Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Physiol ; 237(3): 1753-1767, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34791648

RESUMEN

Aging is a physiological process that leads to a higher risk for the most devastating diseases. There are a number of theories of human aging proposed, and many of them are directly or indirectly linked to mitochondria. Here, we used mesenchymal stem cells (MSCs) from young and older donors to study age-related changes in mitochondrial metabolism. We have found that aging in MSCs is associated with a decrease in mitochondrial membrane potential and lower NADH levels in mitochondria. Mitochondrial DNA content is higher in aged MSCs, but the overall mitochondrial mass is decreased due to increased rates of mitophagy. Despite the higher level of ATP in aged cells, a higher rate of ATP consumption renders them more vulnerable to energy deprivation compared to younger cells. Changes in mitochondrial metabolism in aged MSCs activate the overproduction of reactive oxygen species in mitochondria which is compensated by a higher level of the endogenous antioxidant glutathione. Thus, energy metabolism and redox state are the drivers for the aging of MSCs/mesenchymal stromal cells.


Asunto(s)
Células Madre Mesenquimatosas , Adenosina Trifosfato/metabolismo , Anciano , Humanos , Potencial de la Membrana Mitocondrial , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Mol Psychiatry ; 25(11): 2919-2931, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-30980041

RESUMEN

Familial Alzheimer's disease (fAD) mutations alter amyloid precursor protein (APP) cleavage by γ-secretase, increasing the proportion of longer amyloidogenic amyloid-ß (Aß) peptides. Using five control induced pluripotent stem cell (iPSC) lines and seven iPSC lines generated from fAD patients, we investigated the effects of mutations on the Aß secretome in human neurons generated in 2D and 3D. We also analysed matched CSF, post-mortem brain tissue, and iPSCs from the same participant with the APP V717I mutation. All fAD mutation lines demonstrated an increased Aß42:40 ratio relative to controls, yet displayed varied signatures for Aß43, Aß38, and short Aß fragments. We propose four qualitatively distinct mechanisms behind raised Aß42:40. (1) APP V717I mutations alter γ-secretase cleavage site preference. Whereas, distinct presenilin 1 (PSEN1) mutations lead to either (2) reduced γ-secretase activity, (3) altered protein stability or (4) reduced PSEN1 maturation, all culminating in reduced γ-secretase carboxypeptidase-like activity. These data support Aß mechanistic tenets in a human physiological model and substantiate iPSC-neurons for modelling fAD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Mutación , Neuronas/metabolismo , Neuronas/patología , Adulto , Anciano , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Adulto Joven
3.
Thorac Cardiovasc Surg ; 69(1): 109-112, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31994146

RESUMEN

INTRODUCTION: The increasing longevity of the Western population means patients with a more advanced age are being diagnosed with resectable disease. With improvements in imaging and diagnostic capabilities, this trend is likely to develop further. As a unit operating on a higher proportion of older patients and with limited literature regarding the population of older than 85 years, we retrospectively compared the outcomes of patients older than 85 years in our unit treated with elective lung resection for non-small cell lung cancer (NSCLC) with those between the age of 80 and 84 years inclusive. METHODS: All patients who underwent elective lung cancer resection between the years 2012 and 2015 were identified from the National Thoracic Surgical Database. RESULTS: A total of 701 elective lung resections were performed during this time frame; 76 patients between the ages of 80 and 84 years and 18 patients older than 85 years. The follow-up period was 3 to 7 years. There was a significant increase in the Thoracic Surgery Scoring System (2.04; 2.96%, p = 0.0015) and a significant reduction in the transfer factor (94.7; 69.5%, p = 0.0001) between the younger and older groups. There were three (3.9%) in-hospital deaths in the 80 to 84 years age group and no in-hospital deaths in the 85 years and older age group. CONCLUSION: This study demonstrates that surgery for early NSCLC can be safely performed in 85 years and older population. This is a higher risk population and parenchymal-sparing procedures should be considered.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/cirugía , Neoplasias Pulmonares/cirugía , Neumonectomía , Factores de Edad , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Toma de Decisiones Clínicas , Bases de Datos Factuales , Procedimientos Quirúrgicos Electivos , Femenino , Humanos , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Selección de Paciente , Neumonectomía/efectos adversos , Neumonectomía/mortalidad , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento
6.
Brain Commun ; 5(1): fcac321, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36687397

RESUMEN

Mutations in the presenilin 1 gene, PSEN1, which cause familial Alzheimer's disease alter the processing of amyloid precursor protein, leading to the generation of various amyloid-ß peptide species. These species differ in their potential for aggregation. Mutation-specific amyloid-ß peptide profiles may thereby influence pathogenicity and clinical heterogeneity. There is particular interest in comparing mutations with typical and atypical clinical presentations, such as E280G. We generated PSEN1 E280G mutation induced pluripotent stem cells from two patients and differentiated them into cortical neurons, along with previously reported PSEN1 M146I, PSEN1 R278I and two control lines. We assessed both the amyloid-ß peptide profiles and presenilin 1 protein maturity. We also compared amyloid-ß peptide profiles in human post-mortem brain tissue from cases with matched mutations. Amyloid-ß ratios significantly differed compared with controls and between different patients, implicating mutation-specific alterations in amyloid-ß ratios. Amyloid-ß42:40 was increased in the M146I and both E280G lines compared with controls. Amyloid-ß42:40 was not increased in the R278I line compared with controls. The amyloid-ß43:40 ratio was increased in R278I and both E280G lines compared with controls, but not in M146I cells. Distinct amyloid-ß peptide patterns were also observed in human brain tissue from individuals with these mutations, showing some similar patterns to cell line observations. Reduced presenilin 1 maturation was observed in neurons with the PSEN1 R278I and E280G mutations, but not the M146I mutation. These results suggest that mutation location can differentially alter the presenilin 1 protein and affect its autoendoproteolysis and processivity, contributing to the pathological phenotype. Investigating differences in underlying molecular mechanisms of familial Alzheimer's disease may inform our understanding of clinical heterogeneity.

7.
Dev Cell ; 58(19): 1847-1863.e12, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37751746

RESUMEN

An actin-spectrin lattice, the membrane periodic skeleton (MPS), protects axons from breakage. MPS integrity relies on spectrin delivery via slow axonal transport, a process that remains poorly understood. We designed a probe to visualize endogenous spectrin dynamics at single-axon resolution in vivo. Surprisingly, spectrin transport is bimodal, comprising fast runs and movements that are 100-fold slower than previously reported. Modeling and genetic analysis suggest that the two rates are independent, yet both require kinesin-1 and the coiled-coil proteins UNC-76/FEZ1 and UNC-69/SCOC, which we identify as spectrin-kinesin adaptors. Knockdown of either protein led to disrupted spectrin motility and reduced distal MPS, and UNC-76 overexpression instructed excessive transport of spectrin. Artificially linking spectrin to kinesin-1 drove robust motility but inefficient MPS assembly, whereas impairing MPS assembly led to excessive spectrin transport, suggesting a balance between transport and assembly. These results provide insight into slow axonal transport and MPS integrity.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Espectrina , Animales , Transporte Axonal , Axones/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cinesinas/metabolismo , Espectrina/metabolismo
8.
Future Healthc J ; 9(1): 75-78, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35372779

RESUMEN

Interest in artificial intelligence (AI) has grown exponentially in recent years, attracting sensational headlines and speculation. While there is considerable potential for AI to augment clinical practice, there remain numerous practical implications that must be considered when exploring AI solutions. These range from ethical concerns about algorithmic bias to legislative concerns in an uncertain regulatory environment. In the absence of established protocols and examples of best practice, there is a growing need for clear guidance both for innovators and early adopters. Broadly, there are three stages to the innovation process: invention, development and implementation. In this paper, we present key considerations for innovators at each stage and offer suggestions along the AI development pipeline, from bench to bedside.

9.
Cell Rep ; 34(2): 108615, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33440141

RESUMEN

Mutations in presenilin 1 (PSEN1) or presenilin 2 (PSEN2), the catalytic subunit of γ-secretase, cause familial Alzheimer's disease (fAD). We hypothesized that mutations in PSEN1 reduce Notch signaling and alter neurogenesis. Expression data from developmental and adult neurogenesis show relative enrichment of Notch and γ-secretase expression in stem cells, whereas expression of APP and ß-secretase is enriched in neurons. We observe premature neurogenesis in fAD iPSCs harboring PSEN1 mutations using two orthogonal systems: cortical differentiation in 2D and cerebral organoid generation in 3D. This is partly driven by reduced Notch signaling. We extend these studies to adult hippocampal neurogenesis in mutation-confirmed postmortem tissue. fAD cases show mutation-specific effects and a trend toward reduced abundance of newborn neurons, supporting a premature aging phenotype. Altogether, these results support altered neurogenesis as a result of fAD mutations and suggest that neural stem cell biology is affected in aging and disease.


Asunto(s)
Enfermedad de Alzheimer/genética , Mutación , Células-Madre Neurales/patología , Presenilina-1/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células-Madre Neurales/metabolismo , Neurogénesis , Presenilina-1/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo
10.
J Neurol ; 267(9): 2705-2712, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32444983

RESUMEN

OBJECTIVE: To identify the genetic cause of complex neuropathy in two siblings from a consanguineous family. METHODS: The patients were recruited from our clinic. Muscle biopsy and whole-exome sequencing (WES) were performed. Fibroblasts cell lines from the index patient, unaffected parents, and three normal controls were used for cDNA analysis and western blot. RESULTS: The index patient was a 29-year-old male with clinical phenotype of syndactyly, pes cavus, swallowing difficulties, vision problem, imbalance, and muscle weakness. The sibling had similar, but milder symptoms. Nerve conduction studies and electromyography of both patients suggested sensory-motor axonal neuropathy. Muscle biopsy showed a feature of necklace fibres. WES identified a novel homozygous frameshift deletion (c.5477-5478del; p.1826-1826del) in exon 40 of the SBF1 gene in the two siblings, while both parents and the unaffected sibling were heterozygous carriers. Functional analysis showed a markedly reduced level of MTMR5 protein encoded by SBF1 in the index case. The levels of MTMR5 protein in unaffected parents were similar to those found in controls. CONCLUSION: A novel homozygous frameshift deletion in SBF1 was identified in this family. Sensory-motor axonal neuropathy and necklace fibres in biopsy were the major features expanding the phenotypic spectrum of SBF1-related recessive syndromic neuropathy.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Mutación del Sistema de Lectura , Adulto , Enfermedad de Charcot-Marie-Tooth/genética , Genes Recesivos , Homocigoto , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Linaje , Fenotipo , Secuenciación del Exoma
11.
BMJ ; 368: m689, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32213531

RESUMEN

OBJECTIVE: To systematically examine the design, reporting standards, risk of bias, and claims of studies comparing the performance of diagnostic deep learning algorithms for medical imaging with that of expert clinicians. DESIGN: Systematic review. DATA SOURCES: Medline, Embase, Cochrane Central Register of Controlled Trials, and the World Health Organization trial registry from 2010 to June 2019. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Randomised trial registrations and non-randomised studies comparing the performance of a deep learning algorithm in medical imaging with a contemporary group of one or more expert clinicians. Medical imaging has seen a growing interest in deep learning research. The main distinguishing feature of convolutional neural networks (CNNs) in deep learning is that when CNNs are fed with raw data, they develop their own representations needed for pattern recognition. The algorithm learns for itself the features of an image that are important for classification rather than being told by humans which features to use. The selected studies aimed to use medical imaging for predicting absolute risk of existing disease or classification into diagnostic groups (eg, disease or non-disease). For example, raw chest radiographs tagged with a label such as pneumothorax or no pneumothorax and the CNN learning which pixel patterns suggest pneumothorax. REVIEW METHODS: Adherence to reporting standards was assessed by using CONSORT (consolidated standards of reporting trials) for randomised studies and TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) for non-randomised studies. Risk of bias was assessed by using the Cochrane risk of bias tool for randomised studies and PROBAST (prediction model risk of bias assessment tool) for non-randomised studies. RESULTS: Only 10 records were found for deep learning randomised clinical trials, two of which have been published (with low risk of bias, except for lack of blinding, and high adherence to reporting standards) and eight are ongoing. Of 81 non-randomised clinical trials identified, only nine were prospective and just six were tested in a real world clinical setting. The median number of experts in the comparator group was only four (interquartile range 2-9). Full access to all datasets and code was severely limited (unavailable in 95% and 93% of studies, respectively). The overall risk of bias was high in 58 of 81 studies and adherence to reporting standards was suboptimal (<50% adherence for 12 of 29 TRIPOD items). 61 of 81 studies stated in their abstract that performance of artificial intelligence was at least comparable to (or better than) that of clinicians. Only 31 of 81 studies (38%) stated that further prospective studies or trials were required. CONCLUSIONS: Few prospective deep learning studies and randomised trials exist in medical imaging. Most non-randomised trials are not prospective, are at high risk of bias, and deviate from existing reporting standards. Data and code availability are lacking in most studies, and human comparator groups are often small. Future studies should diminish risk of bias, enhance real world clinical relevance, improve reporting and transparency, and appropriately temper conclusions. STUDY REGISTRATION: PROSPERO CRD42019123605.


Asunto(s)
Aprendizaje Profundo , Diagnóstico por Imagen , Procesamiento de Imagen Asistido por Computador , Proyectos de Investigación , Algoritmos , Sesgo , Humanos , Médicos , Ensayos Clínicos Controlados Aleatorios como Asunto , Proyectos de Investigación/normas
12.
FEBS J ; 285(7): 1346-1358, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29464848

RESUMEN

Carbon monoxide-releasing molecules (CO-RMs) induce nitric oxide (NO) release (which requires NADPH), and Ca2+ -dependent signalling; however, their contribution in mediating endothelial responses to CO-RMs is not clear. Here, we studied the effects of CO liberated from CORM-401 on NO production, calcium signalling and pentose phosphate pathway (PPP) activity in human endothelial cell line (EA.hy926). CORM-401 induced NO production and two types of calcium signalling: a peak-like calcium signal and a gradual increase in cytosolic calcium. CORM-401-induced peak-like calcium signal, originating from endoplasmic reticulum, was reduced by thapsigargin, a SERCA inhibitor, and by dantrolene, a ryanodine receptors (RyR) inhibitor. In contrast, the phospholipase C inhibitor U73122 did not significantly affect peak-like calcium signalling, but a slow and progressive CORM-401-induced increase in cytosolic calcium was dependent on store-operated calcium entrance. CORM-401 augmented coupling of endoplasmic reticulum and plasmalemmal store-operated calcium channels. Interestingly, in the presence of NO synthase inhibitor (l-NAME) CORM-401-induced increases in NO and cytosolic calcium were both abrogated. CORM-401-induced calcium signalling was also inhibited by superoxide dismutase (poly(ethylene glycol)-SOD). Furthermore, CORM-401 accelerated PPP, increased NADPH concentration and decreased the ratio of reduced to oxidized glutathione (GSH/GSSG). Importantly, CORM-401-induced NO increase was inhibited by the PPP inhibitor 6-aminonicotinamide (6-AN), but neither by dantrolene nor by an inhibitor of large-conductance calcium-regulated potassium ion channel (paxilline). The results identify the primary role of CO-induced NO increase in the regulation of endothelial calcium signalling, that may have important consequences in controlling endothelial function.


Asunto(s)
Señalización del Calcio , Monóxido de Carbono/química , Células Endoteliales/fisiología , Óxido Nítrico/química , Vía de Pentosa Fosfato/fisiología , Señalización del Calcio/efectos de los fármacos , Monóxido de Carbono/farmacología , Línea Celular , Células Endoteliales/efectos de los fármacos , Humanos , Óxido Nítrico/biosíntesis , Transducción de Señal
13.
Cell Rep ; 25(7): 1953-1965.e4, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30428360

RESUMEN

Virus infection is sensed by pattern recognition receptors (PRRs) detecting virus nucleic acids and initiating an innate immune response. DNA-dependent protein kinase (DNA-PK) is a PRR that binds cytosolic DNA and is antagonized by vaccinia virus (VACV) protein C16. Here, VACV protein C4 is also shown to antagonize DNA-PK by binding to Ku and blocking Ku binding to DNA, leading to a reduced production of cytokines and chemokines in vivo and a diminished recruitment of inflammatory cells. C4 and C16 share redundancy in that a double deletion virus has reduced virulence not seen with single deletion viruses following intradermal infection. However, non-redundant functions exist because both single deletion viruses display attenuated virulence compared to wild-type VACV after intranasal infection. It is notable that VACV expresses two proteins to antagonize DNA-PK, but it is not known to target other DNA sensors, emphasizing the importance of this PRR in the response to infection in vivo.


Asunto(s)
Proteína Quinasa Activada por ADN/metabolismo , ADN/metabolismo , Virus Vaccinia/metabolismo , Proteínas Virales/metabolismo , Administración Intranasal , Animales , Citocinas/metabolismo , Proteína Quinasa Activada por ADN/química , Femenino , Células HEK293 , Células HeLa , Humanos , Inmunidad Innata , Autoantígeno Ku/metabolismo , Activación de Linfocitos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Unión Proteica , Multimerización de Proteína , Linfocitos T/inmunología , Virus Vaccinia/patogenicidad , Virulencia
14.
Redox Biol ; 14: 474-484, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29096320

RESUMEN

Sporadic cases account for 90-95% of all patients with Parkinson's Disease (PD). Atypical Parkinsonism comprises approximately 20% of all patients with parkinsonism. Progressive Supranuclear Palsy (PSP) belongs to the atypical parkinsonian diseases and is histopathologically classified as a tauopathy. Here, we report that mesenchymal stem cells (MSCs) derived from the bone marrow of patients with PSP exhibit mitochondrial dysfunction in the form of decreased membrane potential and inhibited NADH-dependent respiration. Furthermore, mitochondrial dysfunction in PSP-MSCs led to a significant increase in mitochondrial ROS generation and oxidative stress, which resulted in decrease of major cellular antioxidant GSH. Additionally, higher basal rate of mitochondrial degradation and lower levels of biogenesis were found in PSP-MSCs, together leading to a reduction in mitochondrial mass. This phenotype was biologically relevant to MSC stemness properties, as it heavily impaired their differentiation into adipocytes, which mostly rely on mitochondrial metabolism for their bioenergetic demand. The defect in adipogenic differentiation was detected as a significant impairment of intracellular lipid droplet formation in PSP-MSCs. This result was corroborated at the transcriptional level by a significant reduction of PPARγ and FABP4 expression, two key genes involved in the adipogenic molecular network. Our findings in PSP-MSCs provide new insights into the etiology of 'idiopathic' parkinsonism, and confirm that mitochondrial dysfunction is important to the development of parkinsonism, independent of the type of the cell.


Asunto(s)
Células Madre Mesenquimatosas/patología , Mitocondrias/patología , Trastornos Parkinsonianos/patología , Parálisis Supranuclear Progresiva/patología , Diferenciación Celular , Células Cultivadas , Humanos , Potencial de la Membrana Mitocondrial , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Mitofagia , NAD/metabolismo , Estrés Oxidativo , Trastornos Parkinsonianos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Parálisis Supranuclear Progresiva/metabolismo
15.
Alzheimers Res Ther ; 9(1): 42, 2017 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-28610595

RESUMEN

A major challenge to our understanding of the molecular mechanisms of Alzheimer's disease (AD) has been the lack of physiologically relevant in vitro models which capture the precise patient genome, in the cell type of interest, with physiological expression levels of the gene(s) of interest. Induced pluripotent stem cell (iPSC) technology, together with advances in 2D and 3D neuronal differentiation, offers a unique opportunity to overcome this challenge and generate a limitless supply of human neurons for in vitro studies. iPSC-neuron models have been widely employed to model AD and we discuss in this review the progress that has been made to date using patient-derived neurons to recapitulate key aspects of AD pathology and how these models have contributed to a deeper understanding of AD molecular mechanisms, as well as addressing the key challenges posed by using this technology and what progress is being made to overcome these. Finally, we highlight future directions for the use of iPSC-neurons in AD research and highlight the potential value of this technology to neurodegenerative research in the coming years.


Asunto(s)
Enfermedad de Alzheimer/patología , Modelos Animales de Enfermedad , Células Madre Pluripotentes Inducidas/patología , Células-Madre Neurales/patología , Organoides/patología , Ingeniería de Tejidos/métodos , Animales , Técnicas de Cultivo Celular por Lotes/métodos , Células Cultivadas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA