Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(10): 2465-2484.e22, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38701782

RESUMEN

Remyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment. ESI1 promotes remyelination in animal models of demyelination and enables de novo myelinogenesis on regenerated CNS axons. ESI1 treatment lengthened myelin sheaths in human iPSC-derived organoids and augmented (re)myelination in aged mice while reversing age-related cognitive decline. Multi-omics revealed that ESI1 induces an active chromatin landscape that activates myelinogenic pathways and reprograms metabolism. Notably, ESI1 triggered nuclear condensate formation of master lipid-metabolic regulators SREBP1/2, concentrating transcriptional co-activators to drive lipid/cholesterol biosynthesis. Our study highlights the potential of targeting epigenetic silencing to enable CNS myelin regeneration in demyelinating diseases and aging.


Asunto(s)
Epigénesis Genética , Vaina de Mielina , Oligodendroglía , Remielinización , Animales , Vaina de Mielina/metabolismo , Humanos , Ratones , Remielinización/efectos de los fármacos , Oligodendroglía/metabolismo , Sistema Nervioso Central/metabolismo , Ratones Endogámicos C57BL , Rejuvenecimiento , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Organoides/metabolismo , Organoides/efectos de los fármacos , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/genética , Diferenciación Celular/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Masculino , Regeneración/efectos de los fármacos , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/genética , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología
2.
Cell ; 152(1-2): 248-61, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23332759

RESUMEN

Establishment of oligodendrocyte identity is crucial for subsequent events of myelination in the CNS. Here, we demonstrate that activation of ATP-dependent SWI/SNF chromatin-remodeling enzyme Smarca4/Brg1 at the differentiation onset is necessary and sufficient to initiate and promote oligodendrocyte lineage progression and maturation. Genome-wide multistage studies by ChIP-seq reveal that oligodendrocyte-lineage determination factor Olig2 functions as a prepatterning factor to direct Smarca4/Brg1 to oligodendrocyte-specific enhancers. Recruitment of Smarca4/Brg1 to distinct subsets of myelination regulatory genes is developmentally regulated. Functional analyses of Smarca4/Brg1 and Olig2 co-occupancy relative to chromatin epigenetic marking uncover stage-specific cis-regulatory elements that predict sets of transcriptional regulators controlling oligodendrocyte differentiation. Together, our results demonstrate that regulation of the functional specificity and activity of a Smarca4/Brg1-dependent chromatin-remodeling complex by Olig2, coupled with transcriptionally linked chromatin modifications, is critical to precisely initiate and establish the transcriptional program that promotes oligodendrocyte differentiation and subsequent myelination of the CNS.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/citología , Animales , Encéfalo/citología , Células Cultivadas , ADN Helicasas/metabolismo , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Proteínas Nucleares/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Oligodendroglía/metabolismo , Ratas , Médula Espinal/citología , Factores de Transcripción/metabolismo
3.
Nature ; 612(7941): 787-794, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36450980

RESUMEN

Medulloblastoma (MB) is the most common malignant childhood brain tumour1,2, yet the origin of the most aggressive subgroup-3 form remains elusive, impeding development of effective targeted treatments. Previous analyses of mouse cerebella3-5 have not fully defined the compositional heterogeneity of MBs. Here we undertook single-cell profiling of freshly isolated human fetal cerebella to establish a reference map delineating hierarchical cellular states in MBs. We identified a unique transitional cerebellar progenitor connecting neural stem cells to neuronal lineages in developing fetal cerebella. Intersectional analysis revealed that the transitional progenitors were enriched in aggressive MB subgroups, including group 3 and metastatic tumours. Single-cell multi-omics revealed underlying regulatory networks in the transitional progenitor populations, including transcriptional determinants HNRNPH1 and SOX11, which are correlated with clinical prognosis in group 3 MBs. Genomic and Hi-C profiling identified de novo long-range chromatin loops juxtaposing HNRNPH1/SOX11-targeted super-enhancers to cis-regulatory elements of MYC, an oncogenic driver for group 3 MBs. Targeting the transitional progenitor regulators inhibited MYC expression and MYC-driven group 3 MB growth. Our integrated single-cell atlases of human fetal cerebella and MBs show potential cell populations predisposed to transformation and regulatory circuitries underlying tumour cell states and oncogenesis, highlighting hitherto unrecognized transitional progenitor intermediates predictive of disease prognosis and potential therapeutic vulnerabilities.


Asunto(s)
Neoplasias Encefálicas , Transformación Celular Neoplásica , Feto , Meduloblastoma , Humanos , Neoplasias Encefálicas/patología , Transformación Celular Neoplásica/patología , Neoplasias Cerebelosas/patología , Cerebelo/citología , Cerebelo/patología , Feto/citología , Feto/patología , Meduloblastoma/patología , Células-Madre Neurales/citología , Células-Madre Neurales/patología , Pronóstico
4.
Development ; 149(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35132995

RESUMEN

Distinct neural stem cells (NSCs) reside in different regions of the subventricular zone (SVZ) and generate multiple olfactory bulb (OB) interneuron subtypes in the adult brain. However, the molecular mechanisms underlying such NSC heterogeneity remain largely unknown. Here, we show that the basic helix-loop-helix transcription factor Olig2 defines a subset of NSCs in the early postnatal and adult SVZ. Olig2-expressing NSCs exist broadly but are most enriched in the ventral SVZ along the dorsoventral axis complementary to dorsally enriched Gsx2-expressing NSCs. Comparisons of Olig2-expressing NSCs from early embryonic to adult stages using single cell transcriptomics reveal stepwise developmental changes in their cell cycle and metabolic properties. Genetic studies further show that cross-repression contributes to the mutually exclusive expression of Olig2 and Gsx2 in NSCs/progenitors during embryogenesis, but that their expression is regulated independently from each other in adult NSCs. Finally, lineage-tracing and conditional inactivation studies demonstrate that Olig2 plays an important role in the specification of OB interneuron subtypes. Altogether, our study demonstrates that Olig2 defines a unique subset of adult NSCs enriched in the ventral aspect of the adult SVZ.


Asunto(s)
Interneuronas/metabolismo , Ventrículos Laterales/crecimiento & desarrollo , Ventrículos Laterales/metabolismo , Células-Madre Neurales/metabolismo , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Animales , Ciclo Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Femenino , Técnicas de Inactivación de Genes , Ventrículos Laterales/embriología , Masculino , Ratones , Ratones Noqueados , Neurogénesis/genética , Bulbo Olfatorio/embriología , Factor de Transcripción 2 de los Oligodendrocitos/genética , Transducción de Señal/genética , Transcriptoma/genética
5.
Glia ; 72(7): 1304-1318, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38546197

RESUMEN

Oligodendrocyte differentiation and myelination in the central nervous system are controlled and coordinated by a complex gene regulatory network that contains several transcription factors, including Zfp488 and Nkx2.2. Despite the proven role in oligodendrocyte differentiation little is known about the exact mode of Zfp488 and Nkx2.2 action, including their target genes. Here, we used overexpression of Zfp488 and Nkx2.2 in differentiating CG4 cells to identify aspects of the oligodendroglial expression profile that depend on these transcription factors. Although both transcription factors are primarily described as repressors, the detected changes argue for an additional function as activators. Among the genes activated by both Zfp488 and Nkx2.2 was the G protein-coupled receptor Gpr37 that is important during myelination. In agreement with a positive effect on Gpr37 expression, downregulation of the G protein-coupled receptor was observed in Zfp488- and in Nkx2.2-deficient oligodendrocytes in the mouse. We also identified several potential regulatory regions of the Gpr37 gene. Although Zfp488 and Nkx2.2 both bind to one of the regulatory regions downstream of the Gpr37 gene in vivo, none of the regulatory regions was activated by either transcription factor alone. Increased activation by Zfp488 or Nkx2.2 was only observed in the presence of Sox10, a transcription factor continuously present in oligodendroglial cells. Our results argue that both Zfp488 and Nkx2.2 also act as transcriptional activators during oligodendrocyte differentiation and cooperate with Sox10 to allow the expression of Gpr37 as a modulator of the myelination process.


Asunto(s)
Diferenciación Celular , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio , Oligodendroglía , Receptores Acoplados a Proteínas G , Factores de Transcripción SOXE , Factores de Transcripción , Animales , Femenino , Masculino , Ratones , Diferenciación Celular/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
6.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443202

RESUMEN

The mechanistic target of rapamycin (mTOR) is a central regulator of cell growth and an attractive anticancer target that integrates diverse signals to control cell proliferation. Previous studies using mTOR inhibitors have shown that mTOR targeting suppresses gene expression and cell proliferation. To date, however, mTOR-targeted therapies in cancer have seen limited efficacy, and one key issue is related to the development of evasive resistance. In this manuscript, through the use of a gene targeting mouse model, we have found that inducible deletion of mTOR in hematopoietic stem cells (HSCs) results in a loss of quiescence and increased proliferation. Adaptive to the mTOR loss, mTOR-/- HSCs increase chromatin accessibility and activate global gene expression, contrary to the effects of short-term inhibition by mTOR inhibitors. Mechanistically, such genomic changes are due to a rewiring and adaptive activation of the ERK/MNK/eIF4E signaling pathway that enhances the protein translation of RNA polymerase II, which in turn leads to increased c-Myc gene expression, allowing the HSCs to thrive despite the loss of a functional mTOR pathway. This adaptive mechanism can also be utilized by leukemia cells undergoing long-term mTOR inhibitor treatment to confer resistance to mTOR drug targeting. The resistance can be counteracted by MNK, CDK9, or c-Myc inhibition. These results provide insights into the physiological role of mTOR in mammalian stem cell regulation and implicate a mechanism of evasive resistance in the context of mTOR targeting.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/genética , Cromatina/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , Quinasa 9 Dependiente de la Ciclina/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Marcación de Gen , Genes myc/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Noqueados , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , ARN Polimerasa II/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
7.
J Neurosci ; 42(45): 8542-8555, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36198499

RESUMEN

The oligodendrocyte (OL) lineage transcription factor Olig2 is expressed throughout oligodendroglial development and is essential for oligodendroglial progenitor specification and differentiation. It was previously reported that deletion of Olig2 enhanced the maturation and myelination of immature OLs and accelerated the remyelination process. However, by analyzing multiple Olig2 conditional KO mouse lines (male and female), we conclude that Olig2 has the opposite effect and is required for OL maturation and remyelination. We found that deletion of Olig2 in immature OLs driven by an immature OL-expressing Plp1 promoter resulted in defects in OL maturation and myelination, and did not enhance remyelination after demyelination. Similarly, Olig2 deletion during premyelinating stages in immature OLs using Mobp or Mog promoter-driven Cre lines also did not enhance OL maturation in the CNS. Further, we found that Olig2 was not required for myelin maintenance in mature OLs but was critical for remyelination after lysolecithin-induced demyelinating injury. Analysis of genomic occupancy in immature and mature OLs revealed that Olig2 targets the enhancers of key myelination-related genes for OL maturation from immature OLs. Together, by leveraging multiple immature OL-expressing Cre lines, these studies indicate that Olig2 is essential for differentiation and myelination of immature OLs and myelin repair. Our findings raise fundamental questions about the previously proposed role of Olig2 in opposing OL myelination and highlight the importance of using Cre-dependent reporter(s) for lineage tracing in studying cell state progression.SIGNIFICANCE STATEMENT Identification of the regulators that promote oligodendrocyte (OL) myelination and remyelination is important for promoting myelin repair in devastating demyelinating diseases. Olig2 is expressed throughout OL lineage development. Ablation of Olig2 was reported to induce maturation, myelination, and remyelination from immature OLs. However, lineage-mapping analysis of Olig2-ablated cells was not conducted. Here, by leveraging multiple immature OL-expressing Cre lines, we observed no evidence that Olig2 ablation promotes maturation or remyelination of immature OLs. Instead, we find that Olig2 is required for immature OL maturation, myelination, and myelin repair. These data raise fundamental questions about the proposed inhibitory role of Olig2 against OL maturation and remyelination. Our findings highlight the importance of validating genetic manipulation with cell lineage tracing in studying myelination.


Asunto(s)
Enfermedades Desmielinizantes , Remielinización , Animales , Femenino , Masculino , Ratones , Diferenciación Celular , Enfermedades Desmielinizantes/metabolismo , Vaina de Mielina/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/genética , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Ratones Noqueados
8.
J Neurosci ; 42(44): 8373-8392, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36127134

RESUMEN

The chromatin remodeler CHD8 represents a high-confidence risk factor in autism, a multistage progressive neurologic disorder, however the underlying stage-specific functions remain elusive. In this study, by analyzing Chd8 conditional knock-out mice (male and female), we find that CHD8 controls cortical neural stem/progenitor cell (NSC) proliferation and survival in a stage-dependent manner. Strikingly, inducible genetic deletion reveals that CHD8 is required for the production and fitness of transit-amplifying intermediate progenitors (IPCs) essential for upper-layer neuron expansion in the embryonic cortex. p53 loss of function partially rescues apoptosis and neurogenesis defects in the Chd8-deficient brain. Further, transcriptomic and epigenomic profiling indicates that CHD8 regulates the chromatin accessibility landscape to activate neurogenesis-promoting factors including TBR2, a key regulator of IPC neurogenesis, while repressing DNA damage- and p53-induced apoptotic programs. In the adult brain, CHD8 depletion impairs forebrain neurogenesis by impeding IPC differentiation from NSCs in both subventricular and subgranular zones; however, unlike in embryos, it does not affect NSC proliferation and survival. Treatment with an antidepressant approved by the Federal Drug Administration (FDA), fluoxetine, partially restores adult hippocampal neurogenesis in Chd8-ablated mice. Together, our multistage functional studies identify temporally specific roles for CHD8 in developmental and adult neurogenesis, pointing to a potential strategy to enhance neurogenesis in the CHD8-deficient brain.SIGNIFICANCE STATEMENT The role of the high-confidence autism gene CHD8 in neurogenesis remains incompletely understood. Here, we identify a stage-specific function of CHD8 in development of NSCs in developing and adult brains by conserved, yet spatiotemporally distinct, mechanisms. In embryonic cortex, CHD8 is critical for the proliferation, survival, and differentiation of both NSC and IPCs during cortical neurogenesis. In adult brain, CHD8 is required for IPC generation but not the proliferation and survival of adult NSCs. Treatment with FDA-approved antidepressant fluoxetine partially rescues the adult neurogenesis defects in CHD8 mutants. Thus, our findings help resolve CHD8 functions throughout life during embryonic and adult neurogenesis and point to a potential avenue to promote neurogenesis in CHD8 deficiency.


Asunto(s)
Trastorno Autístico , Cromatina , Proteínas de Unión al ADN , Neurogénesis , Animales , Femenino , Masculino , Ratones , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fluoxetina , Hipocampo/metabolismo , Ratones Noqueados , Neurogénesis/fisiología , Proteína p53 Supresora de Tumor , Prosencéfalo
9.
Blood ; 138(3): 221-233, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34292326

RESUMEN

The Chd8 gene encodes a member of the chromodomain helicase DNA-binding (CHD) family of SNF2H-like adenosine triphosphate (ATP)-dependent chromatin remodeler, the mutations of which define a subtype of autism spectrum disorders. Increasing evidence from recent studies indicates that ATP-dependent chromatin-remodeling genes are involved in the control of crucial gene-expression programs in hematopoietic stem/progenitor cell (HSPC) regulation. In this study, we identified CHD8 as a specific and essential regulator of normal hematopoiesis. Loss of Chd8 leads to severe anemia, pancytopenia, bone marrow failure, and engraftment failure related to a drastic depletion of HSPCs. CHD8 forms a complex with ATM and its deficiency increases chromatin accessibility and drives genomic instability in HSPCs causing an activation of ATM kinase that further stabilizes P53 protein by phosphorylation and leads to increased HSPC apoptosis. Deletion of P53 rescues the apoptotic defects of HSPCs and restores overall hematopoiesis in Chd8-/- mice. Our findings demonstrate that chromatin organization by CHD8 is uniquely necessary for the maintenance of hematopoiesis by integrating the ATM-P53-mediated survival of HSPCs.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/citología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Supervivencia Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Eliminación de Gen , Células Madre Hematopoyéticas/metabolismo , Ratones , Pancitopenia/genética , Pancitopenia/metabolismo , Estabilidad Proteica
10.
Semin Cell Dev Biol ; 97: 74-83, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31301357

RESUMEN

The repair and functional recovery of the nervous system is a highly regulated process that requires the coordination of many different components including the proper myelination of regenerated axons. Dysmyelination and remyelination failures after injury result in defective nerve conduction, impairing normal nervous system functions. There are many convergent regulatory networks and signaling mechanisms between development and regeneration. For instance, the regulatory mechanisms required for oligodendrocyte lineage progression could potentially play fundamental roles in myelin repair. In recent years, epigenetic chromatin modifications have been implicated in CNS myelination and functional nerve restoration. The pro-regenerative transcriptional program is likely silenced or repressed in adult neural cells including neurons and myelinating cells in the central and peripheral nervous systems limiting the capacity for repair after injury. In this review, we will discuss the roles of epigenetic mechanisms, including histone modifications, chromatin remodeling, and DNA methylation, in the maintenance and establishment of the myelination program during normal oligodendrocyte development and regeneration. We also discuss how these epigenetic processes impact myelination and axonal regeneration, and facilitate the improvement of current preclinical therapeutics for functional nerve regeneration in neurodegenerative disorders or after injury.


Asunto(s)
Cromatina/metabolismo , Epigenómica/métodos , Regeneración Nerviosa/genética , Animales , Humanos
11.
Blood ; 136(16): 1824-1836, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32483624

RESUMEN

Yap1 and its paralogue Taz largely control epithelial tissue growth. We have identified that hematopoietic stem cell (HSC) fitness response to stress depends on Yap1 and Taz. Deletion of Yap1 and Taz induces a loss of HSC quiescence, symmetric self-renewal ability, and renders HSC more vulnerable to serial myeloablative 5-fluorouracil treatment. This effect depends on the predominant cytosolic polarization of Yap1 through a PDZ domain-mediated interaction with the scaffold Scribble. Scribble and Yap1 coordinate to control cytoplasmic Cdc42 activity and HSC fate determination in vivo. Deletion of Scribble disrupts Yap1 copolarization with Cdc42 and decreases Cdc42 activity, resulting in increased self-renewing HSC with competitive reconstitution advantages. These data suggest that Scribble/Yap1 copolarization is indispensable for Cdc42-dependent activity on HSC asymmetric division and fate. The combined loss of Scribble, Yap1, and Taz results in transcriptional upregulation of Rac-specific guanine nucleotide exchange factors, Rac activation, and HSC fitness restoration. Scribble links Cdc42 and the cytosolic functions of the Hippo signaling cascade in HSC fate determination.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Diferenciación Celular/genética , Células Madre Hematopoyéticas/metabolismo , Proteínas de la Membrana/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Biomarcadores , Proliferación Celular , Autorrenovación de las Células , Células Cultivadas , Células Madre Hematopoyéticas/citología , Humanos , Proteínas de la Membrana/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Señalizadoras YAP , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
12.
Proc Natl Acad Sci U S A ; 115(35): E8246-E8255, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30108144

RESUMEN

Oligodendrocyte precursor cells (OPCs) constitute the main proliferative cells in the adult brain, and deregulation of OPC proliferation-differentiation balance results in either glioma formation or defective adaptive (re)myelination. OPC differentiation requires significant genetic reprogramming, implicating chromatin remodeling. Mounting evidence indicates that chromatin remodelers play important roles during normal development and their mutations are associated with neurodevelopmental defects, with CHD7 haploinsuficiency being the cause of CHARGE syndrome and CHD8 being one of the strongest autism spectrum disorder (ASD) high-risk-associated genes. Herein, we report on uncharacterized functions of the chromatin remodelers Chd7 and Chd8 in OPCs. Their OPC-chromatin binding profile, combined with transcriptome and chromatin accessibility analyses of Chd7-deleted OPCs, demonstrates that Chd7 protects nonproliferative OPCs from apoptosis by chromatin closing and transcriptional repression of p53 Furthermore, Chd7 controls OPC differentiation through chromatin opening and transcriptional activation of key regulators, including Sox10, Nkx2.2, and Gpr17 However, Chd7 is dispensable for oligodendrocyte stage progression, consistent with Chd8 compensatory function, as suggested by their common chromatin-binding profiles and genetic interaction. Finally, CHD7 and CHD8 bind in OPCs to a majority of ASD risk-associated genes, suggesting an implication of oligodendrocyte lineage cells in ASD neurological defects. Our results thus offer new avenues to understand and modulate the CHD7 and CHD8 functions in normal development and disease.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Oligodendroglía/metabolismo , Células Madre/metabolismo , Animales , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Síndrome CHARGE/genética , Síndrome CHARGE/metabolismo , Síndrome CHARGE/patología , Supervivencia Celular , Proteínas de Unión al ADN/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio , Ratones , Ratones Noqueados , Proteínas Nucleares , Oligodendroglía/patología , Células Madre/patología , Factores de Transcripción
13.
Neurobiol Dis ; 144: 105040, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32800999

RESUMEN

Brain regeneration and tumorigenesis are complex processes involving in changes in chromatin structure to regulate cellular states at the molecular and genomic level. The modulation of chromatin structure dynamics is critical for maintaining progenitor cell plasticity, growth and differentiation. Oligodendrocyte precursor cells (OPC) can be differentiated into mature oligodendrocytes, which produce myelin sheathes to permit saltatory nerve conduction. OPCs and their primitive progenitors such as pri-OPC or pre-OPC are highly adaptive and plastic during injury repair or brain tumor formation. Recent studies indicate that chromatin modifications and epigenetic homeostasis through histone modifying enzymes shape genomic regulatory landscape conducive to OPC fate specification, lineage differentiation, maintenance of myelin sheaths, as well as brain tumorigenesis. Thus, histone modifications can be convergent mechanisms in regulating OPC plasticity and malignant transformation. In this review, we will focus on the impact of histone modifying enzymes in modulating OPC plasticity during normal development, myelin regeneration and tumorigenesis.


Asunto(s)
Neoplasias Encefálicas/genética , Regeneración Cerebral/genética , Carcinogénesis/genética , Plasticidad de la Célula , Regulación Neoplásica de la Expresión Génica/genética , Células Precursoras de Oligodendrocitos , Proteína Potenciadora del Homólogo Zeste 2/genética , Epigénesis Genética , Histona Acetiltransferasas/genética , Código de Histonas/genética , Histona Metiltransferasas/genética , Humanos , Vaina de Mielina/metabolismo , Neuroglía , Complejo Represivo Polycomb 2/genética
14.
J Neurosci ; 38(9): 2359-2371, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29382710

RESUMEN

NG2 cells are a resident glial progenitor cell population that is uniformly distributed throughout the developing and mature mammalian CNS. Those in the postnatal CNS generate exclusively myelinating and non-myelinating oligodendrocytes and are thus equated with oligodendrocyte precursor cells. Prenatally, NG2 cells in the ventral gray matter of the forebrain generate protoplasmic astrocytes as well as oligodendrocytes. The fate conversion from NG2 cells into protoplasmic astrocytes is dependent on downregulation of the key oligodendrocyte transcription factor Olig2. We showed previously that constitutive deletion of Olig2 in NG2 cells converts NG2 cells in the neocortex into protoplasmic astrocytes at the expense of oligodendrocytes. In this study, we show that postnatal deletion of Olig2 caused NG2 cells in the neocortex but not in other gray matter regions to become protoplasmic astrocytes. However, NG2 cells in the neocortex became more resistant to astrocyte fate switch over the first 3 postnatal weeks. Fewer NG2 cells differentiated into astrocytes and did so with longer latency after Olig2 deletion at postnatal day 18 (P18) compared with deletion at P2. The high-mobility group transcription factor Sox10 was not downregulated for at least 1 month after Olig2 deletion at P18 despite an early transient upregulation of the astrocyte transcription factor NFIA. Furthermore, inhibiting cell proliferation in slice culture reduced astrocyte differentiation from Olig2-deleted perinatal NG2 cells, suggesting that cell division might facilitate nuclear reorganization needed for astrocyte transformation.SIGNIFICANCE STATEMENT NG2 cells are glial progenitor cells that retain a certain degree of lineage plasticity. In the normal postnatal neocortex, they generate mostly oligodendrocyte lineage cells. When the oligodendrocyte transcription factor Olig2 is deleted in NG2 cells in the neocortex, they switch their fate to protoplasmic astrocytes. However, the efficiency of the fate switch decreases with age over the first 3 postnatal weeks and is reduced when cell proliferation is inhibited. As the neocortex matures, sustained expression of the oligodendrocyte lineage-specific key transcription factor Sox10 becomes less dependent on Olig2. Together, our findings suggest a gradual stabilization of the oligodendrocyte lineage genes and loss of lineage plasticity during the first 3 weeks after birth, possibly due to nuclear reorganization.


Asunto(s)
Astrocitos/citología , Diferenciación Celular/fisiología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Animales , Linaje de la Célula , Ratones , Ratones Noqueados , Neocórtex/citología , Oligodendroglía/citología
15.
J Neurosci ; 38(6): 1575-1587, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29326173

RESUMEN

Bergmann glia facilitate granule neuron migration during development and maintain the cerebellar organization and functional integrity. At present, molecular control of Bergmann glia specification from cerebellar radial glia is not fully understood. In this report, we show that ZEB2 (aka, SIP1 or ZFHX1B), a Mowat-Wilson syndrome-associated transcriptional regulator, is highly expressed in Bergmann glia, but hardly detectable in astrocytes in the cerebellum. The mice lacking Zeb2 in cerebellar radial glia exhibit severe deficits in Bergmann glia specification, and develop cerebellar cortical lamination dysgenesis and locomotion defects. In developing Zeb2-mutant cerebella, inward migration of granule neuron progenitors is compromised, the proliferation of glial precursors is reduced, and radial glia fail to differentiate into Bergmann glia in the Purkinje cell layer. In contrast, Zeb2 ablation in granule neuron precursors or oligodendrocyte progenitors does not affect Bergmann glia formation, despite myelination deficits caused by Zeb2 mutation in the oligodendrocyte lineage. Transcriptome profiling identified that ZEB2 regulates a set of Bergmann glia-related genes and FGF, NOTCH, and TGFß/BMP signaling pathway components. Our data reveal that ZEB2 acts as an integral regulator of Bergmann glia formation ensuring maintenance of cerebellar integrity, suggesting that ZEB2 dysfunction in Bergmann gliogenesis might contribute to motor deficits in Mowat-Wilson syndrome.SIGNIFICANCE STATEMENT Bergmann glia are essential for proper cerebellar organization and functional circuitry, however, the molecular mechanisms that control the specification of Bergmann glia remain elusive. Here, we show that transcriptional factor ZEB2 is highly expressed in mature Bergmann glia, but not in cerebellar astrocytes. The mice lacking Zeb2 in cerebellar radial glia, but not oligodendrocyte progenitors or granular neuron progenitors, exhibit severe defects in Bergmann glia formation. The orderly radial scaffolding formed by Bergmann glial fibers critical for cerebellar lamination was not established in Zeb2 mutants, displaying motor behavior deficits. This finding demonstrates a previously unrecognized critical role for ZEB2 in Bergmann glia specification, and points to an important contribution of ZEB2 dysfunction to cerebellar motor disorders in Mowat-Wilson syndrome.


Asunto(s)
Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Neurogénesis/genética , Neurogénesis/fisiología , Neuroglía/fisiología , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/fisiología , Animales , Astrocitos/fisiología , Recuento de Células , Cerebelo/fisiología , Facies , Perfilación de la Expresión Génica , Enfermedad de Hirschsprung/genética , Discapacidad Intelectual/genética , Locomoción/fisiología , Ratones , Ratones Transgénicos , Microcefalia/genética , Células-Madre Neurales/fisiología , Oligodendroglía/fisiología , Células de Purkinje/fisiología , Transcriptoma/fisiología
16.
Hum Mol Genet ; 26(19): 3776-3791, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28934388

RESUMEN

Recently, we identified biallelic mutations of SLC25A46 in patients with multiple neuropathies. Functional studies revealed that SLC25A46 may play an important role in mitochondrial dynamics by mediating mitochondrial fission. However, the cellular basis and pathogenic mechanism of the SLC25A46-related neuropathies are not fully understood. Thus, we generated a Slc25a46 knock-out mouse model. Mice lacking SLC25A46 displayed severe ataxia, mainly caused by degeneration of Purkinje cells. Increased numbers of small, unmyelinated and degenerated optic nerves as well as loss of retinal ganglion cells indicated optic atrophy. Compound muscle action potentials in peripheral nerves showed peripheral neuropathy associated with degeneration and demyelination in axons. Mutant cerebellar neurons have large mitochondria, which exhibit abnormal distribution and transport. Biochemically mutant mice showed impaired electron transport chain activity and accumulated autophagy markers. Our results suggest that loss of SLC25A46 causes degeneration in neurons by affecting mitochondrial dynamics and energy production.


Asunto(s)
Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Animales , Ataxia/patología , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Dinámicas Mitocondriales/fisiología , Mutación , Células Ganglionares de la Retina/patología
17.
Genet Med ; 21(3): 564-571, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29930392

RESUMEN

PURPOSE: Genetic diagnosis for children suffering from epilepsy has important implications for treatment, prognosis, and development of precision medicine strategies. METHODS: We performed exome sequencing (ES) or targeted sequencing on 733 children with epilepsy onset within the first year of life. We subgrouped our patients based on the onset age of seizure into neonatal and before 1 year (1-12 months), to compare the clinical and genetic features. RESULTS: The subgroups with different onset age of seizure showed different pathogenic variant spectrum, and the 1-year age group was more likely to have developmental delays than the neonate group (p = 0.000614). The diagnostic rate was 26.7% for targeted sequencing using a 2742-gene panel, and 42% for ES. We identified 12 genes, which covered 48.7% of diagnostic cases. Our data revealed that 41.9% of patients in the neonate group and 49.7% patients in the 1-year group had treatment options based on molecular diagnosis. CONCLUSION: The 12 most commonly implicated genes in this cohort and the genes with treatment options should be considered as part of the essential panel for early diagnosis of epilepsy onset, if large medical exome analyses or ES are not feasible as first-tier analysis. Genetic results are beginning to improve therapy by antiepileptic medication selections and precision medicine approaches.


Asunto(s)
Epilepsia/genética , Pueblo Asiatico/genética , China/epidemiología , Estudios de Cohortes , Electroencefalografía , Epilepsia/diagnóstico , Epilepsia/epidemiología , Exoma , Femenino , Pruebas Genéticas/métodos , Humanos , Lactante , Recién Nacido , Masculino , Convulsiones/genética , Secuenciación del Exoma/métodos
18.
Stem Cells ; 36(7): 1109-1121, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29451335

RESUMEN

Hypoxic-ischemic encephalopathy (HIE) is a serious disease for neonates. However, present therapeutic strategies are not effective enough for treating HIE. Previous study showed that mesenchymal stem cells (MSCs) can exert neuroprotective effects for brain damage, but its mechanism remains elusive. Using in vitro coculture of rat cortical primary neurons and MSCs in HI conditions, we demonstrated that MSCs help increase brain derived neurotrophic factor (BDNF) and autophagy markers (LC3II and Beclin1) in the cultures and decrease cells death (lactate dehydrogenase levels). We demonstrated a similar mechanism using an in vivo rat model of HI in combination with MSCs transplantation. Using a behavioral study, we further showed that MSCs transplantation into the rat brain after HI injury can attenuate behavioral deficits. Finally, we found that the increase in BDNF and autophagy related factors after HI injury combined with MSCs transplantation can be reversed by anti-BDNF treatment and strengthen the point that the protective effects of BDNF work through inhibition of the mammalin target of rapamycin (mTOR) pathway. Collectively, we proposed that coculture/transplantation of MSCs after HI injury leads to increased BDNF expression and a subsequent reduction in mTOR pathway activation that results in increased autophagy and neuroprotection. This finding gives a hint to explore new strategies for treating neonates with HIE. Stem Cells 2018;36:1109-1121.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipoxia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Células Madre Mesenquimatosas/metabolismo , Serina-Treonina Quinasas TOR/genética , Animales , Autofagia , Modelos Animales de Enfermedad , Humanos , Ratas , Ratas Sprague-Dawley , Transducción de Señal
19.
PLoS Biol ; 14(5): e1002467, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27213272

RESUMEN

Growth factors of the gp130 family promote oligodendrocyte differentiation, and viability, and myelination, but their mechanisms of action are incompletely understood. Here, we show that these effects are coordinated, in part, by the transcriptional activator Krüppel-like factor-6 (Klf6). Klf6 is rapidly induced in oligodendrocyte progenitors (OLP) by gp130 factors, and promotes differentiation. Conversely, in mice with lineage-selective Klf6 inactivation, OLP undergo maturation arrest followed by apoptosis, and CNS myelination fails. Overlapping transcriptional and chromatin occupancy analyses place Klf6 at the nexus of a novel gp130-Klf-importin axis, which promotes differentiation and viability in part via control of nuclear trafficking. Klf6 acts as a gp130-sensitive transactivator of the nuclear import factor importin-α5 (Impα5), and interfering with this mechanism interrupts step-wise differentiation. Underscoring the significance of this axis in vivo, mice with conditional inactivation of gp130 signaling display defective Klf6 and Impα5 expression, OLP maturation arrest and apoptosis, and failure of CNS myelination.


Asunto(s)
Sistema Nervioso Central/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Diferenciación Celular , Supervivencia Celular/genética , Cromatina/metabolismo , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Factor 6 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Proteínas Proto-Oncogénicas/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Células Madre/metabolismo , alfa Carioferinas/metabolismo
20.
Mol Ther ; 26(3): 730-743, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29433936

RESUMEN

Analysis of microRNA (miR) expression in the central nervous system white matter of SJL mice infected with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) revealed a significant reduction of miR-219, a critical regulator of myelin assembly and repair. Restoration of miR-219 expression by intranasal administration of a synthetic miR-219 mimic before disease onset ameliorates clinical disease, reduces neurogliosis, and partially recovers motor and sensorimotor function by negatively regulating proinflammatory cytokines and virus RNA replication. Moreover, RNA sequencing of host lesions showed that miR-219 significantly downregulated two genes essential for the biosynthetic cholesterol pathway, Cyp51 (lanosterol 14-α-demethylase) and Srebf1 (sterol regulatory element-binding protein-1), and reduced cholesterol biosynthesis in infected mice and rat CG-4 glial precursor cells in culture. The change in cholesterol biosynthesis had both anti-inflammatory and anti-viral effects. Because RNA viruses hijack endoplasmic reticulum double-layered membranes to provide a platform for RNA virus replication and are dependent on endogenous pools of cholesterol, miR-219 interference with cholesterol biosynthesis interfered virus RNA replication. These findings demonstrate that miR-219 inhibits TMEV-induced demyelinating disease through its anti-inflammatory and anti-viral properties.


Asunto(s)
Infecciones por Cardiovirus/complicaciones , Infecciones por Cardiovirus/virología , Enfermedades Desmielinizantes/etiología , Enfermedades Desmielinizantes/patología , MicroARNs/genética , Theilovirus , Carga Viral , Animales , Biomarcadores , Línea Celular , Colesterol/metabolismo , Citocinas/metabolismo , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibrinógeno/metabolismo , Regulación de la Expresión Génica , Mediadores de Inflamación/metabolismo , Metabolismo de los Lípidos/genética , Ratones , Microglía/metabolismo , Interferencia de ARN , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA