Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 23(9): e13747, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35946865

RESUMEN

PURPOSE: End-to-end testing (E2E) is a necessary process for assessing the readiness of the stereotactic radiosurgery (SRS) program and annual QA of an SRS system according to the AAPM MPPG 9a. This study investigates the differences between using a new SRS MapCHECK (SRSMC) system and an anthropomorphic phantom film-based system in a large network with different SRS delivery techniques. METHODS AND MATERIALS: Three SRS capable Linacs (Varian Medical Systems, Palo Alto, CA) at three different regional sites were chosen to represent a hospital network, a Trilogy with an M120 multi-leaf collimator (MLC), a TrueBeam with an M120 MLC, and a TrueBeam Stx with an HD120 MLC. An anthropomorphic STEEV phantom (CIRS, Norfolk, VA) and a phantom/diode array: StereoPHAN/SRSMC (Sun Nuclear, Melbourne, FL) were CT scanned at each site. The new STV-PHANTOM EBT-XD films (Ashland, Bridgewater, NJ) were used. Six plans with various complexities were measured with both films and SRSMC in the StereoPHAN to establish their dosimetric correlations. Three SRS cranial plans with a total of sixteen fields using dynamic conformal arc and volumetric-modulated arc therapy, with 1-4 targets, were planned with Eclipse v15.5 treatment planning system (TPS) using a custom SRS beam model for each machine. The dosimetric and localization accuracy were compared. The time of analysis for the two systems by three teams of physicists was also compared to assess the throughput efficiency. RESULTS: The correlations between films and SRSMC were found to be 0.84 (p = 0.03) and 0.16 (p = 0.76) for γ (3%, 1 mm) and γ (3%, 2 mm), respectively. With film, the local dose differences (ΔD) relative to the average dose within the 50% isodose line from the three sites were found to be -3.2%-3.7%. The maximum localization errors (Elocal ) were found to be within 0.5 ± 0.2 mm. With SRSMC, the ΔD was found to be within 5% of the TPS calculation. Elocal were found to be within 0.7 to 1.1 ± 0.4 mm for TrueBeam and Trilogy, respectively. Comparing with film, an additional uncertainty of 0.7 mm was found with SRSMC. The delivery and analysis times were found to be 6 and 2 h for film and SRSMC, respectively. CONCLUSIONS: The SRS MapCHECK agrees dosimetrically with the films within measurement uncertainties. However, film dosimetry shows superior sub-millimeter localization resolving power for the MPPG 9a implementation.


Asunto(s)
Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Aceleradores de Partículas , Fantasmas de Imagen , Radiocirugia/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
2.
J Appl Clin Med Phys ; 21(12): 188-196, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33184966

RESUMEN

PURPOSE: To evaluate two three-dimensional (3D)/3D registration platforms, one two-dimensional (2D)/3D registration method, and one 3D surface registration method (3DS). These three technologies are available to perform six-dimensional (6D) registrations for image-guided radiotherapy treatment. METHODS: Fiducial markers were asymmetrically placed on the surfaces of an anthropomorphic head phantom (n = 13) and a body phantom (n = 8), respectively. The point match (PM) solution to the six-dimensional (6D) transformation between the two image sets [planning computed tomography (CT) and cone beam CT (CBCT)] was determined through least-square fitting of the fiducial positions using singular value decomposition (SVD). The transformation result from SVD was verified and was used as the gold standard to evaluate the 6D accuracy of 3D/3D registration in Varian's platform (3D3DV), 3D/3D and 2D/3D registration in the BrainLab ExacTrac system (3D3DE and 2D3D), as well as 3DS in the AlignRT system. Image registration accuracy from each method was quantitatively evaluated by root mean square of target registration error (rmsTRE) on fiducial markers and by isocenter registration error (IRE). The Wilcoxon signed-rank test was utilized to compare the difference of each registration method with PM. A P < 0.05 was considered significant. RESULTS: rmsTRE was in the range of 0.4 mm/0.7 mm (cranial/body), 0.5 mm/1 mm, 1.0 mm/1.5 mm, and 1.0 mm/1.2 mm for PM, 3D3D, 2D3D, and 3DS, respectively. Comparing to PM, the mean errors of IRE were 0.3 mm/1 mm for 3D3D, 0.5 mm/1.4 mm for 2D3D, and 1.6 mm/1.35 mm for 3DS for the cranial and body phantoms respectively. Both of 3D3D and 2D3D methods differed significantly in the roll direction as compared to the PM method for the cranial phantom. The 3DS method was significantly different from the PM method in all three translation dimensions for both the cranial (P = 0.003-P = 0.03) and body (P < 0.001-P = 0.008) phantoms. CONCLUSION: 3D3D using CBCT had the best image registration accuracy among all the tested methods. 2D3D method was slightly inferior to the 3D3D method but was still acceptable as a treatment position verification device. 3DS is comparable to 2D3D technique and could be a substitute for X-ray or CBCT for pretreatment verification for treatment of anatomical sites that are rigid.


Asunto(s)
Radioterapia Guiada por Imagen , Tomografía Computarizada de Haz Cónico , Cabeza , Humanos , Imagenología Tridimensional , Fantasmas de Imagen
3.
Neurosurg Focus ; 42(1): E7, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28041326

RESUMEN

OBJECTIVE Spine radiosurgery is increasingly being used to treat spinal metastases. As patients are living longer because of the increasing efficacy of systemic agents, appropriate follow-up and posttreatment management for these patients is critical. Tumor progression after spine radiosurgery is rare; however, vertebral compression fractures are recognized as a more common posttreatment effect. The use of radiographic imaging alone posttreatment may makeit difficult to distinguish tumor progression from postradiation changes such as fibrosis. This is the largest series from a prospective database in which the authors examine histopathology of samples obtained from patients who underwent surgical intervention for presumed tumor progression or mechanical pain secondary to compression fracture. The majority of patients had tumor ablation and resulting fibrosis rather than tumor progression. The aim of this study was to evaluate tumor histopathology and characteristics of patients who underwent pathological sampling because of radiographic tumor progression, fibrosis, or collapsed vertebrae after receiving high-dose single-fraction stereotactic radiosurgery. METHODS Between January 2005 and January 2014, a total of 582 patients were treated with linear accelerator-based single-fraction (18-24 Gy) stereotactic radiosurgery. The authors retrospectively identified 30 patients (5.1%) who underwent surgical intervention for 32 lesions with vertebral cement augmentation for either mechanical pain or instability secondary to vertebral compression fracture (n = 17) or instrumentation (n = 15) for radiographic tumor progression. Radiation and surgical treatment, histopathology, and long-term outcomes were reviewed. Survival and time to recurrence were calculated using the Kaplan-Meier method. RESULTS The mean age at the time of radiosurgery was 59 years (range 36-80 years). The initial pathological diagnoses were obtained for all patients and primarily included radioresistant tumor types, including renal cell carcinoma in 7 (22%), melanoma in 6 (19%), lung carcinoma in 4 (12%), and sarcoma in 3 (9%). The median time to surgical intervention was 24.7 months (range 1.6-50.8 months). The median follow-up and overall survival for all patients were 42.5 months and 41 months (overall survival range 7-86 months), respectively. The majority of assessed lesions showed no evidence of tumor on pathological review (25 of 32, 78%), while a minority of lesions revealed residual tumor (7 of 32, 22%). The median survival for patients after tumor recurrence was 5 months (range 2-70 months). CONCLUSIONS High-dose single-fraction radiosurgery is tumor ablative in the majority of instances. In a minority of cases, tumor persists and salvage treatments should be considered.


Asunto(s)
Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/cirugía , Radiocirugia/métodos , Neoplasias de la Columna Vertebral/patología , Neoplasias de la Columna Vertebral/cirugía , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Humanos , Cifoplastia/métodos , Masculino , Melanoma/cirugía , Persona de Mediana Edad , Estudios Retrospectivos , Compresión de la Médula Espinal/etiología , Compresión de la Médula Espinal/cirugía , Fusión Vertebral/métodos , Neoplasias de la Columna Vertebral/complicaciones , Resultado del Tratamiento
4.
Neurosurg Focus ; 42(1): E6, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28041329

RESUMEN

OBJECTIVE An analysis of factors contributing to durable radiographic control of spinal metastases was undertaken, drawing from a large single-institution database in an attempt to elucidate indications and dose requirements for successful treatment. METHODS All patients treated at a single institution with stereotactic radiosurgery (SRS) of the spine as first-line therapy were assessed for local progression of the treated site, defined as radiographic enlargement of the treated tumor and/or biopsy-proven evidence of active tumor cells. All patients were followed with CT, PET, or MR imaging every 3-6 months until death. Treatment decisions were made by a multidisciplinary team of radiation oncologists, neurosurgeons, and neuroradiologists. Target volumes were defined according to the international consensus guidelines and were reviewed in a multidisciplinary conference. Image-guided techniques and intensity modulation were used for every case. The tumor's histological type, gross tumor volume (GTV), dose that covers 95% of the GTV (GTV D95), percentage of GTV covered by 95% of the prescribed dose (GTV V95), planning target volume (PTV), dose that covers 95% of the PTV (PTV D95), and percentage of PTV covered by 95% of the prescribed dose (PTV V95) were analyzed for significance in relation to local control, based on time to local progression. RESULTS A total of 811 lesions were treated in 657 patients between 2003 and 2015 at a single institution. The mean follow-up and overall survival for the entire cohort was 26.9 months (range 2-141 months). A total of 28 lesions progressed and the mean time to failure was 26 months (range 9.7-57 months). The median prescribed dose was 2400 cGy (range 1600-2600 cGy). Both GTV D95 and PTV D95 were highly significantly associated with local failure in univariate analysis, but GTV and PTV and histological type did not reach statistical significance. The median GTV D95 for the cohort equal to or above the GTV D95 1830 cGy cut point (high dose) was 2356 cGy, and it was 1709 cGy for the cohort of patients who received less than 1830 cGy (low dose). In terms of PTV D95, the median dose for those equal to or above the cut point of 1740 cGy (high dose) was 2233 cGy, versus 1644 cGy for those lesions below the PTV D95 cut point of 1740 cGy (low dose). CONCLUSIONS High-dose single-session SRS provides durable long-term control, regardless of the histological findings or tumor size. In this analysis, the only significant factors predictive of local control were related to the actual dose of radiation given. Although the target volumes were well treated with the intended dose, those lesions irradiated to higher doses (median GTV D95 2356 cGy, minimum 1830 cGy) had a significantly higher probability of durable local control than those treated with lower doses (median PTV D95 2232 cGy, minimum of 1740 cGy) (p < 0.001). Patients in the high-dose cohort had a 2% cumulative rate of local failure. Histological findings were not associated with local failure, suggesting that radioresistant histological types benefit in particular from radiosurgery. For patients with a favorable prognosis, a higher dose of SRS is important for long-term outcomes.


Asunto(s)
Recurrencia Local de Neoplasia/cirugía , Radiocirugia/métodos , Neoplasias de la Columna Vertebral/cirugía , Insuficiencia del Tratamiento , Análisis de Varianza , Estudios de Cohortes , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Masculino , Recurrencia Local de Neoplasia/diagnóstico por imagen , Neoplasias de la Columna Vertebral/diagnóstico por imagen , Análisis de Supervivencia , Tomografía Computarizada por Rayos X
5.
Adv Radiat Oncol ; 7(3): 100885, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198837

RESUMEN

PURPOSE: Our purpose was to assess the suitability of airway-implanted internal fiducial markers and an external surrogate of respiratory motion for motion management during radiation therapy of lung tumors. METHODS AND MATERIALS: We analyzed 4-dimensional computed tomography scans acquired during radiation therapy simulation for 28 patients with lung tumors who had anchored fiducial markers bronchoscopically implanted inside small airways in or near the tumor in a prospective trial. We used a linear mixed model to build population-based correlative models of tumor and surrogate motion. The first 24 of the 28 patients were used to build correlative models, and 4 of the 28 consecutive patients were excluded and used as an internal validation cohort. Of the 24 patients from the model building cohort, all were used for the models based on the internal fiducial. The external surrogate was completely visualized in 11 patients from the model building cohort, so only those were used for the models based on the external surrogate. Furthermore, we determined the predicted residual error sum of squares for our correlative models, which may serve as benchmarks for future research. RESULTS: The motion of the internal fiducials was significantly associated with the tumor motion in the anterior-posterior (P < .0001) and superior-inferior (SI) directions (P < .0001). We also observed a strong correlation of the external surrogate anterior-posterior motion to the tumor dominant SI motion (P < .0001). In the validation cohort, the internal fiducial SI motion was the only reliable predictor of lung tumor motion. CONCLUSIONS: The internal fiducials appear to be more reliable predictors of lung tumor motion than the external surrogate. The suitability of such airway-implanted internal fiducial markers for advanced motion management techniques should be further investigated. Although the external surrogate seems to be less reliable, its wide availability and noninvasive application support its clinical utility, albeit the greater uncertainty will need to be compensated for.

6.
Med Phys ; 38(7): 3981-94, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21858995

RESUMEN

PURPOSE: To establish a new clinical procedure in frameless stereotactic radiosurgery (SRS) for patient setup verification at treatment couch angles as well as for head-motion monitoring during treatment using video-based optical surface imaging (OSI). METHODS: A video-based three-dimensional (3D) OSI system with three ceiling-mounted camera pods was employed to verify setup at treatment couch angles as well as to monitor head motion during treatment. A noninvasive head immobilization device was utilized, which includes an alpha head mold and a dental mouthpiece with vacuum suction; both were locked to the treatment couch. Cone beam computed tomography (CBCT) was used as the standard for image-guided setup. Orthogonal 2D-kV imaging was applied for setup verification before treatment, between couch rotations, and after treatment at zero couch angle. At various treatment couch angles, OSI setup verification was performed, relative to initial OSI setup verification at zero couch angle after CBCT setup through a coordinate transformation. For motion monitoring, the setup uncertainty was decoupled by taking an on-site surface image as new reference to detect motion-induced misalignment in near real-time (1-2 frames per second). Initial thermal instability baseline of the real-time monitoring was corrected. An anthropomorphous head phantom and a 1D positioning platform were used to assess the OSI accuracy in motion detection in longitudinal and lateral directions. Two hypofractionated (9 Gy x 3 and 6 Gy x 5) frameless stereotactic radiotherapy (SRT) patients as well as two single-fraction (21 and 18 Gy) frameless SRS patients were treated using this frameless procedure. For comparison, 11 conventional frame-based SRS patients were monitored using the OSI to serve as clinical standards. Multiple noncoplanar conformal beams were used for planning both frameless and frame-based SRS with a micromultileaf collimator. RESULTS: The accuracy of the OSI in 1D motion detection was found to be 0.1 mm with uncertainty of +/- 0.1 mm using the head phantom. The OSI registration against simulation computed tomography (CT) external contour was found to be dependent on the CT skin definition with -0.4 mm variation. For frame-based SRS patients, head-motion magnitude was detected to be <1.0 mm (0.3 +/- 0.2 mm) and <1.0 degree (0.2 degrees +/- 0.2 degrees) for 98% of treatment time, with exception of one patient with head rotation <1.5 degrees for 98% of the time. For frameless SRT/SRS patients, similar motion magnitudes were observed with an average of 0.3 +/- 0.2 mm and 0.2 degrees +/- 0.1 degree in ten treatments. For 98% of the time, the motion magnitude was <1.1 mm and 1.0 degree. Complex head-motion patterns within 1.0 mm were observed for frameless SRT/SRS patients. The OSI setup verification at treatment couch angles was found to be within 1.0 mm. CONCLUSIONS: The OSI system is capable of detecting 0.1 +/- 0.1 mm 1D spatial displacement of a phantom in near real time and useful in head-motion monitoring. This new frameless SRS procedure using the mask-less head-fixation system provides immobilization similar to that of conventional frame-based SRS. Head-motion monitoring using near-real-time surface imaging provides adequate accuracy and is necessary for frameless SRS in case of unexpected head motion that exceeds a set tolerance.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Imagenología Tridimensional/instrumentación , Radiocirugia/instrumentación , Cirugía Asistida por Computador/instrumentación , Grabación en Video/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
Med Phys ; 37(8): 4078-101, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20879569

RESUMEN

Task Group 101 of the AAPM has prepared this report for medical physicists, clinicians, and therapists in order to outline the best practice guidelines for the external-beam radiation therapy technique referred to as stereotactic body radiation therapy (SBRT). The task group report includes a review of the literature to identify reported clinical findings and expected outcomes for this treatment modality. Information is provided for establishing a SBRT program, including protocols, equipment, resources, and QA procedures. Additionally, suggestions for developing consistent documentation for prescribing, reporting, and recording SBRT treatment delivery is provided.


Asunto(s)
Guías de Práctica Clínica como Asunto , Radiocirugia/normas , Estados Unidos
8.
Med Dosim ; 45(1): 92-96, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31375297

RESUMEN

Metallic objects, such as dental fillings, cause artifacts in computed tomography (CT) scans. We quantify the contouring and dosimetric effects of Orthopedic Metal Artifact Reduction (O-MAR), in head and neck radiotherapy. The ease of organ contouring was assessed by having a radiation oncologist identify the CT data set with or without O-MAR for each of 28 patients that was easier to contour. The effect on contouring was quantified further by having the physician recontour parotid glands, previously drawn by him on the O-MAR scans, on uncorrected scans, and calculating the Dice coefficent (a measure of overlap) for the contours. Radiotherapy plans originally generated on scans reconstructed with O-MAR were recalculated on scans without metal artifact correction. The study was done using the Analytical Anisotropic Algorithm (AAA) dose calculation algorithm. The 15 patients with a planning target volume (PTV) extending to the same slice as the artifacts were used for this part of the study. The normal tissue doses were not significantly affected. The PTV mean dose and V95 were not affected, but the cold spots became less severe in the O-MAR corrected plans, with the minimum point dose on average being 4.1% higher. In 79% of the cases, the radiation oncologist identified the O-MAR scan as easier to contour; in 11% he chose the uncorrected scan and in 11% the scans were judged to have equal quality. A total of nine parotid glands (on both scans-18 contours in total) in 5 patients were recontoured. The average Dice coefficient for parotids drawn with and without O-MAR was found to be 0.775 +/- 0.045. The O-MAR algorithm does not produce a significant dosimetric effect in head and neck plans when using the AAA dose calculation algorithm. It can therefore be used for improved contouring accuracy without updating the critical structure tolerance doses and target coverage expectations.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Artefactos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Metales , Dispositivos de Fijación Ortopédica , Dosificación Radioterapéutica
9.
Med Phys ; 47(3): 1161-1166, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31899807

RESUMEN

PURPOSE: To design a convolutional recurrent neural network (CRNN) that calculates three-dimensional (3D) positions of lung tumors from continuously acquired cone beam computed tomography (CBCT) projections, and facilitates the sorting and reconstruction of 4D-CBCT images. METHOD: Under an IRB-approved clinical lung protocol, kilovoltage (kV) projections of the setup CBCT were collected in free-breathing. Concurrently, an electromagnetic signal-guided system recorded motion traces of three transponders implanted in or near the tumor. Convolutional recurrent neural network was designed to utilize a convolutional neural network (CNN) for extracting relevant features of the kV projections around the tumor, followed by a recurrent neural network for analyzing the temporal patterns of the moving features. Convolutional recurrent neural network was trained on the simultaneously collected kV projections and motion traces, subsequently utilized to calculate motion traces solely based on the continuous feed of kV projections. To enhance performance, CRNN was also facilitated by frequent calibrations (e.g., at 10° gantry rotation intervals) derived from cross-correlation-based registrations between kV projections and templates created from the planning 4DCT. Convolutional recurrent neural network was validated on a leave-one-out strategy using data from 11 lung patients, including 5500 kV images. The root-mean-square error between the CRNN and motion traces was calculated to evaluate the localization accuracy. RESULT: Three-dimensional displacement around the simulation position shown in the Calypso traces was 3.4 ± 1.7 mm. Using motion traces as ground truth, the 3D localization error of CRNN with calibrations was 1.3 ± 1.4 mm. CRNN had a success rate of 86 ± 8% in determining whether the motion was within a 3D displacement window of 2 mm. The latency was 20 ms when CRNN ran on a high-performance computer cluster. CONCLUSIONS: CRNN is able to provide accurate localization of lung tumors with aid from frequent recalibrations using the conventional cross-correlation-based registration approach, and has the potential to remove reliance on the implanted fiducials.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Imagenología Tridimensional/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Redes Neurales de la Computación , Humanos
10.
Med Phys ; 45(12): 5555-5563, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30362124

RESUMEN

PURPOSE: Localizing lung tumors during treatment delivery is critical for managing respiratory motion, ensuring tumor coverage, and reducing toxicities. The purpose of this project is to develop a real-time system that performs markerless tracking of lung tumors using simultaneously acquired MV and kV images during radiotherapy of lung cancer with volumetric modulated arc therapy. METHOD: Continuous MV/kV images were simultaneously acquired during dose delivery. In the subsequent analysis, a gantry angle-specific region of interest was defined according to the treatment aperture. After removing imaging artifacts, processed MV/kV images were directly registered to the corresponding daily setup cone-beam CT (CBCT) projections that served as reference images. The registration objective function consisted of a sum of normalized cross-correlation, weighted by the contrast-to-noise ratio of each MV and kV image. The calculated 3D shifts of the tumor were corrected by the displacements between the CBCT projections and the planning respiratory correlated CT (RCCT) to generate motion traces referred to a specific respiratory phase. The accuracy of the algorithm was evaluated on both anthropomorphic phantom and patient studies. The phantom consisted of localizing a 3D printed tumor, embedded in a thorax phantom, in an arc delivery. In an IRB-approved study, data were obtained from VMAT treatments of two lung cancer patients with three electromagnetic (Calypso) beacon transponders implanted in airways near the lung tumor. RESULT: In the phantom study, the root mean square error (RMSE) between the registered and actual (programmed couch movement) target position was 1.2 mm measured by the MV/kV imaging system, which was smaller compared to the MV or kV alone, of 4.1 and 1.3 mm, respectively. In the patient study, the mean and standard deviation discrepancy between electromagnetic-based tumor position and the MV/KV-markerless approach was -0.2 ± 0.6 mm, 0.2 ± 1.0 mm, and -1.2 ± 1.5 mm along the superior-inferior, anterior-posterior, and left-right directions, respectively; resulting in a 3D displacement discrepancy of 2.0 ± 1.1 mm. Poor contrast around the tumor was the main contribution to registration uncertainties. CONCLUSION: The combined MV/kV imaging system can provide real-time 3D localization of lung tumor, with comparable accuracy to the electromagnetic-based system when features of tumors are detectable. Careful design of a registration algorithm and a VMAT plan that maximizes the tumor visibility are key elements for a successful MV/KV localization strategy.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Movimiento , Radioterapia de Intensidad Modulada , Artefactos , Humanos , Procesamiento de Imagen Asistido por Computador , Neoplasias Pulmonares/fisiopatología , Fantasmas de Imagen , Reproducibilidad de los Resultados , Factores de Tiempo
11.
Int J Radiat Oncol Biol Phys ; 99(3): 598-607, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29280455

RESUMEN

OBJECTIVE: Dose-volume tolerance of the spinal cord (SC) in spinal stereotactic radiosurgery (SRS) is difficult to define because radiation myelitis rates are low, and published reports document cases of myelopathy but do not account for the total number of patients treated at given dose-volume combinations who do not have myelitis. This study reports SC toxicity from single-fraction spinal SRS and presents a comprehensive atlas of the incidence of adverse events to examine dose-volume predictors. METHODS AND MATERIALS: A prospective database of all patients undergoing single-fraction spinal SRS at our institution between 2004 and 2011 was reviewed. SC toxicity was defined by clinical myelitis with accompanying magnetic resonance imaging (MRI) signal changes that were not attributable to tumor progression. Dose-volume histogram (DVH) atlases were created for these endpoints. Rates of adverse events with 95% confidence limits and probabilities that rates of adverse events were <2% and <5% for myelitis were determined as functions of dose and absolute volume. RESULTS: Information about DVH and myelitis was available for 228 patients treated at 259 sites. The median follow-up time was 14.6 months (range, 0.1-138.3 months). The median prescribed dose to the planning treatment volume was 24 Gy (range, 18-24 Gy). There were 2 cases of radiation myelitis (rate r=0.7%) with accompanying MRI signal changes. Myelitis occurred in 2 patients, with Dmax >13.33 Gy, and minimum doses to the hottest 0.1, 0.2, 0.5, and 1 cc were >10.66, 10.9, and 8 Gy, respectively; however, both myelitis cases occurred below the 34th percentile for Dmax and there were 194 DVHs in total with Dmax >13.33 Gy. CONCLUSIONS: A median SC Dmax of 13.85 Gy is safe and supports that a Dmax limit of 14 Gy carries a low <1% rate of myelopathy. No dose-volume thresholds or relationships between SC dose and myelitis were apparent. This is the largest study examining dosimetric data and radiation-induced myelitis in de novo spine SRS.


Asunto(s)
Mielitis/etiología , Tolerancia a Radiación , Radiocirugia , Médula Espinal/efectos de la radiación , Adulto , Anciano , Anciano de 80 o más Años , Bases de Datos Factuales , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Mielitis/diagnóstico por imagen , Radiocirugia/efectos adversos , Radiocirugia/métodos , Dosificación Radioterapéutica , Médula Espinal/diagnóstico por imagen , Adulto Joven
12.
Int J Radiat Oncol Biol Phys ; 95(1): 62-69, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27084629

RESUMEN

PURPOSE: To quantify the relative biological effectiveness (RBE) of the distal edge of the proton Bragg peak, using an in vitro assay of DNA double-strand breaks (DSBs). METHODS AND MATERIALS: U2OS cells were irradiated within the plateau of a spread-out Bragg peak and at each millimeter position along the distal edge using a custom slide holder, allowing for simultaneous measurement of physical dose. A reference radiation signal was generated using photons. The DNA DSBs at 3 hours (to assess for early damage) and at 24 hours (to assess for residual damage and repair) after irradiation were measured using the γH2AX assay and quantified via flow cytometry. Results were confirmed with clonogenic survival assays. A detailed map of the RBE as a function of depth along the Bragg peak was generated using γH2AX measurements as a biological endpoint. RESULTS: At 3 hours after irradiation, DNA DSBs were higher with protons at every point along the distal edge compared with samples irradiated with photons to similar doses. This effect was even more pronounced after 24 hours, indicating that the impact of DNA repair is less after proton irradiation relative to photons. The RBE demonstrated an exponential increase as a function of depth and was measured to be as high as 4.0 after 3 hours and as high as 6.0 after 24 hours. When the RBE-corrected dose was plotted as a function of depth, the peak effective dose was extended 2-3 mm beyond what would be expected with physical measurement. CONCLUSIONS: We generated a highly comprehensive map of the RBE of the distal edge of the Bragg peak, using a direct assay of DNA DSBs in vitro. Our data show that the RBE of the distal edge increases with depth and is significantly higher than previously reported estimates.


Asunto(s)
Roturas del ADN de Doble Cadena , Transferencia Lineal de Energía , Protones , Efectividad Biológica Relativa , Línea Celular Tumoral , Supervivencia Celular , Ensayo de Unidades Formadoras de Colonias , Reparación del ADN , Relación Dosis-Respuesta en la Radiación , Citometría de Flujo/métodos , Histonas/análisis , Humanos , Fotones , Terapia de Protones , Factores de Tiempo
13.
Int J Radiat Oncol Biol Phys ; 95(3): 1042-1049, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-26797539

RESUMEN

PURPOSE: To assess intrafraction respiratory motion using a commercial kilovoltage imaging system for abdominal tumor patients with implanted fiducials and breathing constrained by pneumatic compression during stereotactic body radiation therapy (SBRT). METHODS AND MATERIALS: A pneumatic compression belt limited respiratory motion in 19 patients with radiopaque fiducials in or near their tumor during SBRT for abdominal tumors. Kilovoltage images were acquired at 5- to 6-second intervals during treatment using a commercial system. Intrafractional fiducial displacements were measured using in-house software. The dosimetric effect of the observed displacements was calculated for 3 sessions for each patient. RESULTS: Intrafraction displacement patterns varied between patients and between individual treatment sessions. Averaged over 19 patients, 73 sessions, 7.6% of craniocaudal displacements exceeded 0.5 cm, and 1.2% exceeded 0.75 cm. The calculated single-session dose to 95% of gross tumor volume differed from planned by an average of -1.2% (range, -11.1% to 4.8%) but only for 4 patients was the total 3-session calculated dose to 95% of gross tumor volume more than 3% different from planned. CONCLUSIONS: Our pneumatic compression limited intrafractional abdominal target motion, maintained target position established at setup, and was moderately effective in preserving coverage. Commercially available intrafractional imaging is useful for surveillance but can be made more effective and reliable.


Asunto(s)
Marcadores Fiduciales , Neoplasias Gastrointestinales/diagnóstico por imagen , Neoplasias Gastrointestinales/radioterapia , Inmovilización/métodos , Radiocirugia/métodos , Radioterapia Guiada por Imagen/métodos , Abdomen , Neoplasias Abdominales/diagnóstico por imagen , Neoplasias Abdominales/radioterapia , Anciano , Artefactos , Fraccionamiento de la Dosis de Radiación , Femenino , Humanos , Inmovilización/instrumentación , Aparatos de Compresión Neumática Intermitente , Masculino , Persona de Mediana Edad , Movimiento (Física) , Radiocirugia/instrumentación , Dosificación Radioterapéutica , Radioterapia Guiada por Imagen/instrumentación , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X/métodos , Resultado del Tratamiento
14.
Neurosurgery ; 54(4): 823-30; discussion 830-1, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15046647

RESUMEN

OBJECTIVE: Radioresistant paraspinal tumors may benefit from conformal treatment techniques such as intensity-modulated radiotherapy (IMRT). Local tumor control and long-term palliation for both primary and metastatic tumors may be achieved with IMRT while reducing the risk of spinal cord toxicity associated with conventional radiotherapy techniques. In this article, we report our initial clinical experience in treating 16 paraspinal tumors with IMRT in which the planning target volume was 2 mm or greater from the spinal cord. METHODS: IMRT was administered by using a linear accelerator mounted with a multileaf collimator. Two immobilization body frames developed at Memorial Sloan-Kettering Cancer Center were used for patients with and without spinal implants. During a 30-month period, 16 patients underwent IMRT for metastatic and primary tumors. Eleven patients were treated for symptomatic recurrences after undergoing surgery and prior external beam radiotherapy, and one patient was treated after undergoing radiotherapy for a metastatic pancreatic gastrinoma with overlapping ports to the spine. Four patients with primary tumors were treated after primary resection that resulted in positive histological margins. Twelve patients were symptomatic with pain, functional radiculopathy, or both. Tumoral doses were determined on the basis of the relative radiosensitivity of tumors. Patients with metastatic tumors were administered a median tumoral dose of 20 Gy in four to five fractions and a spinal cord maximum dose of 6.0 Gy in addition to the full tolerance dose administered in previous radiation treatments. The primary tumors were delivered a median dose of 70 Gy in 33 to 37 fractions and a spinal cord maximum dose of 16 Gy. The median tumoral volume was 7.8 cm(3). RESULTS: Of the 15 patients who underwent radiographic follow-up, 13 demonstrated either no interval growth or a reduction in tumor size in a median follow-up period of 12 months (range, 2-23 mo). Two patients, one with a thoracic chondrosarcoma and one with a chordoma, showed tumor progression 1 year after undergoing IMRT. Pain symptoms improved in 11 of 11 patients, and 4 of 4 patients had significant improvement in their functionally significant radiculopathy and/or plexopathy. Pain relief was durable in all patients except the two with tumor progression. No patient showed signs or symptoms of radiation-induced myelopathy, radiculopathy, or plexopathy, including 12 patients with a median follow-up of 18 months. CONCLUSION: IMRT was effective for treating pain and improving functional radiculopathy in patients with metastatic and primary tumors. Although long-term tumor control is not established in this study, high-dose tumoral irradiation can be performed without causing radiation myelopathy in more than 1 year of follow-up.


Asunto(s)
Radioterapia Conformacional , Neoplasias de la Columna Vertebral/radioterapia , Adulto , Anciano , Terapia Combinada , Fraccionamiento de la Dosis de Radiación , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/radioterapia , Recurrencia Local de Neoplasia/cirugía , Cuidados Paliativos , Aceleradores de Partículas , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia Adyuvante , Radioterapia Conformacional/instrumentación , Retratamiento , Estudios Retrospectivos , Médula Espinal/efectos de la radiación , Neoplasias de la Columna Vertebral/diagnóstico , Neoplasias de la Columna Vertebral/secundario , Neoplasias de la Columna Vertebral/cirugía
15.
Am J Clin Oncol ; 37(6): 561-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23466584

RESUMEN

OBJECTIVES: To describe the safety and efficacy of single-fraction and hypofractionated image-guided radiotherapy techniques for the treatment of large liver tumors. METHODS: Forty-six patients, with 50 tumors (10 primary liver tumors, 40 liver metastases) from March 2004 to March 2011 were reviewed. The maximal tumor diameter ranged from 1.2 to 11.3 cm (median, 4.2 cm). Eighty-seven percent of patients received prior systemic chemotherapy. Fifty-nine percent had prior invasive local therapy including surgery, ablation, or embolization. Twenty-five lesions were treated with hypofractionated therapy (24 to 30 Gy in 3 to 5 fractions), whereas 19 received a single fraction (18 or 24 Gy). Local control (LC) was calculated using competing risk analysis. Overall survival was calculated by the Kaplan-Meier method. RESULTS: Median follow-up for all patients was 29.8 months (range, 3 to 46 mo). The median survival was 15.4 months. The 1- and 2-year LC rates were 78% and 75%, respectively. Dose and tumor size had no significant effect on tumor progression. The local progression at 1 and 2 years was 29% and 32% for gastrointestinal (GI) histologies versus 0% for non-GI histologies (P=0.02). Tumor volumes larger than 112 cm correlated with decreased survival (P=0.05). Three patients developed late grade 3 GI stricture or ulceration. CONCLUSIONS: Image-guided radiotherapy for liver tumors achieves good rates of LC with minimal toxicity at 1 and 2 years even in patients with large or recurrent disease that has been heavily pretreated. GI histology demonstrated decreased LC rates. Further management strategies should be considered in these patients.


Asunto(s)
Neoplasias de los Conductos Biliares/radioterapia , Conductos Biliares Intrahepáticos , Neoplasias de la Mama/patología , Carcinoma Hepatocelular/radioterapia , Carcinoma/radioterapia , Colangiocarcinoma/radioterapia , Neoplasias Colorrectales/patología , Neoplasias Hepáticas/radioterapia , Radioterapia Guiada por Imagen , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de los Conductos Biliares/patología , Carcinoma/patología , Carcinoma/secundario , Carcinoma Hepatocelular/patología , Colangiocarcinoma/patología , Supervivencia sin Enfermedad , Fraccionamiento de la Dosis de Radiación , Femenino , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento , Carga Tumoral , Adulto Joven
16.
Radiat Oncol ; 8: 150, 2013 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-23800073

RESUMEN

BACKGROUND: To investigate the feasibility and dosimetric improvements of a novel technique to temporarily displace critical structures in the pelvis and abdomen from tumor during high-dose radiotherapy. METHODS: Between 2010 and 2012, 11 patients received high-dose image-guided intensity-modulated radiotherapy with temporary organ displacement (TOD) at our institution. In all cases, imaging revealed tumor abutting critical structures. An all-purpose drainage catheter was introduced between the gross tumor volume (GTV) and critical organs at risk (OAR) and infused with normal saline (NS) containing 5-10% iohexol. Radiation planning was performed with the displaced OARs and positional reproducibility was confirmed with cone-beam CT (CBCT). Patients were treated within 36 hours of catheter placement. Radiation plans were re-optimized using pre-TOD OARs to the same prescription and dosimetrically compared with post-TOD plans. A two-tailed permutation test was performed on each dosimetric measure. RESULTS: The bowel/rectum was displaced in six patients and kidney in four patients. One patient was excluded due to poor visualization of the OAR; thus 10 patients were analyzed. A mean of 229 ml (range, 80-1000) of NS 5-10% iohexol infusion resulted in OAR mean displacement of 17.5 mm (range, 7-32). The median dose prescribed was 2400 cGy in one fraction (range, 2100-3000 in 3 fractions). The mean GTV Dmin and PTV Dmin pre- and post-bowel TOD IG-IMRT dosimetry significantly increased from 1473 cGy to 2086 cGy (p=0.015) and 714 cGy to 1214 cGy (p=0.021), respectively. TOD increased mean PTV D95 by 27.14% of prescription (p=0.014) while the PTV D05 decreased by 9.2% (p=0.011). TOD of the bowel resulted in a 39% decrease in mean bowel Dmax (p=0.008) confirmed by CBCT. TOD of the kidney significantly decreased mean kidney dose and Dmax by 25% (0.022). CONCLUSIONS: TOD was well tolerated, reproducible, and facilitated dose escalation to previously radioresistant tumors abutting critical structures while minimizing dose to OARs.


Asunto(s)
Neoplasias/radioterapia , Órganos en Riesgo/efectos de la radiación , Traumatismos por Radiación/prevención & control , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Adulto , Anciano , Anciano de 80 o más Años , Catéteres , Medios de Contraste/uso terapéutico , Femenino , Humanos , Yohexol/uso terapéutico , Masculino , Persona de Mediana Edad , Músculos Paraespinales , Radioterapia de Intensidad Modulada/efectos adversos , Estudios Retrospectivos , Adulto Joven
17.
Int J Radiat Oncol Biol Phys ; 82(5): 1744-8, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21596489

RESUMEN

PURPOSE: To report tumor local progression-free outcomes after treatment with single-dose, image-guided, intensity-modulated radiotherapy and hypofractionated regimens for extracranial metastases from renal cell primary tumors. PATIENTS AND METHODS: Between 2004 and 2010, 105 lesions from renal cell carcinoma were treated with either single-dose, image-guided, intensity-modulated radiotherapy to a prescription dose of 18-24 Gy (median, 24) or hypofractionation (three or five fractions) with a prescription dose of 20-30 Gy. The median follow-up was 12 months (range, 1-48). RESULTS: The overall 3-year actuarial local progression-free survival for all lesions was 44%. The 3-year local progression-free survival for those who received a high single-dose (24 Gy; n = 45), a low single-dose (<24 Gy; n = 14), or hypofractionation regimens (n = 46) was 88%, 21%, and 17%, respectively (high single dose vs. low single dose, p = .001; high single dose vs. hypofractionation, p < .001). Multivariate analysis revealed the following variables were significant predictors of improved local progression-free survival: 24 Gy dose compared with a lower dose (p = .009) and a single dose vs. hypofractionation (p = .008). CONCLUSION: High single-dose, image-guided, intensity-modulated radiotherapy is a noninvasive procedure resulting in high probability of local tumor control for metastatic renal cell cancer generally considered radioresistant according to the classic radiobiologic ranking.


Asunto(s)
Neoplasias Óseas/radioterapia , Carcinoma de Células Renales/radioterapia , Neoplasias Renales , Radioterapia Guiada por Imagen/métodos , Radioterapia de Intensidad Modulada/métodos , Neoplasias Óseas/mortalidad , Neoplasias Óseas/secundario , Carcinoma de Células Renales/mortalidad , Carcinoma de Células Renales/secundario , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Análisis Multivariante , Dosificación Radioterapéutica , Carga Tumoral
18.
Int J Radiat Oncol Biol Phys ; 84(1): 125-9, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22330997

RESUMEN

PURPOSE: To compare toxicity profiles and biochemical tumor control outcomes between patients treated with high-dose image-guided radiotherapy (IGRT) and high-dose intensity-modulated radiotherapy (IMRT) for clinically localized prostate cancer. MATERIALS AND METHODS: Between 2008 and 2009, 186 patients with prostate cancer were treated with IGRT to a dose of 86.4 Gy with daily correction of the target position based on kilovoltage imaging of implanted prostatic fiducial markers. This group of patients was retrospectively compared with a similar cohort of 190 patients who were treated between 2006 and 2007 with IMRT to the same prescription dose without, however, implanted fiducial markers in place (non-IGRT). The median follow-up time was 2.8 years (range, 2-6 years). RESULTS: A significant reduction in late urinary toxicity was observed for IGRT patients compared with the non-IGRT patients. The 3-year likelihood of grade 2 and higher urinary toxicity for the IGRT and non-IGRT cohorts were 10.4% and 20.0%, respectively (p = 0.02). Multivariate analysis identifying predictors for grade 2 or higher late urinary toxicity demonstrated that, in addition to the baseline Internatinoal Prostate Symptom Score, IGRT was associated with significantly less late urinary toxicity compared with non-IGRT. The incidence of grade 2 and higher rectal toxicity was low for both treatment groups (1.0% and 1.6%, respectively; p = 0.81). No differences in prostate-specific antigen relapse-free survival outcomes were observed for low- and intermediate-risk patients when treated with IGRT and non-IGRT. For high-risk patients, a significant improvement was observed at 3 years for patients treated with IGRT compared with non-IGRT. CONCLUSIONS: IGRT is associated with an improvement in biochemical tumor control among high-risk patients and a lower rate of late urinary toxicity compared with high-dose IMRT. These data suggest that, for definitive radiotherapy, the placement of fiducial markers and daily tracking of target positioning may represent the preferred mode of external-beam radiotherapy delivery for the treatment of prostate cancer.


Asunto(s)
Marcadores Fiduciales , Neoplasias de la Próstata/radioterapia , Radioterapia Guiada por Imagen/métodos , Radioterapia de Intensidad Modulada/métodos , Anciano , Humanos , Masculino , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/patología , Traumatismos por Radiación/prevención & control , Dosificación Radioterapéutica , Radioterapia Guiada por Imagen/efectos adversos , Radioterapia de Intensidad Modulada/efectos adversos , Recto/efectos de la radiación , Estudios Retrospectivos , Resultado del Tratamiento , Vejiga Urinaria/efectos de la radiación
19.
Int J Radiat Oncol Biol Phys ; 83(5): e597-605, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22608954

RESUMEN

PURPOSE: Spinal stereotactic radiosurgery (SRS) is increasingly used to manage spinal metastases. However, target volume definition varies considerably and no consensus target volume guidelines exist. This study proposes consensus target volume definitions using common scenarios in metastatic spine radiosurgery. METHODS AND MATERIALS: Seven radiation oncologists and 3 neurological surgeons with spinal radiosurgery expertise independently contoured target and critical normal structures for 10 cases representing common scenarios in metastatic spine radiosurgery. Each set of volumes was imported into the Computational Environment for Radiotherapy Research. Quantitative analysis was performed using an expectation maximization algorithm for Simultaneous Truth and Performance Level Estimation (STAPLE) with kappa statistics calculating agreement between physicians. Optimized confidence level consensus contours were identified using histogram agreement analysis and characterized to create target volume definition guidelines. RESULTS: Mean STAPLE agreement sensitivity and specificity was 0.76 (range, 0.67-0.84) and 0.97 (range, 0.94-0.99), respectively, for gross tumor volume (GTV) and 0.79 (range, 0.66-0.91) and 0.96 (range, 0.92-0.98), respectively, for clinical target volume (CTV). Mean kappa agreement was 0.65 (range, 0.54-0.79) for GTV and 0.64 (range, 0.54-0.82) for CTV (P<.01 for GTV and CTV in all cases). STAPLE histogram agreement analysis identified optimal consensus contours (80% confidence limit). Consensus recommendations include that the CTV should include abnormal marrow signal suspicious for microscopic invasion and an adjacent normal bony expansion to account for subclinical tumor spread in the marrow space. No epidural CTV expansion is recommended without epidural disease, and circumferential CTVs encircling the cord should be used only when the vertebral body, bilateral pedicles/lamina, and spinous process are all involved or there is extensive metastatic disease along the circumference of the epidural space. CONCLUSIONS: This report provides consensus guidelines for target volume definition for spinal metastases receiving upfront SRS in common clinical situations.


Asunto(s)
Vértebras Lumbares , Imagen por Resonancia Magnética , Radiocirugia/normas , Neoplasias de la Columna Vertebral/secundario , Neoplasias de la Columna Vertebral/cirugía , Vértebras Torácicas , Carga Tumoral , Humanos , Vértebras Lumbares/patología , Neoplasias de la Columna Vertebral/patología , Vértebras Torácicas/patología
20.
Int J Radiat Oncol Biol Phys ; 81(3): 819-26, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20888133

RESUMEN

PURPOSE: To examine the impact of dose on local failure (LF) rates in the re-treatment of recurrent paraspinal metastases with image-guided intensity-modulated radiotherapy (IG-IMRT). METHODS AND MATERIALS: The records of patients with in-field recurrence after previous spine radiation (median dose, 30 Gy) who received salvage IG-IMRT with either five 4-Gy (20-Gy group, n = 42) or five 6-Gy (30-Gy group, n = 55) daily fractions between January 2003 and August 2008 were reviewed. Institutional practice was 20 Gy before April 2006, when it changed to 30 Gy. A total of 47 cases (48%) were treated adjuvantly, after surgery to decompress epidural disease. LF after IG-IMRT was defined radiographically. RESULTS: The median follow-up was 12.1 months (range, 0.2-63.6 months). The 1-year cumulative incidences of LF after 20 Gy and 30 Gy IG-IMRT were 45% and 26%, respectively (p = 0.04). Of all treatment characteristics examined (20-Gy vs. 30-Gy dose group, dose to 95% of the planned and gross target volume, tumor size, histology, receipt of surgery, and interval between first and second radiation), only dose group had a significant impact on actuarial LF incidence (p = 0.04; unadjusted HR, 0.51; 95% CI, 0.27-0.96). There was no incidence of myelopathy. CONCLUSIONS: A significant decrease in LF after IG-IMRT with five 6-Gy fractions compared with five 4-Gy fractions was observed without increased risk of myelopathy. Until prospective data comparing stereotactic hypofractionated and single-fraction regimens become available, when reirradiating recurrent paraspinal metastases with IG-IMRT, administration of five 6-Gy daily fractions is reasonable.


Asunto(s)
Recurrencia Local de Neoplasia/radioterapia , Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada/efectos adversos , Neoplasias de la Columna Vertebral/radioterapia , Neoplasias de la Columna Vertebral/secundario , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Descompresión Quirúrgica , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Retratamiento/métodos , Neoplasias de la Columna Vertebral/patología , Neoplasias de la Columna Vertebral/cirugía , Insuficiencia del Tratamiento , Carga Tumoral , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA