Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38501936

RESUMEN

A scintillator-based Timepix3 (TPX3) detector was developed to resolve the high-frequency modulation of a neutron beam in both spatial and temporal domains, as required for neutron spin-echo experiments. In this system, light from a scintillator is manipulated with an optical lens and is intensified using an image intensifier, making it detectable with the TPX3 chip. Two different scintillators, namely, 6LiF:ZnS(Ag) and 6LiI:Eu, were investigated to achieve the high resolution needed for spin-echo modulated small-angle neutron scattering (SEMSANS) and modulation of intensity with zero effort (MIEZE). The methodology for conducting event-mode analysis is described, including the optimization of clustering parameters for both scintillators. The detector with both scintillators was characterized with respect to detection efficiency, spatial resolution, count rate, uniformity, and γ-sensitivity. The 6LiF:ZnS(Ag) scintillator-based detector achieved a spatial resolution of 200 µm and a count rate capability of 1.1 × 105 cps, while the 6LiI:Eu scintillator-based detector demonstrated a spatial resolution of 250 µm and a count rate capability exceeding 2.9 × 105 cps. Furthermore, high-frequency intensity modulations in both spatial and temporal domains were successfully observed, confirming the suitability of this detector for SEMSANS and MIEZE techniques, respectively.

2.
iScience ; 19: 378-387, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31419631

RESUMEN

This paper reports a new method to generate stable and high-brightness electroluminescence (EL) by subsequently growing large/small grains at micro/nano scales with the configuration of attaching small grains on the surfaces of large grains in perovskite (MAPbBr3) films by mixing two precursor solutions (PbBr2 + MABr and Pb(Ac)2·3H2O + MABr). Consequently, the small and large grains serve, respectively, as passivation agents and light-emitting centers, enabling self-passivation on the defects located on the surfaces of light-emitting large grains. Furthermore, the light-emitting states become linearly polarized with maximal polarization of 30.8%, demonstrating a very stable light emission (49,119 cd/m2 with EQE = 11.31%) and a lower turn-on bias (1.9 V) than the bandgap (2.25V) in the perovskite LEDs (ITO/PEDOT:PSS/MAPbBr3/TPBi[50 nm]/LiF[0.7 nm]/Ag). Therefore, mixing large/small grains with the configuration of attaching small grains on the surfaces of large grains by mixing two precursor solutions presents a new strategy to develop high-performance perovskite LEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA