Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Chem Inf Model ; 62(24): 6553-6573, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-35960688

RESUMEN

The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In this study, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC50) values between 0.41 µM and 9.0 µM. In addition, three compounds inhibited PLpro with IC50 ranging from 1.9 µM to 3.3 µM. To verify the specificity of Mpro and PLpro inhibitors, our experiments included an assessment of common causes of false positives such as aggregation, high compound fluorescence, and inhibition by enzyme oxidation. Altogether, we confirmed novel classes of specific Mpro and PLpro inhibitors. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Proteasas Similares a la Papaína de Coronavirus , Naftoquinonas , Inhibidores de Proteasas , SARS-CoV-2 , Humanos , Antivirales/farmacología , Antivirales/química , COVID-19 , Simulación del Acoplamiento Molecular , Naftoquinonas/química , Naftoquinonas/farmacología , Papaína , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores
2.
Curr Microbiol ; 69(3): 357-64, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24807624

RESUMEN

Bacterial multiresistance is a health problem worldwide that demands new antimicrobials for treating bacterial-related infections. In this study, we evaluated the antimicrobial activity and the theoretical toxicology profile of N-substituted-phenylamino-5-methyl-1H-1,2,3-triazole-4-carbohydrazide derivatives against gram-positive and gram-negative bacteria clinical strains. On that purpose we determined the minimum inhibitory (MIC) and bactericidal (MBC) concentrations, the in vitro cytotoxicity, and in silico risk profiles, also comparing with antimicrobial agents of clinical use. Among the 16 derivatives analyzed, four nitrofurans (N-H-FUR-NO(2), N-Br-FUR-NO(2), N-F-FUR-NO(2), N-Cl-FUR-NO(2)) showed promising MIC and MBC values (MIC = MBC = 1-16 µg/mL). The experimental data revealed the potential of these derivatives, which were comparable to the current antimicrobials with similar bactericidal and bacteriostatic profiles. Therefore, these molecules may be feasible options to be explored for treating infections caused by multiresistant strains. Our in vitro and in silico toxicity reinforced these results as these derivatives presented low cytotoxicity against human macrophages and low theoretical risk profile for irritant and reproductive effects compared to the current antimicrobials (e.g., vancomycin and ciprofloxacin). The molecular modeling analysis also revealed positive values for their theoretical druglikeness and drugscore. The presence of a 5-nitro-2-furfur-2-yl group seems to be essential for the antimicrobial activity, which pointed these acylhydrazone derivatives as promising for designing more potent and safer compounds.


Asunto(s)
Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Hidrazonas/farmacología , Infecciones Bacterianas/microbiología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/aislamiento & purificación , Humanos , Macrófagos/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos
3.
Ann Transl Med ; 11(9): 315, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37404982

RESUMEN

Background: Focal segmental glomerulosclerosis (FSGS) is frequently associated with heavy proteinuria and progressive renal failure requiring dialysis or kidney transplantation. However, primary FSGS also has a ~40% risk of recurrence of disease in the transplanted kidney (rFSGS). Multiple circulating factors have been identified to contribute to the pathogenesis of primary and rFSGS including soluble urokinase-type plasminogen activator receptor (suPAR) and patient-derived CD40 autoantibody (CD40autoAb). However, the downstream effector pathways specific to individual factors require further study. The tumor necrosis factor, TNF pathway activation by one or more circulating factors present in the sera of patients with FSGS has been supported by multiple studies. Methods: A human in vitro model was used to study podocyte injury measured as the loss of actin stress fibers. Anti-CD40 autoantibody was isolated from FSGS patients (recurrent and non-recurrent) and control patients with ESRD due to non-FSGS related causes. Two novel human antibodies-anti-uPAR (2G10) and anti-CD40 antibody (Bristol Meyer Squibb, 986090) were tested for their ability to rescue podocyte injury. Podocytes treated with patient derived antibody were transcriptionally profiled using whole human genome microarray. Results: Here we show that podocyte injury caused by sera from FSGS patients is mediated by CD40 and suPAR and can be blocked by human anti-uPAR and anti-CD40 antibodies. Transcriptomic studies to compare the molecules and pathways activated in response to CD40 autoantibody from rFSGS patients (rFSGS/CD40autoAb) and suPAR, identified unique inflammatory pathways associated with FSGS injury. Conclusions: We identified several novel and previously described genes associated with FSGS progression. Targeted blockade of suPAR and CD40 pathways with novel human antibodies showed inhibition of podocyte injury in FSGS.

4.
Curr Microbiol ; 62(2): 684-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20882284

RESUMEN

A broad-spectrum antibiotic therapy has led to medical complications and emergence of multiresistant bacteria including Enterococcus faecalis. In this study, we designed, synthesized, and evaluated the antibacterial activity of 13 nor-ß-lapachone derivatives against a drug resistant E. faecalis strain. Two triazole substituted compounds (1e = 8 µg/ml and 1c = 16 µg/ml) and the non-substituted derivative (1a = 8 µg/ml) were promising compared to chloramphenicol (12 µg/ml), an antibiotic currently available in the market. We also performed a structure-activity relationship analysis using a molecular modeling approach that pointed the low HOMO energy values; HOMO density concentrated on the nor-ß-lapachone ring, lipophilicity, solubility and number HBA as important stereoelectronic features for the antibacterial profile. In addition the triazole compounds presented low theoretical toxicity profile, and drug-score higher than commercial antibiotics also fulfilling the Lipinski "Rule of Five", which pointed them as promising candidates for further studies in infections caused by multiresistant E. faecalis hospital strains.


Asunto(s)
Antibacterianos/farmacología , Enterococcus faecalis/efectos de los fármacos , Naftoquinonas/farmacología , Antibacterianos/química , Antibacterianos/toxicidad , Enterococcus faecalis/aislamiento & purificación , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Naftoquinonas/química , Naftoquinonas/toxicidad , Relación Estructura-Actividad
5.
Leuk Lymphoma ; 62(13): 3212-3218, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34254886

RESUMEN

This observational, multicenter study aimed to report the clinical evolution of COVID-19 in patients with chronic myeloid leukemia in Latin America. A total of 92 patients presented with COVID-19 between March and December 2020, 26% of whom were severe or critical. The median age at COVID-19 diagnosis was 48 years (22-79 years), 32% were 60 years or older, and 61% were male. Thirty-nine patients presented with at least one comorbidity (42.3%). Eighty-one patients recovered (88%), and 11 (11.9%) died from COVID-19. There was one case of reinfection. Patients with a major molecular response presented superior overall survival compared to patients with no major molecular response (91 vs. 61%, respectively; p = 0.004). Patients in treatment-free remission and receiving tyrosine kinase inhibitors showed higher survival rates than patients who underwent hematopoietic stem cell transplantation and those who did not receive tyrosine kinase inhibitors (100, 89, 50, and 33%, respectively; p < 0.001).


Asunto(s)
COVID-19 , Leucemia Mielógena Crónica BCR-ABL Positiva , Prueba de COVID-19 , Humanos , América Latina/epidemiología , Leucemia Mielógena Crónica BCR-ABL Positiva/diagnóstico , Leucemia Mielógena Crónica BCR-ABL Positiva/epidemiología , Leucemia Mielógena Crónica BCR-ABL Positiva/terapia , Masculino , SARS-CoV-2
6.
Front Immunol ; 10: 2088, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552036

RESUMEN

Cancer patients are at increased risk of developing thrombosis, comorbidity that has been associated with increased neutrophil counts and the formation of neutrophil extracellular traps (NETs). Interleukin-1ß (IL-1ß) modulates the expression of granulocyte colony-stimulating factor (G-CSF), a cytokine that promotes cancer-associated neutrophilia and NET generation. Herein, we combined a murine breast cancer model with a flow-restriction thrombosis model to evaluate whether the IL-1ß blockade could interfere with cancer-associated thrombosis. Mice bearing metastatic 4T1 tumors exhibited high neutrophil counts as well as elevated expression of G-CSF and IL-1ß in their tumors. On the other hand, mice bearing non-metastatic 67NR tumors showed no elevation in neutrophil counts and displayed low expression levels of G-CSF and IL-1ß in their tumors. 4T1 tumor-bearing mice but not 67NR tumor-bearing mice exhibited a NET-dependent prothrombotic state. Pharmacological blockade of IL-1 receptor (IL-1R) decreased the primary growth of 4T1 tumors and reduced the systemic levels of myeloperoxidase, cell-free DNA (cfDNA) and G-CSF, without interfering with the neutrophil counts. Most remarkably, the blockade of IL-1R abolished the prothrombotic state observed in 4T1 tumor-bearing mice. Overall, our results demonstrate that IL-1ß might be a feasible target to attenuate cancer-associated thrombosis, particularly in cancer types that rely on increased G-CSF production and involvement of NET formation.


Asunto(s)
Trampas Extracelulares/efectos de los fármacos , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Interleucina-1beta/antagonistas & inhibidores , Neoplasias Mamarias Experimentales/complicaciones , Receptores de Interleucina-1/antagonistas & inhibidores , Trombosis/prevención & control , Animales , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Trampas Extracelulares/metabolismo , Femenino , Factor Estimulante de Colonias de Granulocitos/genética , Factor Estimulante de Colonias de Granulocitos/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Recuento de Leucocitos , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Ratones Endogámicos BALB C , Neutrófilos/metabolismo , Peroxidasa/metabolismo , Receptores de Interleucina-1/metabolismo , Trombosis/complicaciones , Trombosis/metabolismo , Carga Tumoral/efectos de los fármacos
7.
Eur J Med Chem ; 135: 213-229, 2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-28453995

RESUMEN

Cardiovascular diseases (CVDs) account for over 17 million deaths globally each year, with atherosclerosis as the underlying cause of most CVDs. Herein we describe the synthesis and in vitro mechanistic evaluation of novel N'-benzylidene-carbohydrazide-1H-pyrazolo[3,4-b]pyridines (3-22) designed as non-anionic antiplatelet agents and presenting a 30-fold increase in potency compared to aspirin. The mechanism underlying their antiplatelet activity was elucidated by eliminating potential targets through a series of in vitro assays including light transmission aggregometry, clot retraction, and quantitative ELISA, further identifying the reduction in biosynthesis of thromboxane B2 as their main mechanism of action. The intrinsic fluorescence of the compounds permits their binding to platelet membranes to be readily monitored. In silico structure-activity relationship, molecular docking and dynamics studies support the biological profile of the series revealing the molecular basis of their activity and their potential as future molecular therapeutic agents.


Asunto(s)
Compuestos de Bencilideno/farmacología , Plaquetas/efectos de los fármacos , Hidrazinas/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Pirazoles/farmacología , Piridinas/farmacología , Compuestos de Bencilideno/química , Relación Dosis-Respuesta a Droga , Humanos , Hidrazinas/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/química , Pirazoles/química , Piridinas/química , Relación Estructura-Actividad
8.
Nat Commun ; 6: 8448, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26423607

RESUMEN

Functional imaging of proteolytic activity is an emerging strategy to quantify disease and response to therapy at the molecular level. We present a new peptide-based imaging probe technology that advances these goals by exploiting enzymatic activity to deposit probes labelled with near-infrared (NIR) fluorophores or radioisotopes in cell membranes of disease-associated proteolysis. This strategy allows for non-invasive detection of protease activity in vivo and ex vivo by tracking deposited probes in tissues. We demonstrate non-invasive detection of thrombin generation in a murine model of pulmonary embolism using our protease-activated peptide probes in microscopic clots within the lungs with NIR fluorescence optical imaging and positron-emission tomography. Thrombin activity is imaged deep in tissue and tracked predominantly to platelets within the lumen of blood vessels. The modular design of our probes allows for facile investigation of other proteases, and their contributions to disease by tailoring the protease activation and cell-binding elements.


Asunto(s)
Tomografía de Emisión de Positrones/métodos , Embolia Pulmonar/diagnóstico por imagen , Espectroscopía Infrarroja Corta/métodos , Animales , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Radiografía , Trombina/farmacología
9.
Curr Microbiol ; 57(5): 463-8, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18810543

RESUMEN

Bacterial infections are a significant cause of morbidity and mortality among critically ill patients. The increase of antibiotic resistance in bacteria from human microbiota-such as Staphylococcus epidermidis, an important nosocomial pathogen that affects immunocompromised patients or those with indwelling devices-increased the desire for new antibiotics. In this study we designed, synthesized, and determined the antimicrobial activity of 27 thieno[2,3-b]pyridines (1, 2, 2a-2m, 3, 3a-3m) derivatives against a drug-resistant clinical S. epidermidis strain. In addition, we performed a structure-activity relationship analysis using a molecular modeling approach, and discuss the drug absorption, distribution, metabolism, excretion, and toxicity profile and Lipinski's "rule of five," which are tools to assess the relationship between structures and drug-like properties of active compounds. Our results showed that compound 3b (5-(1H-tetrazol-5-yl)-4-(3;-methylphenylamino)thieno[2,3-b]pyridine) was as active as oxacillin and chloramphenicol but with lower theoretical toxicity risks and a better drug likeness and drug score potential than chloramphenicol. All molecular modeling and biological results reinforced the promising profile of 3b for further experimental investigation and development of new antibacterial drugs.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Diseño de Fármacos , Farmacorresistencia Bacteriana , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus epidermidis/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/farmacocinética , Bacterias/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Piridinas/síntesis química , Piridinas/química , Piridinas/farmacocinética , Piridinas/farmacología , Infecciones Estafilocócicas/microbiología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA