environment and pose a great risk to human health in daily life, so there is an urgent need to develop efficient and lightweight sulfite detection materials. In this study, metal-organic framework-5-NH2/urushiol/PVP nanofiber composite films were prepared by an electrospinning technique for the fluorescence detection of sulfites. The results showed that the composite film could resist sulfuric acid corrosion at a concentration of 80% and inactivate Escherichia coli and Staphylococcus aureus at a concentration of 99%, and its maximum tensile strength was increased from the initial 2.753 to 4.145 N. The composite film was sensitive and specific for the fluorescence detection of sulfite.

2.
Langmuir ; 39(30): 10601-10610, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37467429

RESUMEN

Although the photocatalytic reduction of Cr(VI) to Cr(III) by traditional powder photocatalysts is a promising method, the difficulty and poor recovery of photocatalysts from water hinder their wide practical applications. Herein, we present that FeC2O4/Bi2.15WO6 (FeC2O4/BWO) composites were tightly bonded to modified polyvinylidene fluoride (PVDF) membranes by chemical grafting with the aid of polyvinyl alcohol (PVA) to form photocatalytic composite membranes (PVDF@PVA-FeC2O4/BWO). The contact angle of PVDF@PVA-FeC2O4/BWO (0.06 wt % of FeC2O4/BWO) is 48.0°, which is much lower than that of the pure PVDF membrane (80.5°). Meanwhile, the permeate flux of 61.43 g m-2 h-1 and water flux of 250.60 L m-2 h-1 were observed for PVDF@PVA-FeC2O4/BWO composite membranes. The tensile strength of composite membranes reached 48.84 MPa, which was 9.8 times higher than that of PVDF membrane. It was found that the PVDF@PVA-FeC2O4/BWO membrane exhibited excellent photocatalytic Cr(VI) reduction performance under both simulated and real sunlight irradiation. The adsorption for Cr(VI) by PVDF@PVA-FeC2O4/BWO can reach 47.6% in the dark process within 30 min, and the removal percentage of Cr(VI) could reach 100% with a rate constant k value of 0.2651 min-1 after 10 min of light exposure, indicating a synergistic effect of adsorption and photoreduction for Cr(VI) removal by the composite membrane. The PVDF@PVA-FeC2O4/BWO membrane had good stability and reusability after seven consecutive cycles. Most importantly, the influences of foreign ions on Cr(VI) reduction were investigated to mimic real sewage, which revealed that no obvious adverse effects can be found with the presence of common foreign ions in sewage. The photocatalytic membrane material developed in this study provides a new idea for treating Cr(VI)-containing wastewater and has a more significant application prospect.

3.
Langmuir ; 39(41): 14638-14651, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37782834

RESUMEN

In harsh environments, it is crucial to design personal protective materials that possess both puncture/cut resistance and chemical resistance. In order to fulfill these requirements, this study introduces an innovative approach that combines hydrophobically modified rigid nanoparticles with thermoplastic polyurethane elastomers. These materials are then laminated with high-performance aramid fabrics through a scraping process, resulting in a multifunctional composite with puncture/cut resistance, superhydrophobicity, self-cleaning properties, and acid/alkali resistance. The quasi-static puncture tests conducted reveal the remarkable performance of the composite. The maximum spike puncture resistance reaches 267.62 N, which is 17.14 times higher than that of the pure fabric (15.61 N). Similarly, the maximum knife puncture resistance reaches 115.02 N, exhibiting a 5.01 times increase compared to that of the pure aramid fabric (22.97 N). Furthermore, the results obtained from the yarn pull-out, fabric burst strength, and tearing experiments demonstrate that the incorporation of rigid nanoparticles significantly enhances the friction between the yarns, enabling a greater number of yarns to participate in the dissipation of impact energy. As a result, the puncture resistance of the fabric is greatly improved. Significantly, the composite exhibits sustained superhydrophobicity even after exposure to harsh chemicals such as concentrated sulfuric acid and sodium hydroxide as well as undergoing cyclic mechanical wear. These findings highlight the composite's exceptional durability and resistance to corrosion. Overall, this study offers insights and methods for the development of multifunctional flexible puncture-resistant equipment for individuals.

4.
Environ Res ; 215(Pt 3): 114355, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36154855

RESUMEN

Removal of organic solvents and heavy metals in effluents is of great significance to environmental pollution control and ecological civilization construction. pH-responsive materials have unique advantages in treating complicated oily wastewater. In this work, an intelligent pH-responsive nonwoven fabric with excellent reversible wettability was prepared. The pH-sensitive polymer was synthesized by free radical polymerization (FRP) technique, then dipped with SiO2 on PP fabric. The particular molecular structure of poly (dimethylaminoethyl methacrylate) (PDMAEMA) enabled the fabric surface to switch wettability rapidly between hydrophilic/underwater oleophobic and oleophobic/hydrophobic under pH stimulus and exhibit controllable selective separation of various oil/water mixtures. Furthermore, the fabric removed Pb2+ efficiently under a wide pH range. The experimetal results showed that the separation flux reached 19,229 ± 1656.43 L-h-1-m-2 for water and 19,342 ± 1796.77 L-m-2-h-1 for n-hexane. Besides, the obtained fabric effectively realized the separation and collection process of complex ternary mixtures. The fabric removed Pb2+ in solutions with efficiency up to 90.83%. After immersing in acid and alkali solutions for 24 h, no significant damage to the surface wettability. This economical and intelligent fabric is able to meet the different separation purposes of industrial wastewaters with complex compositions.


Asunto(s)
Metales Pesados , Aguas Residuales , Álcalis , Concentración de Iones de Hidrógeno , Plomo , Metacrilatos , Polímeros , Dióxido de Silicio , Solventes , Aguas Residuales/química , Humectabilidad
5.
Environ Res ; 186: 109494, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32302872

RESUMEN

Inspired by fish scales, this study prepares a thermo-responsive underwater oleophobic PNIPAM/PAN/TiO2 nanofibrous membranes by traditional electrospinning technique using poly-N-isopropylacrylamide (PNIPAM) and polyacrylonitrile (PAN). Thermal properties, mechanical properties, surface chemical composition, wettability, photocatalysis, and oil/water separation of PNIPAM/PAN/TiO2 membrane are explored compared to pure PNIPAM membrane. Result reveals that PAN/TiO2 compounds make PNIPAM membrane with a smaller fiber diameter of 141 nm and high tensile stress of 7.4 MPa, and also decompose 98% of rhodamine B after UV light radiation. This bioinspired design structure endows the membrane with superhydrophilicity with a low water contact angle, and underwater superoleophobicity with a high oil contact angle of 157° (petroleum ether) and 151° (dichloromethane). This membrane can efficiency separate oil/water mixture with a high separation efficiency. Moreover, the resultant PNIPAM/PAN/TiO2 membrane has the bionic fish scale structure, and has wettability respond at lower critical solution temperature making the water flux decreased from 10013 ± 367 L m-2·h-1 to 7713 ± 324 L m-2·h-1, and thus has a potential to be used in purification of reclaimed water and separation of oil from water.


Asunto(s)
Nanofibras , Aceites , Resinas Acrílicas , Animales , Titanio
6.
Mol Pharm ; 16(2): 709-723, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30589552

RESUMEN

Poly[2-( tert-butylaminoethyl) methacrylate] (PTA), an important class of antimicrobial polymers, has demonstrated its great biocidal efficiency, favorable nontoxicity, and versatile applicability. To further enhance its antimicrobial efficiency, an optimization of the chemical structure of PTA polymers is performed via atom transfer radical polymerization (ATRP) in terms of the antimicrobial ability against Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus). After the optimization, the resulting PTA is blended into a polylactide (PLA) matrix to form PTA/PLA composite thin films. It is first found, that the antimicrobial efficiency of PTA/PLA composites was significantly enhanced by controlling the PLA crystallinity and the PLA spherulite size. A possible mechanistic route regarding this new finding has been rationally discussed. Lastly, the cytotoxicity and mechanical properties of a PTA/PLA composite thin film exhibiting the best biocidal effect are evaluated for assessing its potential as a new material for creating antimicrobial biomedical devices.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Nanocompuestos/química , Poliésteres/química , Polímeros/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
7.
Photochem Photobiol ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528682

RESUMEN

Combining photodynamic antimicrobials with nonwovens is prospective. However, common photosensitizers still have drawbacks such as poor photoactivity and the inability to charge. In this study, a photodynamic and high-efficiency antimicrobial protective material was prepared by grafting bis benzophenone-structured 4,4-terephthaloyl diphthalic anhydride (TDPA) photosensitizer, and antimicrobial agent chlorogenic acid (CA) onto spunbond-meltblown-spunbond (SMS) membranes. The charging rates for ·OH and H2O2 were 6377.89 and 913.52 µg/g/h. The light absorption transients structural storage remained above 69% for 1 month. High electrical capacity remained after seven cycles indicating its rechargeability and recyclability. The SMS/TDPA/CA membrane has excellent bactericidal performance when under illumination or lightless conditions, and the bactericidal efficiency of Escherichia coli and Staphylococcus aureus reached over 99%. The construction of self-disinfection textiles based on the photodynamic strategies proposed in this paper is constructive for expanding and promoting the application of textile materials in the medical field.

8.
Nanomaterials (Basel) ; 14(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786852

RESUMEN

In this study, a Ti3C2 MXene@g-C3N4 composite powder (TM-CN) was prepared by the ultrasonic self-assembly method and then loaded onto a carbon nanofiber membrane by the self-assembly properties of MXene for the treatment of organic pollutants in wastewater. The characterization of the TM-CN and the C-TM-CN was conducted via X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectrometer (FTIR) to ascertain the successful modification. The organic dye degradation experiments demonstrated that introducing an appropriate amount of Ti3C2 MXene resulted in the complete degradation of RhB within 60 min, three times the photocatalytic efficiency of a pure g-C3N4. The C-TM-CN exhibited the stable and outstanding photocatalytic degradation of the RhB solution over a wide range of pH values, indicating the characteristics of the photodegradation of organic pollutants in a wide range of aqueous environments. Furthermore, the results of the cyclic degradation experiments demonstrated that the C-TM-CN composite film maintained a degradation efficiency of over 85% after five cycles, thereby confirming a notable improvement in its cyclic stability. Consequently, the C-TM-CN composite film exhibits excellent photocatalytic performance and is readily recyclable, making it an auspicious eco-friendly material in water environment remediation.

9.
Polymers (Basel) ; 15(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36679173

RESUMEN

Laminated composites have been commonly applied to all fields. When made into laminated composites, Kevlar woven fabrics are able to provide the required functions. In this study, two types of TPU are incorporated to improve the intralayer features of Kevlar/TPU laminated composites. Hence, the Kevlar/TPU laminated composites consist of firmly bonded laminates while retaining flexibility of the fabrics. Being the interlayer of the laminated composites, the TPU layer provides adhesion while strengthening the tensile property, dynamic puncture resistance, and buffer strength of Kevlar/TPU laminated composites. The test results indicate that with a blending ratio of two types of TRU being 85/15 wt%, the Kevlar/TPU laminated composites exhibit a tensile strength of 18.08 MPa. When the stacking thickness is 1 mm, the tensile strength is improved to 357.73 N with the buffering strength reaching 4224.40 N. Notably, with a thickness being 1.2 mm, the laminated composites demonstrate a dynamic resistance being 672.15 N. In the meanwhile, functional Kevlar fabrics are allowed to keep the fiber morphology owing to the protection of TPU composite films. Considering the composition of protective gear, Kevlar/TPU laminated composites possess a powerful potential and are worthwhile exploring.

10.
Chemosphere ; 313: 137195, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36370767

RESUMEN

In this work, TiO2 nanofiber membrane (NFM) with a complete surface microstructure was prepared through regulating the surface microstructure of TiO2 NFM by doping Zr. The crystal structures and morphological analyses indicated that the nanofiber membranes were consisted by disordered accumulation of Zr-doped TiO2 nanofibers with a crack-free surface, small grain size and high aspect ratio. When the doping amount of Zr was 0.8 mL, the tensile strength of the doped membranes reached 1.27 MPa, which was 60.7% higher than that of pure TiO2 NFM. The photocatalytic performance of Zr-doped TiO2 NFM was evaluated by the degradation performance of Methylene orange (MO) under simulated sunlight irradiation. Compared with the undoped TiO2 NFM, the 0.8-Zr/TiO2 NFM presented a higher catalytic degradation efficiency (improved by 69.6%), and the photocatalytic performance maintained stable after five circulating. It was found that the doping of Zr ions effectively limited the surface crack size and grain size of TiO2 nanofibers, thereby improving the tensile strength, and enhanced the surface area effect and carrier transfer efficiency of TiO2 NFM. On the other hand, a narrow band-gap was obtained by doping a small amount of Zr ions, which expanded the visible light response range to improve the photocatalytic performance of TiO2 nanofibers.


Asunto(s)
Nanofibras , Nanofibras/química , Luz , Titanio/química
11.
J Funct Biomater ; 14(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37233358

RESUMEN

A significant amount of research has been conducted on applying functional materials as surgical sutures. Therefore, research on how to solve the shortcomings of surgical sutures through available materials has been given increasing attention. In this study, hydroxypropyl cellulose (HPC)/PVP/zinc acetate nanofibers were coated on absorbable collagen sutures using an electrostatic yarn winding technique. The metal disk of an electrostatic yarn spinning machine gathers nanofibers between two needles with positive and negative charges. By adjusting the positive and negative voltage, the liquid in the spinneret is stretched into fibers. The selected materials are toxicity free and have high biocompatibility. Test results indicate that the nanofiber membrane comprises evenly formed nanofibers despite the presence of zinc acetate. In addition, zinc acetate can effectively kill 99.9% of E. coli and S. aureus. Cell assay results indicate that HPC/PVP/Zn nanofiber membranes are not toxic; moreover, they improve cell adhesion, suggesting that the absorbable collagen surgical suture is profoundly wrapped in a nanofiber membrane that exerts antibacterial efficacy and reduces inflammation, thus providing a suitable environment for cell growth. The employment of electrostatic yarn wrapping technology is proven effective in providing surgical sutures with antibacterial efficacy and a more flexible range of functions.

12.
Int J Biol Macromol ; 243: 124956, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37245751

RESUMEN

Directional drug delivery and sufficient strength are two conditions that need to be met for wound dressing. In this paper, an oriented fibrous alginate membrane with sufficient strength was constructed via coaxial microfluidic spinning, and zeolitic imidazolate framework-8/ascorbic acid was used to realize drug delivery and antibacterial activity. The effects of the process parameters of the coaxial microfluidic spinning on the mechanical properties of the alginate membrane were discussed. In addition, it was found that the antimicrobial activity mechanism of zeolitic imidazolate framework-8 was attributed to the disruptive effect of reactive oxygen species (ROS) on bacteria, and the quantitative amount of generated ROS were evaluated by detecting •OH and H2O2. Furthermore, a mathematical drug diffusion model was established and showed high consistency with the experimental data (R2 = 0.99). This study provides a new idea for the preparation of dressing materials with high strength and directional drug delivery and also provides some guidance for the development of coaxial microfluidic spin technology to be used in functional materials for drug release.


Asunto(s)
Alginatos , Microfluídica , Liberación de Fármacos , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno , Antibacterianos/farmacología
13.
Artículo en Inglés | MEDLINE | ID: mdl-38050840

RESUMEN

The human body is in a complex environment affected by body heat, light, and sweat, requiring the development of a wearable multifunctional textile for human utilization. Meanwhile, the traditional thermoelectric yarn is limited by expensive and scarce inorganic thermoelectric materials, which restricts the development of thermoelectric textiles. Therefore, in this paper, photothermoelectric yarns (PPDA-PPy-PEDOT/CuI) using organic poly(3,4-ethylenedioxythiophene) (PEDOT) and inorganic thermoelectric material cuprous iodide (CuI) are used for the thermoelectric layer and poly(pyrrole) (PPy) for the light-absorbing layer. With the introduction of PPy, the temperature difference of the photothermoelectric yarn can be increased for a better voltage output. Subsequently synergizing the photothermoelectric effect with the hydrovoltaic effect to create higher electric potentials, a single wet photothermoelectric yarn obtained by preparation can be irradiated under an infrared lamp at a voltage of up to 0.47 V. Finally, the photothermoelectric yarn PPDA-PPy-PEDOT/CuI was assembled in a series and parallel to obtain a photothermoelectric yarn panel, which was able to output 41.19 mV under an infrared lamp, and the synergistic photothermoelectric and hydrovoltaic effects of the photothermoelectric panel were tested outdoors on human body, and we found that the voltage was able to reach approximately 0.16 V under sunlight. Therefore, the voltage values obtained from the photothermoelectric yarns in this study are competitive and provide a new research idea for the study of photothermoelectric yarns.

14.
Polymers (Basel) ; 15(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36850236

RESUMEN

In this study, nonwoven fabrics, rigid polyurethane foam (RPUF), Basalt woven fabrics, and an aluminum foil film mold are used to produce multi-functional composite sheets with flame-retardant, sound-absorbing, and electromagnetic-shielding functions. The nonwoven layer is composed of Nomex fibers, flame-retardant PET fibers, and low-melting-point (LMPET) fibers via the needle rolling process. The optimal Nomex fiber/flame-retardant PET fiber/LMPET fiber (N/F/L) nonwoven fabrics are then combined with rigid polyurethane (PU) foam, Basalt woven fabric, and an aluminum foil film mold, thereby producing nonwoven/rigid polyurethane foam/Basalt woven fabric composite sheets that are wrapped in the aluminized foil film. The test results indicate that formed with a foaming density of 60 kg/m3 and 10 wt% of a flame retardant, the composite sheets exhibit electromagnetic interference shielding efficacy (EMI SE) that exceeds 40 dB and limiting oxygen index (LOI) that is greater than 26. The efficient and highly reproducible experimental design proposed in this study can produce multifunctional composite sheets that feature excellent combustion resistance, sound absorption, and EMI SE and are suitable for use in the transportation, industrial factories, and building wall fields.

15.
Polymers (Basel) ; 15(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36679303

RESUMEN

This study proposes the composites with a sandwich structure that is primarily made by the multi-step foaming process. The staple material is polyurethane (PU) foam that is combined with carbon fibers, followed by a Kevlar woven fabric. The composites are evaluated in terms of puncture resistance, buffer absorption, and electromagnetic wave shielding effectiveness (EMSE). The manufacturing process provides the composites with a stabilized structure efficiently. Serving the interlayer, a Kevlar woven fabric are sealed between a top and a bottom layer consisting of both PU foam and an aluminum film in order, thereby forming five-layered composites. Namely, the upper and lower surfaces of the five-layered sandwiches are aluminum films which is laminated on a purpose for the EMSE reinforcement. The test results indicate that the PU foam composites are well bonded and thus acquire multiple functions from the constituent materials, including buffer absorption, puncture resistance, and EMSE. There is much prospect that the PU foam composites can be used as a protective material in diverse fields owing to a flexible range of functions.

16.
Membranes (Basel) ; 13(8)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37623764

RESUMEN

Medical product contamination has become a threatening issue against human health, which is the main reason why protective nonwoven fabrics have gained considerable attention. In the present, there is a soaring number of studies on establishing protection systems with nonwoven composites via needle punch. Meanwhile, the disadvantages of composites, such as poor mechanical performance and texture, impose restrictions. Hence, in this study, an eco-friendly method composed of needling, hot pressing, and lamination is applied to produce water-resistant, windproof, and antimicrobial Tencel/low-melting-point polyester-thermoplastic polyurethane/Triclosan (Tencel/LMPET-TPU/TCL) laminated membranes. Field-emission scanning electron microscope (SEM) images and FTIR show needle-punched Tencel/LMPET membranes successfully coated with TPU/TCL laminated membranes, thereby extensively improving nonwoven membranes in terms of water-resistant, windproof, and antimicrobial attributes. Parameters including needle punch depth, content of LMPET fibers, and concentration of TCL are changed during the production. Specifically, Tencel/LMPET-TPU/TCL-0.1 laminated nonwovens acquire good water resistance (100 kPa), outstanding windproof performance (<0.1 cm3/cm2/s), and good antimicrobial ability against Escherichia coli and Staphylococcus aureus. Made with a green production process that is pollution-free, the proposed products are windproof, water resistant, and antimicrobial, which ensures promising uses in the medical and protective textile fields.

17.
J Hazard Mater ; 443(Pt A): 130193, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36265385

RESUMEN

Rapid and effective removal of highly viscous oil spills from the sea remains a great challenge globally. Superhydrophobic materials are attractive candidates for handling oil spills, but they are restrained to recover oils with low viscosity exclusively. Herein, we report a novel polypyrrole wrapped superhydrophobic fibrous network using cross-shaped polyester fibers as starting blocks. The polypyrrole coating enables the absorbent to convert light to heat, ensuring that the viscosity of heavy oils in the proximity can be easily controlled. In the meanwhile, the special structure of the starting fibers initiates Concus Finn (CFin) capillary allowing instant oil transport in the network. When the absorbent is exposed to light oils (0-500 mPa.s), the oils can be transported instantly via CFin capillary. Interestingly, under synergistic effect of light-to-heat conversion and CFin capillary, a drawing-sticking crude oil strip (105 mPa.s) is sucked instantly against gravity by the absorbent. The absorbent is successfully applied to efficiently separate both oil/water mixtures and oil/water emulsions (efficiency > 99%). Such absorbent can absorb 62.99-74.23 g/g light oils on average and up to 123.3 g/g crude oil under 0-2 sun illumination, holding a huge potential in managing oil spills.


Asunto(s)
Petróleo , Petróleo/análisis , Polímeros , Viscosidad , Interacciones Hidrofóbicas e Hidrofílicas , Pirroles , Aceites/química
18.
Int J Biol Macromol ; 253(Pt 3): 126737, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37689298

RESUMEN

This study designed a novel co-electrospun cellulose acetate (CA)/thermoplastic polyurethane (TPU) photodynamic helical fiber antibacterial membrane as a potential environmentally friendly medical protective material. A central combined design method (CCD) based on response surface methodology (RSM) was used to analyze essential variables' influence. The optimized parameters for CCD were TPU (wt%) 11.68 %, CA (wt%) 13.89 %, DMAc/ACE volume ratio 0.147, LiCl (wt%) 1.39 %, and voltage (kV) 14.43 V. Pitch and pitch diameter were the response process as the critical output variable. The membranes were characterized by SEM, TG, FT-IR, and molecular structure analysis. The results showed that the photodynamic helical fiber antimicrobial membrane exhibited synergistic effects of the antibacterial photodynamic therapy (APDT) and antimicrobial agent under average daylight irradiation. The release rate of -OH was 98.22 %, and H2O2 was 88.36 % under the action of 20 min of light. The bactericidal rates of S. aureus and E. coli reached 99.9 % and 99.7 %, respectively. The fiber helical structure can increase the light absorption rate, thus increasing the release rate and amount of reactive oxygen species (ROS) species, increasing the antibacterial rate. After washing five times, the antibacterial membrane has excellent antibacterial performance and a dark antibacterial effect.


Asunto(s)
Escherichia coli , Poliuretanos , Poliuretanos/farmacología , Poliuretanos/química , Staphylococcus aureus , Espectroscopía Infrarroja por Transformada de Fourier , Biomimética , Peróxido de Hidrógeno/farmacología , Antibacterianos/farmacología , Antibacterianos/química
19.
J Hazard Mater ; 454: 131474, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116327

RESUMEN

Discarded oil-containing absorbents, which has been used in handling oil spills, are tricky to deal with and have rose global environmental concerns regarding release of microplastics. Herein, we developed a facile strategy to fabricate sustainable absorbents by a gas-inflating method, through which 2D electrospinning polycaprolactone nanofiber membranes were directly inflated into highly porous 3D nanofiber/sheet aerogels with layered long fiber structure. The membranes were inflated rapidly from a baseline porosity of 81.98% into 97.36-99.42% in 10-60 min. The obtained aerogels were further wrapped with -CH3 ended siloxane structures using CH3SiCl3. This hydrophobic absorbent (CA ≈ 145°) could rapidly trap oils from water with sorption range of 25.60-42.13 g/g and be recycled by simple squeeze due to its mechanical robustness. As-prepared aerogels also showed high separation efficiency to separate oils from both oil/water mixtures and oil-in-water emulsions (>96.4%). Interestingly, the oil-loaded absorbent after cleaning with absolute ethanol could be re-dissolved in selected solvents and promptly reconstituted by re-electrospinning and gas-inflation. The reconstituted aerogels were used as fire-new oil absorbents for repeated life cycles. The novel design, low cost and sustainability of the absorbent provides an efficient and environmentally-friendly solution for handling oil spills.

20.
Polymers (Basel) ; 15(10)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37242880

RESUMEN

Melt-blown nonwoven fabrics for filtration are usually manufactured using polypropylene, but after a certain time period the middle layer of the mask may have a reduced effect on adsorbing particles and may not be easily stored. Adding electret materials not only increases storage time, but also shows in this study that the addition of electret can improve filtration efficiency. Therefore, this experiment uses a melt-blown method to prepare a nonwoven layer, and adds MMT, CNT, and TiO2 electret materials to it for experiments. Polypropylene (PP) chip, montmorillonite (MMT) and titanium dioxide (TiO2) powders, and carbon nanotube (CNT) are blended and made into compound masterbatch pellets using a single-screw extruder. The resulting compound pellets thus contain different combinations of PP, MMT, TiO2, and CNT. Next, a hot pressor is used to make the compound chips into a high-poly film, which is then measured with differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The optimal parameters are yielded and employed to form the PP/MMT/TiO2 nonwoven fabrics and PP/MMT/CNT nonwoven fabrics. The basis weight, thickness, diameter, pore size, fiber covering ratio, air permeability, and tensile property of different nonwoven fabrics are evaluated in order to have the optimal group of PP-based melt-blown nonwoven fabrics. According to the results of DSC and FTIR measurements, PP and MMT, CNT, and TiO2 are completely mixed, and the melting temperature (Tm), crystallization temperature (Tc) and endotherm area are changed accordingly. The difference in enthalpy of melting changes the crystallization of PP pellets, which in turn changes the fibers. Moreover, the Fourier transform infrared (FTIR) spectroscopy results substantiate that PP pellets are well blended with CNT and MMT, according to the comparisons of characteristic peaks. Finally, the scanning electron microscopy (SEM) observation suggests that with a spinning die temperature of 240 °C and a spinning die pressure lower than 0.01 MPa, the compound pellets can be successfully formed into melt-blown nonwoven fabrics with a 10-micrometer diameter. The proposed melt-blown nonwoven fabrics can be processed with electret to form long-lasting electret melt-blown nonwoven filters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA