Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 50(2): 477-492.e8, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30737146

RESUMEN

Resistance to checkpoint-blockade treatments is a challenge in the clinic. We found that although treatment with combined anti-CTLA-4 and anti-PD-1 improved control of established tumors, this combination compromised anti-tumor immunity in the low tumor burden (LTB) state in pre-clinical models as well as in melanoma patients. Activated tumor-specific T cells expressed higher amounts of interferon-γ (IFN-γ) receptor and were more susceptible to apoptosis than naive T cells. Combination treatment induced deletion of tumor-specific T cells and altered the T cell repertoire landscape, skewing the distribution of T cells toward lower-frequency clonotypes. Additionally, combination therapy induced higher IFN-γ production in the LTB state than in the high tumor burden (HTB) state on a per-cell basis, reflecting a less exhausted immune status in the LTB state. Thus, elevated IFN-γ secretion in the LTB state contributes to the development of an immune-intrinsic mechanism of resistance to combination checkpoint blockade, highlighting the importance of achieving the optimal magnitude of immune stimulation for successful combination immunotherapy strategies.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antígeno CTLA-4/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Interferón gamma/farmacología , Neoplasias Experimentales/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Linfocitos T/efectos de los fármacos , Animales , Anticuerpos Monoclonales/inmunología , Antígeno CTLA-4/inmunología , Antígeno CTLA-4/metabolismo , Línea Celular Tumoral , Supresión Clonal/efectos de los fármacos , Supresión Clonal/inmunología , Resistencia a Antineoplásicos/inmunología , Humanos , Interferón gamma/inmunología , Interferón gamma/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/metabolismo , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología
2.
Hepatology ; 79(1): 167-182, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37368993

RESUMEN

BACKGROUND AND AIMS: Chronic hepatitis B (CHB) is caused by HBV infection and affects the lives of millions of people worldwide by causing liver inflammation, cirrhosis, and liver cancer. Interferon-alpha (IFN-α) therapy is a conventional immunotherapy that has been widely used in CHB treatment and achieved promising therapeutic outcomes by activating viral sensors and interferon-stimulated genes (ISGs) suppressed by HBV. However, the longitudinal landscape of immune cells of CHB patients and the effect of IFN-α on the immune system are not fully understood. APPROACH AND RESULTS: Here, we applied single-cell RNA sequencing (scRNA-seq) to delineate the transcriptomic landscape of peripheral immune cells in CHB patients before and after PegIFN-α therapy. Notably, we identified three CHB-specific cell subsets, pro-inflammatory (Pro-infla) CD14+ monocytes, Pro-infla CD16+ monocytes and IFNG+ CX3CR1- NK cells, which highly expressed proinflammatory genes and positively correlated with HBsAg. Furthermore, PegIFN-α treatment attenuated percentages of hyperactivated monocytes, increased ratios of long-lived naive/memory T cells and enhanced effector T cell cytotoxicity. Finally, PegIFN-α treatment switched the transcriptional profiles of entire immune cells from TNF-driven to IFN-α-driven pattern and enhanced innate antiviral response, including virus sensing and antigen presentation. CONCLUSIONS: Collectively, our study expands the understanding of the pathological characteristics of CHB and the immunoregulatory roles of PegIFN-α, which provides a new powerful reference for the clinical diagnosis and treatment of CHB.


Asunto(s)
Hepatitis B Crónica , Humanos , Antivirales , Interferón-alfa , Transcriptoma , Análisis de Secuencia de ARN , Virus de la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Antígenos e de la Hepatitis B , ADN Viral
3.
Small ; 20(28): e2310339, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38295011

RESUMEN

The modulation of the coordination environment of single atom catalysts (SACs) plays a vital role in promoting CO2 reduction reaction (CO2RR). Herein, N or B doped Fe-embedded graphyne (Fe-GY), Fe-nXGYm (n = 1, 2, 3; X = N, B; m = 1, 2, 3), are employed as probes to reveal the effect of the coordination environment engineering on CO2RR performance via heteroatom doping in SACs. The results show that the doping position and number of N or B in Fe-GY significantly affects catalyst activity and CO2RR product selectivity. In comparison, Fe-1NGY exhibits high-performance CO2RR to CH4 with a low limiting potential of -0.17 V, and Fe-2NGY3 is demonstrated as an excellent CO2RR electrocatalyst for producing HCOOH with a low limiting potential of -0.16 V. With applied potential, Fe-GY, Fe-1NGY, and Fe-2NGY3 exhibit significant advantages in CO2RR to CH4 while hydrogen evolution reaction is inhibited. The intrinsic essence analysis illustrates that heteroatom doping modulates the electronic structure of active sites and regulates the adsorption strength of the intermediates, thereby rendering a favorable coordination environment for CO2RR. This work highlights Fe-nXGYm as outstanding SACs for CO2RR, and provides an in-depth insight into the intrinsic essence of the promotion effect from heteroatom doping.

4.
Small ; : e2406179, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221682

RESUMEN

For BixSb2- xTe3 (BST) in thermoelectric field, the element ratio is easily influenced by the chemical environment, deviating from the stoichiometric ratio and giving rise to various intrinsic defects. In P-type polycrystalline BST, SbTe and BiTe are the primary forms of defects. Defect engineering is a crucial strategy for optimizing the electrical transport performance of Bi2Te3-based materials, but achieving synchronous improvement of thermal performance is challenging. In this study, mesoporous SiO2 is utilized to successfully mitigate the adverse impacts of vacancy defects, resulting in an enhancement of the electrical transport performance and a pronounced reduction in thermal conductivity. Crystal and the microstructure of the continuous modulation contribute to the effective phonon-electronic decoupling. Ultimately, the peak zT of Bi0.4Sb1.6Te3/0.8 wt% SiO2 (with a pore size of 4 nm) nanocomposites reaches as high as 1.5 at 348 K, and a thermoelectric conversion efficiency of 6.6% is achieved at ΔT = 222.7 K. These results present exciting possibilities for the realization of defect regulation in porous materials and hold reference significance for other material systems.

5.
Purinergic Signal ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421486

RESUMEN

For many years, there has been ongoing research on the P2X7 receptor (P2X7R). A comprehensive, systematic, and objective evaluation of the scientific output and status of P2X7R will be instrumental in guiding future research directions. This study aims to present the status and trends of P2X7R research from 2002 to 2023. Publications related to P2X7R were retrieved from the Web of Science Core Collection database. Quantitative analysis and visualization tools were Microsoft Excel, VOSviewer, and CiteSpace software. The analysis content included publication trends, literature co-citation, and keywords. 3282 records were included in total, with the majority of papers published within the last 10 years. Based on literature co-citation and keyword analysis, neuroinflammation, neuropathic pain, gastrointestinal diseases, tumor microenvironment, rheumatoid arthritis, age-related macular degeneration, and P2X7R antagonists were considered to be the hotspots and frontiers of P2X7R research. Researchers will get a more intuitive understanding of the status and trends of P2X7R research from this study.

6.
Epilepsy Behav ; 159: 109991, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181106

RESUMEN

BACKGROUND: Uric acid (UA) serves as a crucial endogenous antioxidant in the body, offering protection against oxidative stress, whichmaycontributetoepilepsypathogenesis. The association between serum UA levels and epilepsy remains uncertain. This study aimed to examine the potential connections between serum UA levels and epilepsy in US adults. METHODS: Utilizing data from the National Health and Nutrition Examination Survey (NHANES) 2013-2018, a cross-sectional analysis was conducted. Weighted logistic regression analyses were employed to assess the potential link between serum UA levels and the risk of epilepsy. Additionally, sensitivity analyses were conducted to evaluate the reliability of the results. RESULTS: We included 15,373 participants, of whom 136 (0.79 %) had epilepsy. Following adjustment for multiple variables, participants with serum UA levels <4.1 mg/dl had an odds ratio of 2.24 (95 % CI: 1.12-4.47, P = 0.023) for epilepsy compared to those with serum UA levels of 5.8-6.5 mg/dl. The results of the sensitivity analyses corroborated the initial findings. CONCLUSIONS: Our study revealed a significant association between lower serum UA levels and heightened risks of epilepsy, suggesting that low UA levels may serve as an independent risk factor for epilepsy. A marginal increase in UA levels within the normal range may act as a protective factor against epilepsy.


Asunto(s)
Epilepsia , Encuestas Nutricionales , Ácido Úrico , Humanos , Epilepsia/sangre , Epilepsia/epidemiología , Ácido Úrico/sangre , Masculino , Femenino , Adulto , Persona de Mediana Edad , Estudios Transversales , Factores de Riesgo , Adulto Joven , Anciano , Estados Unidos/epidemiología
7.
J Nanobiotechnology ; 22(1): 325, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858695

RESUMEN

BACKGROUND: Osteoarthritis (OA) is an aging-related degenerative joint disorder marked by joint discomfort and rigidity. Senescent chondrocytes release pro-inflammatory cytokines and extracellular matrix-degrading proteins, creating an inflammatory microenvironment that hinders chondrogenesis and accelerates matrix degradation. Targeting of senescent chondrocytes may be a promising approach for the treatment of OA. Herein, we describe the engineering of an injectable peptide-hydrogel conjugating a stem cell-homing peptide PFSSTKT for carrying plasmid DNA-laden nanoparticles and Tanshinon IIA (pPNP + TIIA@PFS) that was designed to attenuate OA progression by improving the senescent microenvironment and fostering cartilage regeneration. RESULTS: Specifically, pPNP + TIIA@PFS elevates the concentration of the anti-aging protein Klotho and blocks the transmission of senescence signals to adjacent healthy chondrocytes, significantly mitigating chondrocyte senescence and enhancing cartilage integrity. Additionally, pPNP + TIIA@PFS recruit bone mesenchymal stem cells and directs their subsequent differentiation into chondrocytes, achieving satisfactory chondrogenesis. In surgically induced OA model rats, the application of pPNP + TIIA@PFS results in reduced osteophyte formation and attenuation of articular cartilage degeneration. CONCLUSIONS: Overall, this study introduces a novel approach for the alleviation of OA progression, offering a foundation for potential clinical translation in OA therapy.


Asunto(s)
Condrocitos , Condrogénesis , Glucuronidasa , Hidrogeles , Proteínas Klotho , Células Madre Mesenquimatosas , Osteoartritis , Plásmidos , Ratas Sprague-Dawley , Animales , Osteoartritis/terapia , Osteoartritis/tratamiento farmacológico , Hidrogeles/química , Ratas , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Glucuronidasa/metabolismo , Glucuronidasa/farmacología , Condrogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Masculino , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Progresión de la Enfermedad , Nanopartículas/química , Humanos , ADN , Senescencia Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos
8.
BMC Med Educ ; 24(1): 191, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38403582

RESUMEN

BACKGROUND: The global outbreak of coronavirus disease (COVID-19) has led medical universities in China to conduct online teaching. This study aimed to assess the effectiveness of a blended learning approach that combines online teaching and virtual reality technology in dental education and to evaluate the acceptance of the blended learning approach among dental teachers and students. METHODS: The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist was followed in this study. A total of 157 students' perspectives on online and virtual reality technology education and 54 teachers' opinions on online teaching were collected via questionnaires. Additionally, 101 students in the 2015-year group received the traditional teaching method (TT group), while 97 students in the 2017-year group received blended learning combining online teaching and virtual reality technology (BL group). The graduation examination results of students in the two groups were compared. RESULTS: The questionnaire results showed that most students were satisfied with the online course and the virtual simulation platform teaching, while teachers held conservative and neutral attitudes toward online teaching. Although the theoretical score of the BL group on the final exam was greater than that of the TT group, there was no significant difference between the two groups (P = 0.805). The skill operation score of the BL group on the final exam was significantly lower than that of the TT group (P = 0.004). The overall score of the BL group was lower than that of the TT group (P = 0.018), but the difference was not statistically significant (P = 0.112). CONCLUSIONS: The blended learning approach combining online teaching and virtual reality technology plays a positive role in students' learning and is useful and effective in dental education.


Asunto(s)
Educación a Distancia , Humanos , Estudios Transversales , Educación a Distancia/métodos , Aprendizaje , Evaluación Educacional/métodos , Educación en Odontología/métodos
9.
J Environ Manage ; 356: 120592, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508009

RESUMEN

Chicken manure (CM) can pose a serious threat to environmental and human health, and need to be managed properly. The compost can effectively treat CM. However, there is limited research on the heavy metals and antibiotic resistance genes (ARGs) during compost CM. In this study, the combined application of reactor and static composting (RSC) was used to produce organic fertilizer of CM (OCM), and heavy metals, ARGs and bacterial community structure was investigated. The results show that RSC could be used to produce OCM, and OCM meet the National organic fertilizer standard (NY/T525-2021). Compared to the initial CM, DTPA-Cu, DTPA-Zn, DTPA-Pb, DTPA-Cr, DTPA-Ni and DTPA-As in OCM decreased by 40.83%, 23.73%, 34.27%, 38.62%, 16.26%, and 43.35%, respectively. RSC decreased the relative abundance of ARGs in CM by 84.06%, while the relative abundance of sul1 and ermC increased. In addition, the relative abundance and diversity of ARGs were mainly influenced by the bacterial community, with Actinobacteria, Firmicutes, and Proteobacteria becoming the dominant phyla during composting, and probably being the main carriers and dispersers of most of the ARGs. Network analyses confirmed that Gracilibacillus, Lactobacillus, Nocardiopsis, Mesorhizobium and Salinicoccus were the main potential hosts of ARGs, with the main potential hosts of sul1 and ermC being Mesorhizobium and Salinicoccus. The passivation and physicochemical properties of heavy metals contribute to the removal of ARGs, with sul1 and ermC being affected by the toal heavy metals. Application of RSC allows CM to produce mature, safe organic fertilizer after 32 d and reduces the risk of rebound from ARGs, but the issues of sul1 and ermC gene removal cannot be ignored.


Asunto(s)
Compostaje , Metales Pesados , Animales , Humanos , Genes Bacterianos , Estiércol/análisis , Pollos , Antibacterianos/farmacología , Fertilizantes , Farmacorresistencia Microbiana/genética , Bacterias/genética , Metales Pesados/análisis , Ácido Pentético
10.
Molecules ; 29(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474624

RESUMEN

Shut-in after fracturing is generally adopted for wells in shale oil reservoirs, and imbibition occurring in matrix nanopores has been proven as an effective way to improve recovery. In this research, a molecular dynamics (MD) simulation was used to investigate the effects of wettability and pressure on nanopore imbibition during shut-in for a typical shale reservoir, Jimsar. The results indicate that the microscopic advancement mechanism of the imbibition front is the competitive adsorption between "interfacial water molecules" at the imbibition front and "adsorbed oil molecules" on the pore wall. The essence of spontaneous imbibition involves the adsorption and aggregation of water molecules onto the hydroxyl groups on the pore wall. The flow characteristics of shale oil suggest that the overall push of the injected water to the oil phase is the main reason for the displacement of adsorbed oil molecules. Thus, shale oil, especially the heavy hydrocarbon component in the adsorbed layer, tends to slip on the walls. However, the weak slip ability of heavy components on the wall surface is an important reason that restricts the displacement efficiency of shale oil during spontaneous imbibition. The effectiveness of spontaneous imbibition is strongly dependent on the hydrophilicity of the matrix pore's wall. The better hydrophilicity of the matrix pore wall facilitates higher levels of adsorption and accumulation of water molecules on the pore wall and requires less time for "interfacial water molecules" to compete with adsorbed oil molecules. During the forced imbibition process, the pressure difference acts on both the bulk oil and the boundary adsorption oil, but mainly on the bulk oil, which leads to the occurrence of wetting hysteresis. Meanwhile, shale oil still existing in the pore always maintains a good, stratified adsorption structure. Because of the wetting hysteresis phenomenon, as the pressure difference increases, the imbibition effect gradually increases, but the actual capillary pressure gradually decreases and there is a loss in the imbibition velocity relative to the theoretical value. Simultaneously, the decline in hydrophilicity further weakens the synergistic effect on the imbibition of the pressure difference because of the more pronounced wetting hysteresis. Thus, selecting an appropriate well pressure enables cost savings and maximizes the utilization of the formation's natural power for enhanced oil recovery (EOR).

11.
Int Arch Allergy Immunol ; 184(8): 808-813, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37232026

RESUMEN

INTRODUCTION: The aim of this study was to investigate the effects and mechanism of deleted in malignant brain tumors 1 (DMBT1) protein on the mouse model of nasal polyps. METHODS: The mouse model of nasal polyps was induced by intranasal drip intervention of lipopolysaccharide (LPS) 3 times a week for 12 weeks. A total of 42 mice were randomly divided into blank group, LPS group, and LPS+DMBT1 group. DMBT1 protein was applied by intranasal drip intervention in each nostril after LPS. After 12 weeks, 5 mice in each group were randomly picked for the mouse olfactory disorder experiment, 3 mice were randomly picked for histopathological observation of nasal mucosa, 3 mice for olfactory marker protein (OMP) immunofluorescence analysis and the last 3 mice were grabbed for nasal lavage, and the levels of cytokines interleukin (IL)-4, IL-5, IL-13, and phosphatidylinositide 3-kinases (PI3K) in the nasal lavage fluid were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS: Compared with the blank group, mice in LPS group had olfactory dysfunction, the level of OMP was significantly reduced, the nasal mucosa was swollen, discontinuous, and contained a large number of inflammatory cells. The levels of IL-4, IL-5, IL-13, and PI3K in the nasal lavage fluid were significantly increased in LPS group (p < 0.01). Compared with the LPS group, the number of mice with olfactory dysfunction in the LPS+DMBT1 group was less, the infiltration of inflammatory cells was reduced, the OMP-positive cells were significantly increased, and the IL-4, IL-5, IL-13, and PI3K in the nasal lavage fluid were significantly increased, p < 0.01. CONCLUSIONS: DMBT1 protein alleviates the nasal airway inflammatory response in the mouse nasal polyp model, and the mechanism may be through the PI3K-AKT signaling pathway.


Asunto(s)
Pólipos Nasales , Trastornos del Olfato , Animales , Ratones , Interleucina-13 , Interleucina-4 , Interleucina-5 , Lipopolisacáridos/farmacología , Pólipos Nasales/patología , Fosfatidilinositol 3-Quinasas/metabolismo
12.
Langmuir ; 39(17): 6287-6299, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37079912

RESUMEN

The differences in pore width distributions and connectivity of shale reservoirs have significant influences on supercritical carbon dioxide (scCO2)-enhanced oil recovery (CO2 EOR) in shale. Herein, the molecular dynamics simulation was adopted to investigate the microscopic mechanism of CO2 EOR in the shale nanopores with different pore size width distributions and pore connectivity. The results show that the pore connectivity has significant effects on the oil displacement, and the recovery efficiency is ordered as: connected pore > double pore > single pore for the 3 nm pore, which are 91.32, 74.43, and 65.93%, respectively. Therefore, the increase in pore connectivity can significantly improve the recovery efficiency of the small pore of the connected pore system. For the shale reservoirs with different pore width distributions, the oil recovery rate of large pores is generally higher than that of small pores. In addition, the displacement of oil in the small pore of the double pore system is accelerated due to the pushing effect of the discharge fluid from the large pore. The results furnish a certain theoretical support for the research of the microscopic mechanism of CO2 EOR in the shale pore with different pore width distributions and connectivity and the exploit of shale oil.

13.
J Immunol ; 206(5): 1102-1113, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33495237

RESUMEN

CTLA4-Ig/abatacept dampens activation of naive T cells by blocking costimulation via CD28. It is an approved drug for rheumatoid arthritis but failed to deliver efficacy in a number of other autoimmune diseases. One explanation is that activated T cells rely less on CD28 signaling and use alternate coreceptors for effector function. ICOS is critical for activation of T-dependent humoral immune responses, which drives pathophysiology of IgG-mediated autoimmune diseases. In this study, we asked whether CD28 and ICOS play nonredundant roles for maintenance of T-dependent responses in mouse models. Using a hapten-protein immunization model, we show that during an ongoing germinal center response, combination treatment with CTLA4-Ig and ICOS ligand (ICOSL) blocking Ab completely dissolves ongoing germinal center responses, whereas single agents show only partial activity. Next, we took two approaches to engineer a therapeutic molecule that blocks both pathways. First, we engineered CTLA4-Ig to enhance binding to ICOSL while retaining affinity to CD80/CD86. Using a library approach, binding affinity of CTLA4-Ig to human ICOSL was increased significantly from undetectable to 15-42 nM; however, the affinity was still insufficient to completely block binding of ICOSL to ICOS. Second, we designed a bispecific costimulation inhibitor with high-affinity CTLA4 extracellular domains fused to anti-ICOSL Ab termed bifunctional costimulation inhibitor. With this bispecific approach, we achieved complete inhibition of CD80 and CD86 binding to CD28 as well as ICOS binding to ICOSL. Such bispecific molecules may provide greater therapeutic benefit in IgG-mediated inflammatory diseases compared with CTLA4-Ig alone.


Asunto(s)
Antígenos CD28/metabolismo , Antígeno CTLA-4/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/farmacología , Proteína Coestimuladora de Linfocitos T Inducibles/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Abatacept/farmacología , Animales , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Femenino , Centro Germinal/efectos de los fármacos , Centro Germinal/metabolismo , Inmunidad Humoral/efectos de los fármacos , Inmunoglobulina G/metabolismo , Ligando Coestimulador de Linfocitos T Inducibles/metabolismo , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Linfocitos T/metabolismo
14.
Phys Chem Chem Phys ; 25(43): 29951-29959, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37902067

RESUMEN

Carbon-based single atom catalysts (SACs) are attracting extensive attention in the CO2 reduction reaction (CO2RR) due to their maximal atomic utilization, easily regulated active center and high catalytic activity, in which the coordination environment plays a crucial role in the intrinsic catalytic activity. Taking NiN4 as an example, this study reveals that the introduction of different numbers of S atoms into N coordination (Ni-NxS4-x (x = 1-4)) results in outstanding structural stability and catalytic activity. Owing to the additional orbitals around -1.60 eV and abundant Ni dxz, dyz, dx2, and dz2 orbital occupation after S substitution, N,S coordination can effectively facilitate the protonation of adsorbed intermediates and thus accelerate the overall CO2RR. The CO2RR mechanisms for CO and HCOOH generation via two-electron pathways are systematically elucidated on NiN4, NiN3S1 and NiN2S2. NiN2S2 yields HCOOH as the most favorable product with a limiting potential of -0.24 V, surpassing NiN4 (-1.14 V) and NiN3S1 (-0.50 V), which indicates that the different S-atom substitution of NiN4 has considerable influence on the CO2RR performance. This work highlights NiN2S2 as a high-performance CO2RR catalyst to produce HCOOH, and demonstrates that N,S coordination is an effective strategy to regulate the performance of atomically dispersed electrocatalysts.

15.
Phys Chem Chem Phys ; 25(28): 18952-18959, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37409409

RESUMEN

Electrochemical CO2 reduction reaction (CO2RR) to high-value-added products is one of the most promising strategies for mitigating the greenhouse effect and energy shortage. Two-dimensional (2D) MXene materials are regarded as promising catalysts for electrocatalysis, and the boron-analogs of MXenes, 2D transition metal borides (MBenes), may exhibit superior CO2RR performance owing to their unique electronic properties. Herein, a novel 2D transition metal boride, MoB, is theoretically evaluated as a potential catalyst for the CO2RR by comparing it with traditional Mo2C. MoB shows metallic nature and exhibits excellent electrical conductivity. MoB can effectively activate CO2 with a larger interaction energy of -3.64 eV than that of Mo2C. Both density of states and charge difference density reveal a significant charge transfer from MoB to CO2. MoB shows higher catalytic selectivity due to its inhibited hydrogen evolution reaction and low reaction energy for the CO2RR. At potentials more negative than -0.62 V, the CO2RR on MoB becomes a high-throughput reaction process towards CH4. This work discovered that MoB exhibited comparable CO2RR performance to Mo2C and forecasted MBenes as promising catalysts for electrocatalysis.

16.
Future Oncol ; 19(30): 2055-2073, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37823367

RESUMEN

Androgen deprivation therapy is a common treatment method for metastatic prostate cancer through lowering androgen levels; however, this therapy frequently leads to the development of castration-resistant prostate cancer (CRPC). This is attributed to the activation of the androgen receptor (AR) signaling pathway. Current treatments targeting AR are often ineffective mostly due to AR gene overexpression and mutations, as well as the presence of splice variants that accelerate CRPC progression. Thus there is a critical need for more specific medication to treat CRPC. Small interfering RNAs have shown great potential as a targeted therapy. This review discusses prostate cancer progression and the role of AR signaling in CRPC, and proposes siRNA-based targeted therapy as a promising strategy for CRPC.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/terapia , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Andrógenos , Antagonistas de Andrógenos/uso terapéutico , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico , Transducción de Señal
17.
Breast J ; 2023: 6282654, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075552

RESUMEN

Breast cancer is considered the most prevalent malignancy due to its high incidence rate, recurrence, and metastasis in women that makes it one of the deadliest cancers. The current study aimed to predict the genes associated with the recurrence and metastasis of breast cancer and to validate their effect on MDA-MB-231 cells. Through the bioinformatics analysis, the transcription factor 7 cofactor (MLLT11) as the target gene was obtained. MLLT11-specific siRNA was synthesized and transfected into MDA-MB-231 cells. The results demonstrated that the siRNA significantly reduced the MLLT11 mRNA levels. Moreover, cell migration and invasion, as well as the protein levels of phosphatidylinositol 3-kinase (PI3K), AKT, matrix metalloproteinase (MMP) 2, and MMP9, were significantly lower in the groups treated with siRNA while the apoptosis was augmented. Collectively, MLLT11 siRNA elicited ameliorative properties on breast cancer cells, possibly via the inhibition of the PI3K/AKT signaling pathway.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Apoptosis , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Células MDA-MB-231 , Invasividad Neoplásica/patología , Proteínas de Neoplasias/farmacología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Factores de Transcripción
18.
BMC Med Educ ; 23(1): 848, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946163

RESUMEN

INTRODUCTION: Oral histopathology is a bridge course connecting oral basic medicine and clinical dentistry. However, the application of outcomes-based education via flipped classroom (FC) in oral histopathology has not been well explored. This study has assessed the efficacy of outcomes-based education via FC in undergraduate oral histopathology module learning in Nanjing Medical University of China. MATERIALS AND METHODS: A total of 214 third-year students were enrolled and assigned to the FC group of the batch 2022-23 (n = 110) and the traditional classroom (TC) group of the batch 2021-22 (n = 104) to participate the oral histopathology sessions respectively in the study. The FC group were required to preview the online course materials pre-class, followed by in-class quizz, in-class interactive group discussion, and slides microscopic observation. The outcomes-based formative and summative assessments for FC were designed. The TC group attended traditional laboratory class for the same glass slides microscopic observation. In addition, a questionnaire was performed to investigate the satisfaction of learning. Along with this, the performances of FC group in written theory tests and oral histopathology slide tests were compared with TC group. RESULTS: Students in the FC group gained significantly final higher scores of the course than those in the TC group (score: 83.79 ± 11 vs. 76.73 ± 10.93, P<0.0001). Data from the student questionnaires indicated a preference for outcomes-based module education via FC. In the questionnaires, most students considered outcomes-based module education via FC to be beneficial to learning motivation, knowledge comprehension, critical thinking and teamwork. FC group had a higher level of satisfaction with oral histopathology teaching than TC group (satisfaction score: 4.599 ± 0.1027 vs. 4.423 ± 0.01366, P<0.01). CONCLUSION: An outcomes-based module education via FC has a promising effect on undergraduate oral histopathology education.


Asunto(s)
Aprendizaje , Estudiantes , Humanos , Pensamiento , Motivación , Encuestas y Cuestionarios , Aprendizaje Basado en Problemas , Curriculum
19.
BMC Med Educ ; 23(1): 315, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149587

RESUMEN

INTRODUCTION: Clinical practice of dentistry entails the use of indirect vision using a dental mirror. The Mirrosistant is a device that helps dental students become proficient with use of indirect vision mirror operation. This study aimed to explore the role of the Mirrosistant on students' performance with the virtual simulation dental training system. MATERIALS AND METHODS: A total of 72 dental students were equally assigned to the Control group and the Experimental group. Subsequently, Mirrosistant was used to conduct a series of mirror training exercises in the Experimental group. The training consisted of tracing the edge and filling in the blank of the prescribed shape, as well as preparing the specified figure on raw eggs using indirect vision via Mirrosistant. Next, both groups were examined using the SIMODONT system, a virtual reality dental trainer, for mirror operation. In addition, a five-point Likert scale questionnaire was used to assess student feedback by using Mirrosistant. RESULTS: The mirror operation examination conducted by the SIMODONT system revealed that mirror training using Mirrosistant had statistically improved students' performances (score: 80.42 ± 6.43 vs. 69.89 ± 15.98, P = 0.0005) and shorten their performance time of mirror operation (time of seconds: 243.28 ± 132.83 vs. 328.53 ± 111.89, P = 0.0013). Furthermore, the questionnaire survey indicated that the participants had positive attitudes toward the mirror training using Mirrosistant. Most students believed that the mirror training device could improve their perceptions of direction and distance, as well as their sensations of dental operation and dental fulcrum. CONCLUSION: Mirror training using Mirrosistant can enhance dental students' mirror perceptual and operational skills on virtual simulation dental training system.


Asunto(s)
Entrenamiento Simulado , Realidad Virtual , Humanos , Estudiantes de Odontología , Interfaz Usuario-Computador , Competencia Clínica , Simulación por Computador
20.
World J Microbiol Biotechnol ; 39(4): 93, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36754899

RESUMEN

Glucosamine (GlcN) is a natural amino monosaccharide in which a hydroxyl group of glucose is substituted by an amino group. It belongs to functional amino sugar compounds. In the traditional preparation process, GlcN and GlcNAc are obtained by hydrolyzing the cell wall of shrimp and crab. There are many potential problems with this method, such as geographical and seasonal restrictions on the supply of raw materials, serious environmental pollution and potential allergic reactions. Microbial fermentation has the advantages of mild conditions, low environmental pollution, high production intensity, and product safety. It can effectively solve the problem of shrimp and crab hydrolysis process, attracting many researchers to participate in the research of microbial fermentation production of GlcN. This paper mainly summarizes the research on strain construction method, metabolic pathway design and fermentation condition optimization in microbial fermentation, which has certain guiding significance for the further production, research and production of glucosamine.


Asunto(s)
Acetilglucosamina , Glucosamina , Fermentación , Glucosa , Redes y Vías Metabólicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA