Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37958525

RESUMEN

Radiolabeled neurotensin analogs have been developed as candidates for theranostic use against neurotensin subtype 1 receptor (NTS1R)-expressing cancer. However, their fast degradation by two major peptidases, neprilysin (NEP) and angiotensin-converting enzyme (ACE), has hitherto limited clinical success. We have recently shown that palmitoylation at the ε-amine of Lys7 in [99mTc]Tc-[Lys7]DT1 (DT1, N4-Gly-Arg-Arg-Pro-Tyr-Ile-Leu-OH, N4 = 6-(carboxy)-1,4,8,11-tetraazaundecane) led to the fully stabilized [99mTc]Tc-DT9 analog, displaying high uptake in human pancreatic cancer AsPC-1 xenografts but unfavorable pharmacokinetics in mice. Aiming to improve the in vivo stability of [99mTc]Tc-DT1 without compromising pharmacokinetics, we now introduce three new [99mTc]Tc-DT1 mimics, carrying different pendant groups at the ε-amine of Lys7: MPBA (4-(4-methylphenyl)butyric acid)-[99mTc]Tc-DT10; MPBA via a PEG4-linker-[99mTc]Tc-DT11; or a hydrophilic PEG6 chain-[99mTc]Tc-DT12. The impact of these modifications on receptor affinity and internalization was studied in NTS1R-positive cells. The effects on stability and AsPC-1 tumor uptake were assessed in mice without or during NEP/ACE inhibition. Unlike [99mTc]Tc-DT10, the longer-chain modified [99mTc]Tc-DT11 and [99mTc]Tc-DT12 were significantly stabilized in vivo, resulting in markedly improved tumor uptake compared to [99mTc]Tc-DT1. [99mTc]Tc-DT11 was found to achieve the highest AsPC-1 tumor values and good pharmacokinetics, either without or during NEP inhibition, qualifying for further validation in patients with NTS1R-positive tumors using SPECT/CT.


Asunto(s)
Neurotensina , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Receptores de Neurotensina , Aminas
2.
Molecules ; 26(16)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34443384

RESUMEN

Sentinel lymph node detection (SLND) is rapidly entering common practice in the management of patients with tumors. The introduction of mannose molecules to 99mTc-labeled dextrans, so far, showed that the sentinel node could trap these agents due to their recognition by the mannose receptors of lymph node macrophages. The current study aimed to synthesize, characterize, and biologically evaluate a series of mannosylated dextran derivatives labeled with 99mTc for potential use in SLND. The compounds were designed to have a dextran with a molecular weight of 10-500 kDa as a backbone, S-derivatized cysteines, efficient SNO chelators, and mannose moieties for binding to mannose receptors. They were successfully synthesized, thoroughly characterized using NMR techniques, and labeled with the fac-[99mTc(CO)3]+ synthon. Labeling with high yields and radiochemical purities was achieved with all derivatives. In vivo biodistribution and imaging studies demonstrated high uptake in the first lymph node and low uptakes in the following node and confirmed the ability to visualize the SLN. Among the compounds studied, 99mTc-D75CM demonstrated the most attractive biological features, and in combination with the high radiochemical yield and stability of the compound, its further evaluation as a new radiopharmaceutical for sentinel lymph node detection was justified.


Asunto(s)
Dextranos/química , Manosa/química , Ganglio Linfático Centinela/patología , Tecnecio/química , Animales , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Dextranos/síntesis química , Imagenología Tridimensional , Inyecciones Intravenosas , Masculino , Manosa/síntesis química , Ratones , Peso Molecular , Radiactividad , Radiofármacos/química , Distribución Tisular
3.
Mol Pharm ; 17(8): 3116-3128, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32568549

RESUMEN

Radiolabeled gastrin analogues have been proposed for theranostics of cholecystokinin subtype 2 receptor (CCK2R)-positive cancer. Peptide radioligands based on other receptor antagonists have displayed superior pharmacokinetics and higher biosafety than agonists. Here, we present DGA1, a derivative of the nonpeptidic CCK2R antagonist Z-360 carrying an acyclic tetraamine, for [99mTc]Tc labeling. Preclinical comparison of [99mTc]Tc-DGA1 with [99mTc]Tc-DG2 (CCK2R-agonist reference) was conducted in HEK293-CCK2R/CCK2i4svR cells and mice models, qualifying [99mTc]Tc-DGA1 for further study in patients with CCK2R-positive tumors and single-photon emission computed tomography/CT.


Asunto(s)
Benzodiazepinonas/metabolismo , Benzodiazepinonas/farmacología , Colecistoquinina/antagonistas & inhibidores , Neoplasias/diagnóstico , Neoplasias/metabolismo , Fragmentos de Péptidos/antagonistas & inhibidores , Péptidos/metabolismo , Radiofármacos/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Gastrinas/metabolismo , Células HEK293 , Humanos , Marcaje Isotópico/métodos , Masculino , Ratones , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único/métodos
4.
Hell J Nucl Med ; 20(2): 146-153, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28697192

RESUMEN

OBJECTIVE: To present a prototype tri-modal imaging system, consisting of a single photon emission computed tomography (SPET), a positron emission tomography (PET), and a computed tomography (CT) subsystem, evaluated in planar mode. MATERIALS AND METHODS: The subsystems are mounted on a rotating gantry, so as to be able to allow tomographic imaging in the future. The system, designed and constructed by our group, allows whole body mouse imaging of competent performance and is currently, to the best of our knowledge, unequaled in a national and regional level. The SPET camera is based on two Position Sensitive Photomultiplier Tubes (PSPMT), coupled to a pixilated Sodium Iodide activated with Thallium (NaI(Tl)) scintillator, having an active area of 5x10cm2. The dual head PET camera is also based on two pairs of PSPMT, coupled to pixelated berillium germanium oxide (BGO) scintillators, having an active area of 5x10cm2. The X-rays system consists of a micro focus X-rays tube and a complementary metal-oxide-semiconductor (CMOS) detector, having an active area of 12x12cm2. RESULTS: The scintigraphic mode has a spatial resolution of 1.88mm full width at half maximum (FWHM) and a sensitivity of 107.5cpm/0.037MBq at the collimator surface. The coincidence PET mode has an average spatial resolution of 3.5mm (FWHM) and a peak sensitivity of 29.9cpm/0.037MBq. The X-rays spatial resolution is 3.5lp/mm and the contrast discrimination function value is lower than 2%. CONCLUSION: A compact tri-modal system was successfully built and evaluated for planar mode operation. The system has an efficient performance, allowing accurate and informative anatomical and functional imaging, as well as semi-quantitative results. Compared to other available systems, it provides a moderate but comparable performance, at a fraction of the cost and complexity. It is fully open, scalable and its main purpose is to support groups on a national and regional level and provide an open technological platform to study different detector components and acquisition strategies.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones/instrumentación , Tomografía Computarizada por Tomografía de Emisión de Positrones/veterinaria , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/instrumentación , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/veterinaria , Imagen de Cuerpo Entero/instrumentación , Imagen de Cuerpo Entero/veterinaria , Animales , Diseño de Equipo , Análisis de Falla de Equipo , Aumento de la Imagen/instrumentación , Aumento de la Imagen/métodos , Ratones , Fantasmas de Imagen , Proyectos Piloto , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
5.
Pharm Dev Technol ; 19(2): 189-93, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23369008

RESUMEN

The application of combined diagnosis and therapy through nanotechnology applications is attracting increasing attention worldwide. Polymeric self-assembled nanoparticles (NPs) have been studied for this purpose. Micelles and vesicles with or without a magnetic core can efficiently carry diagnostic and/or therapeutic agents to a desired target. The biological behavior of these NPs has been evaluated in this study, after radiolabeling with (99m)Tc. In vitro stability, in media that mimic the environment of the living body, was better for vesicles than for micelles at 1 h and decreased for both as time passed. After administration to healthy animals, all NPs presented major uptake at liver and spleen as expected. Biodistribution and imaging studies confirmed the higher uptake in these organs for the hybrid NPs and at higher extent for the ones with larger size, indicating that the magnetic load and size play an important role on in vivo distribution.


Asunto(s)
Micelas , Nanopartículas/análisis , Polímeros/farmacocinética , Animales , Femenino , Ratones , Polímeros/análisis , Tecnecio/análisis , Distribución Tisular
6.
Diagnostics (Basel) ; 14(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38396441

RESUMEN

Translational perspective: Ischemic heart disease remains a major medical problem with high mortality rates. Beside the great efforts devoted to research worldwide and the use of numerous experimental models, an absolute understanding of myocardial infarction and tissue loss has not yet been achieved. Furthermore, the regeneration of myocardial tissue and the improvement of myocardial activity after ischemia is one of the major areas of interest in the medical (and especially cardiovascular) community. In a novel experimental rat model, the beneficial effect of mesenchymal stem cell transplantation (MSCT) in a surgically induced ischemic myocardium was documented. From a clinical perspective, this work supports the surgical administration of MSCT in the infarcted area during coronary artery bypass surgery. AIMS: The regeneration of myocardial tissue and the improvement of myocardial activity after ischemia is one of the major areas of interest in cardiovascular research. We developed a novel experimental rat model and used it to examine the effect of mesenchymal stem cell transplantation (MSCT) on myocardial ischemia evaluated by SPECT-CT and immunohistochemistry. METHODS AND RESULTS: An open thoracotomy took place for forty adult female Wistar rats with (n = 30) or without (n = 10) surgical ligation of the left anterior descending coronary artery (LAD) in order to cause myocardial ischemia. Myocardial viability was evaluated via SPECT/CT 7 days before surgery, as well as at 7 and 14 days post-surgery. At day 0, 15 animals received homologous stem cells injected at the ischemic myocardium area. A SPECT/CT evaluation showed decreased activity of the myocardial cells in the left ventricle one week post-infarction. Regeneration of the ischemic myocardium fifteen days post-infarction was recorded only in animals subjected to stem cell transplantation. These findings were also confirmed by histology and immunohistochemical analysis, with the significantly higher expression of GATA4 and Nkx2.5. CONCLUSIONS: The positive effect of mesenchymal stem cell transplantation in the ischemic myocardium was recorded. The application of SPECT-CT allowed a clear evaluation of both the quality and quantity of the living myocardium post-infarction, leading to a new approach in the research of cardiovascular diseases. From a clinical perspective, MSCT may be beneficial when accompanied by myocardial revascularization procedures.

7.
World J Urol ; 31(3): 597-602, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23143734

RESUMEN

PURPOSE: To evaluate the effect of vardenafil on renal function after renal ischemia-reperfusion (IR) injury (IRI) in a rat model. MATERIALS AND METHODS: Seventy-one Wistar rats were divided into 7 groups including (1) a vehicle-treated group, (2) a vehicle pretreated-IR group, (3-6) vardenafil pretreated-IR groups in doses of 0.02, 0.2, 2 and 20 µg/kg, respectively, (7) a group of IR followed by treatment with 2 µg/kg of vardenafil. Vardenafil or vehicle solution was administered one hour before unilateral nephrectomy and the induction of 45 min of ischemia on the contralateral kidney by clamping of renal pedicle. Four hours of reperfusion were allowed after renal ischemia. Studied parameters were serum creatinine, fractional excretion of sodium (FENa), and histological evaluation of renal specimens. In addition, renal tissue cGMP levels, ERK1/2 phosphorylation as well as renal function by renal scintigraphy were also evaluated. RESULTS: Administration of vardenafil before the induction of ischemia resulted in a significant reduction in creatinine and FENa levels as well as in less histological lesions observed in treated kidneys in comparison with the vehicle-treated group. The underlying mechanism of cytoprotection was cGMP depended and involved the phosphorylation of ERK proteins. Renal scintigraphy confirmed that PDE5 inhibition attenuates renal IRI. CONCLUSIONS: Vardenafil attenuates renal IRI. Based on similar results from relevant studies on other PDE-5 inhibitors in renal and cardiac IRI, it can be assumed that all PDE-5 inhibitors share a common mechanism of cytoprotection.


Asunto(s)
Imidazoles/uso terapéutico , Precondicionamiento Isquémico/métodos , Riñón/irrigación sanguínea , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Piperazinas/uso terapéutico , Daño por Reperfusión/prevención & control , Animales , GMP Cíclico/fisiología , Imidazoles/farmacología , Riñón/fisiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Modelos Animales , Inhibidores de Fosfodiesterasa 5/farmacología , Piperazinas/farmacología , Ratas , Ratas Wistar , Daño por Reperfusión/fisiopatología , Sulfonas/farmacología , Sulfonas/uso terapéutico , Factores de Tiempo , Resultado del Tratamiento , Triazinas/farmacología , Triazinas/uso terapéutico , Diclorhidrato de Vardenafil
8.
Bioorg Med Chem ; 21(21): 6699-707, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24035515

RESUMEN

Bombesin is a neuropeptide widely studied due to its ability to target various types of cancers. Technetium-99m on the other hand is ideal for diagnostic tumor targeting. The aim of the present study is the investigation of the coupling of the ligand (S)-(2-(2'-pyridyl)ethyl)-d,l-cysteine with the BN-peptide Gln-Arg-Leu-Gly-Asn-Gln-Trp-Ala-Val-Gly-His-Leu-Met(CONH2) through the spacer aminohexanoic acidand the labeling of the resulting derivative MBN with the synthon [M(CO)3(H2O)3](+) (M=(99m)Tc, Re). The peptide was synthesized according to the SPPS method, purified and characterized by ESI-MS. The new (99m)Tc-labeled biomolecule was stable in vitro, showed high affinity for the human GRP receptor expressed in PC3 cells and the rate of internalization was found to be time-dependent tissue distribution of the radiopeptide was evaluated in normal mice and in prostate cancer experimental models and significant radioactivity uptake was observed in the pancreas of normal mice as well as in PC3 tumors. Dynamic studies of the radiopeptide showed satisfactory tumor images.


Asunto(s)
Bombesina/análogos & derivados , Cisteína/química , Radiofármacos/química , Secuencia de Aminoácidos , Ácido Aminocaproico/química , Animales , Bombesina/metabolismo , Línea Celular Tumoral , Humanos , Ratones , Ratones SCID , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Compuestos de Organotecnecio/química , Péptidos/síntesis química , Péptidos/química , Péptidos/metabolismo , Radiofármacos/metabolismo , Receptores de Bombesina/genética , Receptores de Bombesina/metabolismo , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único
9.
In Vivo ; 37(2): 649-654, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36881049

RESUMEN

BACKGROUND/AIM: Myocardial infarction, an acute medical situation with a high mortality rate worldwide, has been extensively studied in modern cardiovascular research, using different experimental models. However, a deep understanding of myocardial activity loss has not been fully investigated. We have developed a novel experimental rat model for noninvasive assessment of myocardial ischemia based on single photon emission computed tomography (SPECT/CT), in order to further understand and evaluate myocardial activity before and after surgical induction of myocardial ischemia. MATERIALS AND METHODS: Thirty adult female Wistar rats underwent open thoracotomy with (n=20) or without (n=10) surgical ligation of the left anterior descending coronary artery (LAD). The myocardial ischemia was confirmed with ECG and myocardial viability was evaluated via SPECT/CT at 7 days before as well as at 7 and 14 days post-surgery, after which animals were sacrificed and myocardial ischemic injury was further assessed histologically. RESULTS: All animals were evaluated with anatomical and functional criteria based on the SPECT/CT imaging results. A successful surgical technique causing ischemia and loss of myocardial function in all animals undergoing a LAD ligation was established. Furthermore, evaluation of the viable myocardium with SPECT/CT confirmed the reduction of functional myocardial cells of the left ventricle post-infarction, which was also documented histologically. CONCLUSION: Using our technique, the validity of this animal model to induce and evaluate myocardial ischemia was demonstrated. Our choice to apply SPECT-CT qualitative and quantitative evaluation of myocardial function leads to a new approach in experimentation with an anticipated significant impact in the ongoing cardiovascular laboratory research.


Asunto(s)
Enfermedad de la Arteria Coronaria , Isquemia Miocárdica , Femenino , Ratas , Animales , Ratas Wistar , Isquemia Miocárdica/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único , Miocardio
10.
Cancers (Basel) ; 15(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37568820

RESUMEN

Receptor activator of nuclear factor-κB ligand (RANKL) is critically involved in mammary gland pathophysiology, while its pharmaceutical inhibition is being currently investigated in breast cancer. Herein, we investigated whether the overexpression of human RANKL in transgenic mice affects hormone-induced mammary carcinogenesis, and evaluated the efficacy of anti-RANKL treatments, such as OPG-Fc targeting both human and mouse RANKL or Denosumab against human RANKL. We established novel MPA/DMBA-driven mammary carcinogenesis models in TgRANKL mice that express both human and mouse RANKL, as well as in humanized humTgRANKL mice expressing only human RANKL, and compared them to MPA/DMBA-treated wild-type (WT) mice. Our results show that TgRANKL and WT mice have similar levels of susceptibility to mammary carcinogenesis, while OPG-Fc treatment restored mammary ductal density, and prevented ductal branching and the formation of neoplastic foci in both genotypes. humTgRANKL mice also developed MPA/DMBA-induced tumors with similar incidence and burden to those of WT and TgRANKL mice. The prophylactic treatment of humTgRANKL mice with Denosumab significantly prevented the rate of appearance of mammary tumors from 86.7% to 15.4% and the early stages of carcinogenesis, whereas therapeutic treatment did not lead to any significant attenuation of tumor incidence or tumor burden compared to control mice, suggesting the importance of RANKL primarily in the initial stages of tumorigenesis. Overall, we provide unique genetic tools for investigating the involvement of RANKL in breast carcinogenesis, and allow the preclinical evaluation of novel therapeutics that target hormone-related breast cancers.

11.
Pharmaceutics ; 15(3)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36986637

RESUMEN

Aiming to expand the application of the SST2R-antagonist LM4 (DPhe-c[DCys-4Pal-DAph(Cbm)-Lys-Thr-Cys]-DTyr-NH2) beyond [68Ga]Ga-DATA5m-LM4 PET/CT (DATA5m, (6-pentanoic acid)-6-(amino)methy-1,4-diazepinetriacetate), we now introduce AAZTA5-LM4 (AAZTA5, 1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)]amino-6-[pentanoic-acid]perhydro-1,4-diazepine), allowing for the convenient coordination of trivalent radiometals of clinical interest, such as In-111 (for SPECT/CT) or Lu-177 (for radionuclide therapy). After labeling, the preclinical profiles of [111In]In-AAZTA5-LM4 and [177Lu]Lu-AAZTA5-LM4 were compared in HEK293-SST2R cells and double HEK293-SST2R/wtHEK293 tumor-bearing mice using [111In]In-DOTA-LM3 and [177Lu]Lu-DOTA-LM3 as references. The biodistribution of [177Lu]Lu-AAZTA5-LM4 was additionally studied for the first time in a NET patient. Both [111In]In-AAZTA5-LM4 and [177Lu]Lu-AAZTA5-LM4 displayed high and selective targeting of the HEK293-SST2R tumors in mice and fast background clearance via the kidneys and the urinary system. This pattern was reproduced for [177Lu]Lu-AAZTA5-LM4 in the patient according to SPECT/CT results in a monitoring time span of 4-72 h pi. In view of the above, we may conclude that [177Lu]Lu-AAZTA5-LM4 shows promise as a therapeutic radiopharmaceutical candidate for SST2R-expressing human NETs, based on previous [68Ga]Ga-DATA5m-LM4 PET/CT, but further studies are needed to fully assess its clinical value. Furthermore, [111In]In-AAZTA5-LM4 SPECT/CT may represent a legitimate alternative diagnostic option in cases where PET/CT is not available.

12.
Am J Nephrol ; 36(3): 278-86, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22965158

RESUMEN

BACKGROUND/AIMS: Parstatin is a 41-mer peptide formed by proteolytic cleavage on activation of the protease-activated receptor 1. Parstatin was recently found to be cardioprotective against myocardial ischemia/reperfusion (IR) injury. In the present study, it was hypothesized that parstatin would protect the kidneys in acute renal failure. METHODS: We investigated the effects of parstatin on the renal dysfunction and injury caused either by renal IR injury or contrast-induced nephropathy (CIN) in two animal models. Renal IR injury was induced in rats by bilateral occlusion of renal arteries and veins for 45 min followed by 4 h of reperfusion, while CIN was induced in rabbits by intravenous injection of the radiocontrast medium Iopromide. RESULTS: Treatment with parstatin 15 min before or immediately after renal ischemia attenuated the resulting renal dysfunction as demonstrated by the improved biochemical indicators (serum creatinine and fractional excretion of Na(+)) and scintigraphic analysis. The effect was dose depended and provided evidence for a more prominent protection of tubular than glomerulal function. Histopathological examination of the kidneys revealed severe renal damage, which was significantly suppressed by the parstatin. Similarly, administration of a single dose of parstatin before the induction of CIN significantly protected against the resulting renal dysfunction and histologically evidenced renal tubular injury. CONCLUSION: These results suggest that parstatin is able to act as nephroprotective agent and may be useful in enhancing the tolerance of the kidney against renal injury associated with clinical conditions of acute renal failure. Further investigation on the mechanism underlying the nephroprotective properties of parstatin is deemed necessary.


Asunto(s)
Medios de Contraste/efectos adversos , Enfermedades Renales/prevención & control , Fragmentos de Péptidos/fisiología , Receptor PAR-1/fisiología , Daño por Reperfusión/prevención & control , Secuencia de Aminoácidos , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Riñón/efectos de los fármacos , Riñón/lesiones , Riñón/patología , Enfermedades Renales/inducido químicamente , Túbulos Renales/patología , Masculino , Datos de Secuencia Molecular , Fragmentos de Péptidos/metabolismo , Péptidos/química , Conejos , Cintigrafía/métodos , Ratas , Ratas Wistar , Receptor PAR-1/metabolismo , Factores de Tiempo
13.
Med Phys ; 39(8): 5238-47, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22894448

RESUMEN

PURPOSE: GATE is a Monte Carlo simulation toolkit based on the Geant4 package, widely used for many medical physics applications, including SPECT and PET image simulation and more recently CT image simulation and patient dosimetry. The purpose of the current study was to calculate dose point kernels (DPKs) using GATE, compare them against reference data, and finally produce a complete dataset of the total DPKs for the most commonly used radionuclides in nuclear medicine. METHODS: Patient-specific absorbed dose calculations can be carried out using Monte Carlo simulations. The latest version of GATE extends its applications to Radiotherapy and Dosimetry. Comparison of the proposed method for the generation of DPKs was performed for (a) monoenergetic electron sources, with energies ranging from 10 keV to 10 MeV, (b) beta emitting isotopes, e.g., (177)Lu, (90)Y, and (32)P, and (c) gamma emitting isotopes, e.g., (111)In, (131)I, (125)I, and (99m)Tc. Point isotropic sources were simulated at the center of a sphere phantom, and the absorbed dose was stored in concentric spherical shells around the source. Evaluation was performed with already published studies for different Monte Carlo codes namely MCNP, EGS, FLUKA, ETRAN, GEPTS, and PENELOPE. A complete dataset of total DPKs was generated for water (equivalent to soft tissue), bone, and lung. This dataset takes into account all the major components of radiation interactions for the selected isotopes, including the absorbed dose from emitted electrons, photons, and all secondary particles generated from the electromagnetic interactions. RESULTS: GATE comparison provided reliable results in all cases (monoenergetic electrons, beta emitting isotopes, and photon emitting isotopes). The observed differences between GATE and other codes are less than 10% and comparable to the discrepancies observed among other packages. The produced DPKs are in very good agreement with the already published data, which allowed us to produce a unique DPKs dataset using GATE. The dataset contains the total DPKs for (67)Ga, (68)Ga, (90)Y, (99m)Tc, (111)In, (123)I, (124)I, (125)I, (131)I, (153)Sm, (177)Lu (186)Re, and (188)Re generated in water, bone, and lung. CONCLUSIONS: In this study, the authors have checked GATE's reliability for absorbed dose calculation when transporting different kind of particles, which indicates its robustness for dosimetry applications. A novel dataset of DPKs is provided, which can be applied in patient-specific dosimetry using analytical point kernel convolution algorithms.


Asunto(s)
Método de Montecarlo , Medicina Nuclear/instrumentación , Medicina Nuclear/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Simulación por Computador , Electrones , Humanos , Isótopos , Fotones , Tomografía de Emisión de Positrones/métodos , Radioinmunoterapia/métodos , Radiometría/métodos , Programas Informáticos , Tomografía Computarizada de Emisión de Fotón Único/métodos
14.
Med Phys ; 39(9): 5768-81, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22957641

RESUMEN

Recent developments in image-guidance and device navigation, along with emerging robotic technologies, are rapidly transforming the landscape of interventional radiology (IR). Future state-of-the-art IR procedures may include real-time three-dimensional imaging that is capable of visualizing the target organ, interventional tools, and surrounding anatomy with high spatial and temporal resolution. Remote device actuation is becoming a reality with the introduction of novel magnetic-field enabled instruments and remote robotic steering systems. Robots offer several degrees of freedom and unprecedented accuracy, stability, and dexterity during device navigation, propulsion, and actuation. Optimization of tracking and navigation of interventional tools inside the human body will be critical in converting IR suites into the minimally invasive operating theaters of the future with increased safety and unsurpassed therapeutic efficacy. In the not too distant future, individual image guidance modalities and device tracking methods could merge into autonomous, multimodality, multiparametric platforms that offer real-time data of anatomy, morphology, function, and metabolism along with on-the-fly computational modeling and remote robotic actuation. The authors provide a concise overview of the latest developments in image guidance and device navigation, while critically envisioning what the future might hold for 2020 IR procedures.


Asunto(s)
Radiología Intervencionista/instrumentación , Radiología Intervencionista/métodos , Diagnóstico por Imagen , Humanos
15.
Bioorg Med Chem ; 20(8): 2549-57, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22445386

RESUMEN

During the past decade radiolabeled RGD-peptides have been extensively studied to develop site-directed targeting vectors for integrins. Integrins are heterodimeric cell-surface adhesion receptors, which are upregulated in cancer cells and neovasculature during tumor angiogenesis and recognize the RGD aminoacid sequence. In the present study, we report the synthesis and development of two derivatives of the Nε-Lys derivatized cyclic Arg-Gly-Asp-D-Phe-Lys peptide, namely of cRGDfKHis and cRGDfK-CPA (CPA: 3-L-Cysteine Propionic Acid), radiolabeled via the [(99m)Tc(H(2)O)(3)(CO)(3)](+) metal aquaion at a high yield even at low concentrations of 10-5M (>87%) for cRGDfK-10-5M (>93%) for cRGDfK-CPA. Radiolabeled peptides were characterized with regard to their stability in saline, in His/Cys solutions, as well as in plasma, serum and tissue homogenates and were found to be practically stable. Internalization and efflux assays using αvß3-receptor-positive MDA-MB 435 breast cancer cells showed a good percentage of quick internalization (29.1 ± 9.8% for (99m)Tc-HiscRGDfK and 37.0 ± 0.7% for (99m)Tc-CPA-cRGDfK at 15 min) and no retention of radioactivity for both derivatives. Their in vivo behavior was assessed in normal mice and pathological SCID mice bearing MDA-MB 435 ανß3 positive breast tumors. Both presented fast blood clearance and elimination via both the urinary and hepatobiliary systems, with (99m)Tc-His-cRGDfK remaining for a longer time than (99m)Tc-CPA-cRGDfK in all organs examined. Tumor uptake 30 min pi was higher for (99m)Tc-CPAcRGDfK (4.2 ± 1.5% ID/g) than for (99m)Tc-His-cRGDfK (2.8 ± 1.5% ID/g). Dynamic scintigraphic studies showed that the tumor could be visualized better between 15 and 45 min pi for both radiolabeled compounds but low delineation occurred due to high abdominal background. It was finally noticed that the accumulated activity on the tumor site was depended on the size of the experimental tumor; the smaller the size, the higher was the radioactivity concentration.


Asunto(s)
Quelantes/farmacocinética , Oligopéptidos/síntesis química , Oligopéptidos/farmacocinética , Compuestos de Organotecnecio/farmacocinética , Radiofármacos/síntesis química , Animales , Quelantes/síntesis química , Quelantes/química , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Marcaje Isotópico , Ratones , Ratones SCID , Conformación Molecular , Oligopéptidos/química , Compuestos de Organotecnecio/síntesis química , Compuestos de Organotecnecio/química , Control de Calidad , Radiofármacos/química , Radiofármacos/farmacocinética , Distribución Tisular , Células Tumorales Cultivadas
16.
Hell J Nucl Med ; 15(1): 33-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22413110

RESUMEN

In this work, among different proposed designs we have studied dual-head coincidence detectors (DHC) with pixelated crystals in order to optimize the design of detector systems of small animal PET scanners. Monte Carlo simulations and different detector components and materials, under different imaging conditions and geant 4 application for tomographic emission (GATE) were used for all simulations. Crystal length and inter material space on system performance were studied modeling several pixel sizes, ranging from 0.5 x 0.5mm² to 3.0 x 3.0mm² by increment of 0.5mm and using epoxy intermaterial with pitch of 0.1, 0.2 and 0.3mm. Three types of scintillator crystals:bismuth germinate orthosilicate, cerium-doped lutetium orthosilicate and gadolinium orthosilicate were simulated with thicknesses of 10mm and 15 mm. For all measurements a point source with the activity of 1MBq was placed at the center of field of view. The above simulation revealed that by increasing pixel size and crystal length in scintillator material of a pixelated array, sensitivity can be raised from 1% to 7%. However, spatial resolution becomes worse when pixel size increases from 0.6mm to 2.6mm. In addition, photons mispositioned events decrease from 76%to 45%. Crystal length decrease, significantly reduces the percentage of mispositioned events from 89% to 59%. Moreover increase in crystal length from 10mm to 15 mm changes sensitivity from 2% to 6% and spatial resolution from 0.6mm to 3.5mm. In conclusion, it was shown that pixel size 2mm with 10mm crystal thickness can provide the best dimensions in order to optimize system performance. These results confirmed the value of GATE Monte Carlo code, as being a useful tool for optimizing nuclear medicine imaging systems performance, for small animal PET studies.


Asunto(s)
Materiales Manufacturados , Tomografía de Emisión de Positrones/instrumentación , Tomografía de Emisión de Positrones/veterinaria , Transductores/veterinaria , Animales , Cristalización , Diseño de Equipo , Análisis de Falla de Equipo , Método de Montecarlo , Rotación , Dispersión de Radiación , Sensibilidad y Especificidad
17.
Eur J Pharm Biopharm ; 175: 1-6, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35462025

RESUMEN

Edelfosine (ET) is a potent antitumor agent but causes severe side effects that have limited its use in clinical practice. For this reason, nanoencapsulation in lipid nanoparticles (LNs) is advantageous as it protects from ET side-effects. Interestingly, previous studies showed the efficacy of LNs containing ET in various types of tumor. In this paper, biodistribution studies of nanoencapsulated ET, administered by three routes (oral, intravenous (IV) and intraperitoneal (IP)), were tested in order to select the optimal route of administration. To do this, ET-LNs were labeled with Technetium-99 m (99mTc) and administered by the oral, IV and IP route in mice. IV administration of the radiolabeled LNs led to fast elimination from the blood circulation and increased accumulation in reticulo-endothelial (RES) organs, while their oral administration could not provide any evidence on their biodistribution since large radiocomplexes were formed in the presence of gastrointestinal fluids. However, when the LNs were administered by the IP route they could access the systemic circulation and provided more constant blood ET-LN levels compared to the IV route. These findings suggest that the IP route can be used to sustain the level of drug in the blood and avoid accumulation in RES organs.


Asunto(s)
Nanopartículas , Éteres Fosfolípidos , Animales , Liposomas , Ratones , Tecnecio , Distribución Tisular
18.
Pharmaceutics ; 14(3)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35336041

RESUMEN

(1) Background: Theranostic approaches in the management of cholecystokinin subtype 2 receptor (CCK2R)-positive tumors include radiolabeled gastrin and CCK motifs. Moving toward antagonist-based CCK2R-radioligands instead, we herein present three analogs of the nonpeptidic CCK2R-antagonist Z360, GAS1/2/3. Each was conjugated to a different chelator (DOTA, NODAGA or DOTAGA) for labeling with medically relevant trivalent radiometals (e.g., Ga-68, In-111, Lu-177) for potential use as anti-CCK2R cancer agents; (2) Methods: The in vitro properties of the thee analogs were compared in stably transfected HEK293-CCK2R cells. Biodistribution profiles were compared in SCID mice bearing twin HEK293-CCK2R and wtHEK293 tumors; (3) Results: The GAS1/2/3 analogs displayed high CCK2R-affinity (lower nM-range). The radioligands were fairly stable in vivo and selectively targeted the HEK293-CCK2R, but not the CCK2R-negative wtHEK293 tumors in mice. Their overall pharmacokinetic profile was found strongly dependent on the radiometal-chelate. Results could be visualized by SPECT/CT for the [111In]In-analogs; (4) Conclusions: The present study highlighted the high impact of the radiometal-chelate on the end-pharmacokinetics of a new series of Z360-based radioligands, revealing candidates with promising properties for clinical translation. It also provided the impetus for the development of a new class of nonpeptidic radioligands for CCK2R-targeted theranostics of human cancer.

19.
Med Phys ; 49(1): 547-567, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34724215

RESUMEN

PURPOSE: The purpose of this study was to identify the properties of magnetite nanoparticles that deliver optimal heating efficiency, predict the geometrical characteristics to get these target properties, and determine the concentrations of nanoparticles required to optimize thermotherapy. METHODS: Kinetic Monte Carlo simulations were employed to identify the properties of magnetic nanoparticles that deliver high Specific Absorption Rate (SAR) values. Optimal volumes were determined for anisotropies ranging between 11 and 40 kJ/m3 under clinically relevant magnetic field conditions. Atomistic spin simulations were employed to determine the aspect ratios of ellipsoidal magnetite nanoparticles that deliver the target properties. A numerical model was developed using the extended cardiac-torso (XCAT) phantom to simulate low-field (4 kA/m) and high-field (18 kA/m) prostate cancer thermotherapy. A stationary optimization study exploiting the Method of Moving Asymptotes (MMA) was carried out to calculate the concentration fields that deliver homogenous temperature distributions within target thermotherapy range constrained by the optimization objective function. A time-dependent study was used to compute the thermal dose of a 30-min session. RESULTS: Prolate ellipsoidal magnetite nanoparticles with a volume of 3922 ± 35 nm3 and aspect ratio of 1.56, which yields an effective anisotropy of 20 kJ/m3 , constituted the optimal design at current maximum clinical field properties (H0   = 18 kA/m, f = 100 kHz), with SAR = 342.0 ± 2.7 W/g, while nanoparticles with a volume of 4147 ± 36 nm3 , aspect ratio of 1.29, and effective anisotropy 11 kJ/m3 were optimal for low-field applications (H0   = 4 kA/m, f = 100 kHz), with SAR = 50.2 ± 0.5 W/g. The average concentration of 3.86 ± 0.10 and 0.57 ± 0.01 mg/cm3 at 4 and 18 kA/m, respectively, were sufficient to reach therapeutic temperatures of 42-44°C throughout the prostate volume. The thermal dose delivered during a 30-min session exceeded 5.8 Cumulative Equivalent Minutes at 43°C within 90% of the prostate volume (CEM43T90 ). CONCLUSION: The optimal properties and design specifications of magnetite nanoparticles vary with magnetic field properties. Application-specific magnetic nanoparticles or nanoparticles that are optimized at low fields are indicated for optimal thermal dose delivery at low concentrations.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Humanos , Campos Magnéticos , Masculino , Método de Montecarlo , Temperatura
20.
Phys Med ; 89: 160-168, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34380106

RESUMEN

PURPOSE: Over the last few years studies are conducted, highlighting the feasibility of Gold Nanoparticles (GNPs) to be used in clinical CT imaging and as an efficient contrast agent for cancer research. After ensuring that GNPs formulations are appropriate for in vivo or clinical use, the next step is to determine the parameters for an X-ray system's optimal contrast for applications and to extract quantitative information. There is currently a gap and need to exploit new X-ray imaging protocols and processing algorithms, through specific models avoiding trial-and-error procedures and provide an imaging prognosis tool. Such a model can be used to confirm the accumulation of GNPs in target organs before radiotherapy treatments with a system easily available in hospitals, as low energy X-rays. METHODS: In this study a complete, easy-to-use, simulation platform is designed and built, where simple parameters, as the X-ray's specifications and experimentally defined biodistributions of specific GNPs are imported. The induced contrast and images can be exported, and accurate quantification can be performed. This platform is based on the GATE Monte Carlo simulation toolkit, based on the GEANT4 toolkit and the MOBY phantom, a realistic 4D digital mouse. RESULTS: We have validated this simulation platform to predict the contrast induction and minimum detectable concentration of GNPs on any given X-ray system. The study was applied to preclinical studies but is also expandable to clinical studies. CONCLUSIONS: According to our knowledge, no other such validated simulation model currently exists, and this model could help radiology imaging with GNPs to be truly deployed.


Asunto(s)
Oro , Nanopartículas del Metal , Animales , Ratones , Método de Montecarlo , Fantasmas de Imagen , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA