Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 38(46): 14249-14260, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36368024

RESUMEN

An efficient superhydrophobic concentrator is developed using a hierarchical superhydrophobic surface on which the evaporation of a sessile droplet (6 µL) drives the nonvolatile elements it contains on a predefined micrometric analytical surface (pedestal of 80 µm diameter). This hierarchical silicon surface exhibits a surface texture made of etched nanopillars and consists of micropillars and guiding lines, arranged in radial symmetry around the central pedestal. The guiding lines ensure the overall convergence of the sessile droplet toward the central pedestal during evaporation. The nanopillar texturing induced a delay in the Cassie-Baxter to Wenzel regime transition, until the edge of the droplet reaches the periphery of the pedestal. Experiments performed with polymer microparticles suspended in ultrapure water or with DNA molecules solubilized in ultrapure water at sub-fM concentrations demonstrated that the totality of the nonvolatile elements in the liquid microvolume is delivered on or close to the pedestal area, in a very reproducible manner. The very high concentration capacity of the device enabled the discrimination of the degree of purity of ultrapure water samples from different origins. The concentrator also turned out to be functional for raw water samples, opening possible applications to environmental analysis.


Asunto(s)
Silicio , Agua , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie , Silicio/química , Polímeros/química
2.
J Geophys Res Space Phys ; 126(9): e2021JA029469, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35846729

RESUMEN

The dynamics of the Jovian magnetosphere are controlled by the interplay of the planet's fast rotation, its main iogenic plasma source and its interaction with the solar wind. Magnetosphere-Ionosphere-Thermosphere (MIT) coupling processes controlling this interplay are significantly different from their Earth and Saturn counterparts. At the ionospheric level, they can be characterized by a set of key parameters: ionospheric conductances, electric currents and fields, exchanges of particles along field lines, Joule heating and particle energy deposition. From these parameters, one can determine (a) how magnetospheric currents close into the ionosphere, and (b) the net deposition/extraction of energy into/out of the upper atmosphere associated to MIT coupling. We present a new method combining Juno multi-instrument data (MAG, JADE, JEDI, UVS, JIRAM and Waves) and modeling tools to estimate these key parameters along Juno's trajectories. We first apply this method to two southern hemisphere main auroral oval crossings to illustrate how the coupling parameters are derived. We then present a preliminary statistical analysis of the morphology and amplitudes of these key parameters for eight among the first nine southern perijoves. We aim to extend our method to more Juno orbits to progressively build a comprehensive view of Jovian MIT coupling at the level of the main auroral oval.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA