Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Haematologica ; 109(4): 1206-1219, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37767568

RESUMEN

Multiple myeloma (MM) remains incurable due to drug resistance. Ribosomal protein S3 (RPS3) has been identified as a non-Rel subunit of NF-κB. However, the detailed biological roles of RPS3 remain unclear. Here, we report for the first time that RPS3 is necessary for MM survival and drug resistance. RPS3 was highly expressed in MM, and knockout of RPS3 in MM inhibited cell growth and induced cell apoptosis both in vitro and in vivo. Overexpression of RPS3 mediated the proteasome inhibitor resistance of MM and shortened the survival of MM tumor-bearing animals. Moreover, our present study found an interaction between RPS3 and the thyroid hormone receptor interactor 13 (TRIP13), an oncogene related to MM tumorigenesis and drug resistance. We demonstrated that the phosphorylation of RPS3 was mediated by TRIP13 via PKCδ, which played an important role in activating the canonical NF-κB signaling and inducing cell survival and drug resistance in MM. Notably, the inhibition of NF-κB signaling by the small-molecule inhibitor targeting TRIP13, DCZ0415, was capable of triggering synergistic cytotoxicity when combined with bortezomib in drug-resistant MM. This study identifies RPS3 as a novel biomarker and therapeutic target in MM.


Asunto(s)
Mieloma Múltiple , FN-kappa B , Animales , FN-kappa B/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Proteínas Ribosómicas/genética , Bortezomib/farmacología , Bortezomib/uso terapéutico , Resistencia a Medicamentos , Línea Celular Tumoral
2.
Glob Chang Biol ; 29(13): 3723-3746, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37026556

RESUMEN

Climate has critical roles in the origin, pathogenesis and transmission of infectious zoonotic diseases. However, large-scale epidemiologic trend and specific response pattern of zoonotic diseases under future climate scenarios are poorly understood. Here, we projected the distribution shifts of transmission risks of main zoonotic diseases under climate change in China. First, we shaped the global habitat distribution of main host animals for three representative zoonotic diseases (2, 6, and 12 hosts for dengue, hemorrhagic fever, and plague, respectively) with 253,049 occurrence records using maximum entropy (Maxent) modeling. Meanwhile, we predicted the risk distribution of the above three diseases with 197,098 disease incidence records from 2004 to 2017 in China using an integrated Maxent modeling approach. The comparative analysis showed that there exist highly coincident niche distributions between habitat distribution of hosts and risk distribution of diseases, indicating that the integrated Maxent modeling is accurate and effective for predicting the potential risk of zoonotic diseases. On this basis, we further projected the current and future transmission risks of 11 main zoonotic diseases under four representative concentration pathways (RCPs) (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in 2050 and 2070 in China using the above integrated Maxent modeling with 1,001,416 disease incidence records. We found that Central China, Southeast China, and South China are concentrated regions with high transmission risks for main zoonotic diseases. More specifically, zoonotic diseases had diverse shift patterns of transmission risks including increase, decrease, and unstable. Further correlation analysis indicated that these patterns of shifts were highly correlated with global warming and precipitation increase. Our results revealed how specific zoonotic diseases respond in a changing climate, thereby calling for effective administration and prevention strategies. Furthermore, these results will shed light on guiding future epidemiologic prediction of emerging infectious diseases under global climate change.


Asunto(s)
Epidemias , Zoonosis , Animales , Incidencia , Zoonosis/epidemiología , Ecosistema , Cambio Climático , China/epidemiología
3.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1884-1891, 2023 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-38009004

RESUMEN

Multiple myeloma (MM) is characterized by excessive aggregation of B-cell-derived malignant plasma cells in the hematopoietic system of bone marrow. Previously, we synthesized an innovative molecule named dihydrocelastrol (DHCE) from celastrol, a triterpene purified from medicinal plant Tripterygium wilfordii. Herein, we explore the therapeutic properties and latent signal transduction mechanism of DHCE action in bortezomib (BTZ)-resistant (BTZ-R) MM cells. In this study, we first report that DHCE shows antitumor activities in vitro and in vivo and exerts stronger inhibitory effects than celastrol on BTZ-R cells. We find that DHCE inhibits BTZ-R cell viability by promoting apoptosis via extrinsic and intrinsic pathways and suppresses BTZ-R MM cell proliferation by inducing G0/G1 phase cell cycle arrest. In addition, inactivation of JAK2/STAT3 and PI3K/Akt pathways are involved in the DHCE-mediated antitumor effect. Simultaneously, DHCE acts synergistically with BTZ on BTZ-R cells. PSMB5, a molecular target of BTZ, is overexpressed in BTZ-R MM cells compared with BTZ-S MM cells and is demonstrated to be a target of STAT3. Moreover, DHCE downregulates PSMB5 overexpression in BTZ-R MM cells, which illustrates that DHCE overcomes BTZ resistance through increasing the sensitivity of BTZ in resistant MM via inhibiting STAT3-dependent PSMB5 regulation. Overall, our findings imply that DHCE may become a potential therapeutic option that warrants clinical evaluation for BTZ-R MM.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Bortezomib/farmacología , Bortezomib/metabolismo , Bortezomib/uso terapéutico , Mieloma Múltiple/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Resistencia a Antineoplásicos , Línea Celular Tumoral , Apoptosis , Proliferación Celular , Complejo de la Endopetidasa Proteasomal/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
4.
J Biomed Sci ; 29(1): 32, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35546402

RESUMEN

BACKGROUND: Aberrant DNA repair pathways contribute to malignant transformation or disease progression and the acquisition of drug resistance in multiple myeloma (MM); therefore, these pathways could be therapeutically exploited. Ribonucleotide reductase (RNR) is the rate-limiting enzyme for the biosynthesis of deoxyribonucleotides (dNTPs), which are essential for DNA replication and DNA damage repair. In this study, we explored the efficacy of the novel RNR inhibitor, 4-hydroxysalicylanilide (HDS), in myeloma cells and xenograft model. In addition, we assessed the clinical activity and safety of HDS in patients with MM. METHODS: We applied bioinformatic, genetic, and pharmacological approaches to demonstrate that HDS was an RNR inhibitor that directly bound to RNR subunit M2 (RRM2). The activity of HDS alone or in synergy with standard treatments was evaluated in vitro and in vivo. We also initiated a phase I clinical trial of single-agent HDS in MM patients (ClinicalTrials.gov: NCT03670173) to assess safety and efficacy. RESULTS: HDS inhibited the activity of RNR by directly targeting RRM2. HDS decreased the RNR-mediated dNTP synthesis and concomitantly inhibited DNA damage repair, resulting in the accumulation of endogenous unrepaired DNA double-strand breaks (DSBs), thus inhibiting MM cell proliferation and inducing apoptosis. Moreover, HDS overcame the protective effects of IL-6, IGF-1 and bone marrow stromal cells (BMSCs) on MM cells. HDS prolonged survival in a MM xenograft model and induced synergistic anti-myeloma activity in combination with melphalan and bortezomib. HDS also showed a favorable safety profile and demonstrated clinical activity against MM. CONCLUSIONS: Our study provides a rationale for the clinical evaluation of HDS as an anti-myeloma agent, either alone or in combination with standard treatments for MM. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03670173, Registered 12 September 2018.


Asunto(s)
Mieloma Múltiple , Ribonucleótido Reductasas , Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN , Replicación del ADN , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo
5.
Acta Biochim Biophys Sin (Shanghai) ; 53(5): 575-583, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33821934

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma, characterized by high heterogeneity. The poor outcome of a portion of patients who suffer relapsing or resistant to conventional treatment impels the development of novel agents for DLBCL. DCZ0825 is a novel compound derived from pterostilbene and osalmide, whose antitumor activities have drawn our attention. In this study, we found that DCZ0825 exhibited high cytotoxicity toward DLBCL cell lines in a dose- and time-dependent manner, as revealed by cell counting kit-8 assay. Flow cytometry and western blot analysis results showed that DCZ0825 also promoted cell apoptosis via both extrinsic and intrinsic apoptosis pathways mediated by caspase. In addition, DCZ0825 induced cell cycle arrest in the G2/M phase by downregulating Cdc25C, CDK1, and Cyclin B1, thus interfering with cell proliferation. Further investigation showed the involvement of the phosphatidylinositol 3-kinase (PI3K)‒AKT‒mTOR/JNK pathway in the efficacy of DCZ0825 against DLBCL. Remarkably, DCZ0825 also exerted notable cytotoxic effects in vivo as well, with low toxicity to important internal organs such as the liver and kidney. Our results suggest that DCZ0825 may have the potential to become a novel anti-DLBCL agent or to replenish the conventional therapeutic scheme of DLBCL.


Asunto(s)
Antineoplásicos/farmacología , Linfoma de Células B Grandes Difuso , MAP Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología
6.
Nanotechnology ; 31(11): 115707, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-31747640

RESUMEN

Photoelectrochemical water oxidation for hydrogen generation via utilizing sunlight is considered a very promising pathway for generating sustainable energy in an environmental manner. Here, a composite photoanode, consisting of nanopyramidal BiVO4 arrays and one layered double hydroxide (NiMn-LDH) was designed and fabricated via a facile route. The obtained BiVO4/NiMn-LDH composite photoelectrode presented a significant enhancement in the photoelectrochemical (PEC) current density, conversion efficiency and stability for solar water oxidation. With 2D NiMn-LDH decoration, an obvious cathodic shift of ∼480 mV in the onset potential can be observed, and more than two times enhancement in photocurrent performance is achieved. The improvement in photoelectrochemical activity for BiVO4/NiMn-LDH composite photoanode can be attributed to the enhanced water-oxidation kinetics leading to the efficient separation, transfer and collection of charge carriers at the photoanode/electrolyte interface. The result demonstrates NiMn-LDH represents one of the active oxygen evolution catalysts (OECs) to improve the PEC activity of metal oxide photoanode.

7.
Ann Hematol ; 98(8): 1845-1854, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31154474

RESUMEN

Primary immune thrombocytopenia is an autoimmune disease, characterized with decreased platelet and increased risk of bleeding. Recent studies have shown the reduction and dysfunction of regulatory T (Treg) cells in ITP patients. CD39 is highly expressed on the surface of Treg cells. It degrades ATP to AMP and CD73 dephosphorylates AMP into adenosine. Then adenosine binds with adenosine receptor and suppresses immune response by activating Treg cells and inhibiting the release of inflammatory cytokines from effector T (Teff) cells. Adenosine receptor has several subtypes and adenosine A2A receptor (A2AR) plays a crucial role especially within lymphocytes. The CD39+ Treg cells and the expression of A2AR showed abnormality in some autoimmune disease. But knowledge of CD39+ Treg cells and A2AR which are crucial in the adenosine immunosuppressive pathway is still limited in ITP. Thirty-one adult patients with newly diagnosed ITP were enrolled in this study. CD39 and A2AR expression was measured by flow cytometry and RT-PCR. The function of CD39 was reflected by the change of ATP concentration detected by CellTiter-Glo Luminescent Cell Viability Assay. CD39 expression within CD4+CD25+ Treg cells in ITP patients was decreased compared to normal controls. After high-dose dexamethasone therapy, response (R) group showed increased CD39 expression within Treg cells while non-response (NR) group did not show any difference in contrast to those before treatment. The expression of A2AR in CD4+CD25- Teff and CD4+CD25+ Treg cells was both lower in ITP patients than that of normal controls. After therapy, CD4+CD25- Teff cells had higher A2AR expression while CD4+CD25+ Treg cells did not show any difference in comparison to that before treatment. The enzymatic activity of CD39 was damaged in ITP patients and improved after high-dose dexamethasone therapy. In ITP, there was not only numerical decrease but also impaired enzymatic activity in CD39+ Treg cells. After high-dose dexamethasone treatment, these two defects could be reversed. Our results also suggested that ITP patients had reduced A2AR expression in both CD4+CD25+ Treg cells and CD4+CD25- Teff cells. CD4+CD25- Teff cells had increased A2AR expression after treatment.


Asunto(s)
Apirasa/genética , Dexametasona/uso terapéutico , Inmunosupresores/uso terapéutico , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Receptor de Adenosina A2A/genética , Linfocitos T Reguladores/efectos de los fármacos , Adenosina/inmunología , Adenosina/metabolismo , Adenosina Trifosfato/inmunología , Adenosina Trifosfato/metabolismo , Adulto , Anciano , Apirasa/inmunología , Estudios de Casos y Controles , Femenino , Expresión Génica , Humanos , Inmunofenotipificación , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Púrpura Trombocitopénica Idiopática/enzimología , Púrpura Trombocitopénica Idiopática/genética , Púrpura Trombocitopénica Idiopática/inmunología , Receptor de Adenosina A2A/inmunología , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/enzimología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Reguladores/enzimología , Linfocitos T Reguladores/inmunología
8.
Sci Total Environ ; 933: 173151, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735335

RESUMEN

The characteristics of cropland development and the dynamics of food production in China and India, the world's largest agricultural and most populous countries, are of great importance to global food security. However, there is a notable lack of a thorough comparison between China and India in this regard. Here, we systematically compare the differences between China and India using cropping intensity and crop production data, including cropland area, harvested area, total staple crop (i.e., cereal crops, tuber crops and pulse crops) production and yield capacity. The results are mainly as follows: (1) Both China and India experienced an increasing trend in cropland area and harvested area from 2001 to 2021, especially notable in India. In China, the cropland area and harvested area increased by 11.76 % and 14.36 %, respectively, while in India, they witnessed a more substantial increase of 31.10 % and 49.32 %, respectively. (2) The cropping intensity underwent significant transformations, primarily shifting between non-cropland, single-cropping, and double-cropping. Northwestern China exhibited a clear trend of non-cropland converting to single-cropping, whereas northeastern China showed a distinct pattern of single-cropping changing to non-cropland. The interconversion between single-cropping and double-cropping was also frequently observed in the main food-producing regions. In India, the cropland expansion and the adoption of double-cropping are highly pronounced, extending widely across most of the country. (3) From 2001 to 2021, the total staple crop production in China and India increased by 34.12 % and 55.81 %, respectively. Despite the rapid growth in India's total staple crop production, it still amounts to only about half of China's. The major crops production also showed different trends, China's cereal crops production increased significantly, while tuber and pulse crops production declined, and India's production of cereal, tuber, and pulse crops has all increased (4) China's yield capacity has increased by 17.28 %, while India's has only grown by 4.35 %. Despite the rapid increase in India's total staple crop production, the yield gap with China has widened. The boost in China's total staple crop production mainly resulted from improved yield capacity, whereas India relied more on the cropland area expansion, especially the increase in harvested area. Our comprehensive comparison of China and India in cropland development and staple crop production contributes to a deep understanding of the differences in agricultural production between the two countries, and provides lessons for global food security and sustainable agricultural development.


Asunto(s)
Agricultura , Producción de Cultivos , Productos Agrícolas , India , China , Productos Agrícolas/crecimiento & desarrollo , Producción de Cultivos/métodos , Agricultura/métodos , Abastecimiento de Alimentos
9.
Int Immunopharmacol ; 127: 111446, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38157697

RESUMEN

Multiple myeloma (MM) is an incurable and recurrent malignancy characterized by abnormal plasma cell proliferation. There is an urgent need to develop effective drugs in MM. DCZ0825 is a small molecule compound derived from pterostilbene with direct anti-myeloma activity and indirect immune-killing effects though reversal of the immunosuppression. DCZ0825 inhibits the activity and proliferation of MM cells causing no significant toxicity to normal cells. Using flow cytometry, this study found that DCZ0825 induced caspase-dependent apoptosis in MM cells and arrested the cell cycle in the G2/M phase by down-regulating CyclinB1, CDK1 and CDC25. Moreover, DCZ0825 up-regulated IRF3 and IRF7 to increase IFN-γ, promoting M2 macrophages to transform into M1 macrophages, releasing the immunosuppression of CD4T cells and stimulated M1 macrophages and Th1 cells to secrete more INF-γ to form immune killing effect on MM cells. Treatment with DCZ0825 resulted in an increased proportion of positive regulatory cells such as CD4T, memory T cells, CD8T, and NK cells, with downregulation of the proportion of negative regulatory cells such as Treg cells and MDSCs. In conclusion, DCZ0825 is a novel compound with both antitumor and immunomodulatory activity.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Recurrencia Local de Neoplasia , Macrófagos , Células TH1 , Inmunomodulación
10.
J Dermatol Sci ; 111(2): 52-59, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37438186

RESUMEN

BACKGROUND: Studies indicate that blue light (BL) irradiation can damage human skins, but the impact of BL irradiation on skin aging is unknown. OBJECTIVES: This study aimed to give an insight to phenotypic characteristics and molecular mechanism of blue light-induced skin aging, and thus provide a theoretical basis for the precise protection of photodermatosis. METHODS: The effect of BL on skin photoaging in mice was evaluated by non-invasive measurement equipment and histopathology analysis. The effect of BL irradiation on the proliferation of HFF-1 cells was detected by the Real-Time Cell Analyzer. The expression and protein levels of genes associated with skin aging were examined. RESULTS: Our studies indicated photoaging caused by BL irradiation, including collagen disorder and increased MMP1. BL irradiation also inhibited cell proliferation and collagen expression in human skin fibroblasts by inhibiting TGF-ß signaling pathway, based on in vitro experiments. Importantly, BL irradiation promoted the degradation of collagen by increasing MMP1 activated by the JNK/c-Jun and EGFR pathways. Moreover, ROS levels were significantly increased after BL irradiation in human skin fibroblasts. Yet, the transcriptional change in human skin fibroblasts caused by BL irradiation was unable to be completely restored by ROS scavenger. CONCLUSION: BL irradiation down-regulated expression of type I collagen genes and up-regulated MMP1 expression to inhibit the proliferation of human skin fibroblasts. Multiple key pathways including TGF-ß, JNK, and EGFR signaling were involved in BL-induced skin aging. Our results provide theoretical bases for the protection of photoaging caused by BL irradiation.


Asunto(s)
Envejecimiento de la Piel , Enfermedades de la Piel , Humanos , Animales , Ratones , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Piel/patología , Colágeno/metabolismo , Enfermedades de la Piel/patología , Fibroblastos/metabolismo , Receptores ErbB/metabolismo , Rayos Ultravioleta/efectos adversos
11.
Cancer Med ; 12(23): 21321-21334, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37942576

RESUMEN

BACKGROUND: Thyroid hormone receptor interacting protein 13 (Trip13) is an AAA-ATPase that regulates the assembly or disassembly protein complexes and mediates Double-strand breaks (DSBs) repair. Overexpression of Trip13 has been detected in many cancers and is associated with myeloma progression, disease relapse and poor prognosis inmultiple myeloma (MM). METHODS: We have identified a small molecular, TI17, through a parallel compound-centric approach, which specifically targets Trip13. To identify whether TI17 targeted Trip13, pull-down and nuclear magnetic resonance spectroscopy (NMR) assays were performed. Cell counting kit-8, clone formation, apoptosis and cell cycle assays were applied to investigate the effects of TI17. We also utilized a mouse model to investigate the effects of TI17 in vivo. RESULTS: TI17 effectively inhibited the proliferation of MM cells, and induced the cycle arrest and apoptosis of MM cells. Furthermore, treatment with TI17 abrogates tumor growth and has no apparent side effects in mouse xenograft models. TI17 specifically impaired Trip13 function of DSBs repair and enhanced DNA damage responses in MM. Combining with melphalan or HDAC inhibitor panobinostat triggers synergistic anti-MM effect. CONCLUSIONS: Our study suggests that TI17 could be acted as a specific inhibitor of Trip13 and supports a preclinical proof of concept for therapeutic targeting of Trip13 in MM.


Asunto(s)
Mieloma Múltiple , Humanos , Animales , Ratones , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Roturas del ADN de Doble Cadena , Recurrencia Local de Neoplasia , Proteínas de Ciclo Celular/metabolismo , Reparación del ADN , Ciclo Celular
12.
Int Immunopharmacol ; 125(Pt A): 111139, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37913572

RESUMEN

The most common neoplasm among adult lymphomas is diffuse large B-cell lymphoma (DLBCL), typically characterized by pain-free and progressive lymph node enlargement. Due to high heterogeneity of DLBCL, 30-40 % of patients are resistant to R-CHOP standard chemoimmunotherapy. DCZ0358 is a new compound designed and synthesized from berberine by our group and the molecular mechanism by which it inhibited DLBCL growth has attracted our widespread attention. In this study, we employed the CCK8 assay to reveal that DCZ0358 inhibited proliferation in a dependent manner of time and dosage of DLBCL cells. Moreover, flowcytometry and western blot results showed that DCZ0358 downregulated the expression of CDK4, CDK6 and CyclinD1 to block cell cycle progression in G0/G1 phase. Furthermore, DCZ0358 enhanced mitochondrial membrane potential depolarization, promoted mitochondrial permeability transport pore openness, increased cytoplastic Ca2+ levels and decreased intracellular adenosine triphosphate production, which led to mitochondrial dysfunction. In particular, DCZ0358 treatment triggered cell apoptosis and elevated intracellular reactive oxygen species (ROS) levels, which subsequently mediated JNK pathway activation. Further research indicated the pre-treatment with ROS scavenger N-acetylcysteine (NAC) and JNK inhibitor SP600125 could partially attenuate apoptosis and DNA damage triggered by DCZ0358. Most importantly, DCZ0358 exhibited synergistic anti-tumor effects when combined with etoposide, a common clinical anti-DLBCL drug, both in vitro and certainly in vivo. Above results demonstrated anti-tumor molecular mechanism of DCZ0358 in DLBCL cells and highlighted the ROS/JNK/DNA damage pathway as a potential target in therapies, which have implications for the development of more effective clinical treatments for DLBCL.


Asunto(s)
Berberina , Linfoma de Células B Grandes Difuso , Humanos , Apoptosis , Berberina/farmacología , Línea Celular Tumoral , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/patología , Sistema de Señalización de MAP Quinasas , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
13.
Sci Total Environ ; 806(Pt 4): 150946, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34655627

RESUMEN

Biofuel crops are one of the most promising regenerative alternatives of energy resources to fossil fuels. Revealing the current and future resource distribution patterns of biofuel crops will promote the development of green energies and the mitigation of greenhouse gas emissions. In this study, we first conducted a comprehensive and systematic analysis on the distribution patterns of main biofuel crops in China, using 22,352 occurrence records of 31 biofuel plant species and thirty-year environmental variables (1970-2000) with maximum entropy modeling, as well as nine-year field investigation of land use (2011-2019). The results showed that there were six different sub-regions for main biofuel crops in China, while Southwest China and South China were determined as the main concentrated potential regions. Specifically, the ranges of these regions were wider than those of current land use of main biofuel crops in China, indicating great potential for industrial cultivation. Moreover, the main biofuel crops had diverse changing patterns including increase, decrease and unstable under future climate change. Among them, biofuel crops with increase pattern (six crops) and decrease pattern (seven crops) should receive high attention for future resource utilization and production. Further field validation results confirmed that the above distribution patterns were mainly determined by increasing global temperature and precipitation. Collectively, these results will provide valuable references for the utilization and development of main biofuel resources under climate change in China, thereby shedding light on studies regarding the production of green biofuels globally.


Asunto(s)
Biodiversidad , Biocombustibles , Productos Agrícolas , Combustibles Fósiles , Temperatura
14.
Neoplasia ; 24(1): 50-61, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890905

RESUMEN

Diffuse large B cell lymphoma (DLBCL) is a clinical and genetically heterogeneous lymphoid malignancy. Although R-CHOP (rituximab plus cyclophosphamide, vincristine, doxorubicin, and prednisone) treatment can improve the survival rate of patients with DLBCL, more than 30% of patients exhibit treatment failure, relapse, or refractory disease. Therefore, novel drugs or targeted therapies are needed to improve the survival of patients with DLBCL. The compound DCZ0014 is a novel chemical similar to berberine. In this study, we found that DCZ0014 significantly inhibited the proliferation and activity of DLBCL cells, and induced cell apoptosis. Following treatment with DCZ0014, DLBCL cells accumulated in G0/G1-phase of the cell cycle and showed decreased mitochondrial membrane potential. Additionally, DCZ0014 inhibited DNA synthesis, enhanced DNA damage in DLBCL cells, as well as inhibited Lyn/Syk in B cell receptor signaling pathway. Further experiments demonstrated that DCZ0014 did not significantly affect peripheral blood mononuclear cells. Tumor xenograft model showed that DCZ0014 not only inhibited tumor growth but also extended the survival time of mice. Thus, DCZ0014 showed potential for clinical application in the treatment of patients with DLBCL.


Asunto(s)
Antineoplásicos/farmacología , Linfoma de Células B Grandes Difuso/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Replicación del ADN , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/etiología , Linfoma de Células B Grandes Difuso/patología , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Comput Struct Biotechnol J ; 18: 4002-4015, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363697

RESUMEN

The polymorphous cellular shape of Candida albicans, in particular the transition from a yeast to a filamentous form, is crucial for either commensalism or life-threatening infections of the host. Various external or internal stimuli, including serum and nutrition starvation, have been shown to regulate filamentous growth primarily through two classical signaling pathways, the cAMP-PKA and the MAPK pathways. Genotoxic stress also induces filamentous growth, but through independent pathways, and little is known about negative regulation during this reversible morphological transition. In this study, we established that ARP1 in C. albicans, similar to its homolog in S. cerevisiae, has a role in nuclei separation and spindle orientation. Deletion of ARP1 generated filamentous and invasive growth as well as increased biofilm formation, accompanied by up-regulation of hyphae specific genes, such as HWP1, UME6 and ALS3. The filamentous and invasive growth of the ARP1 deletion strain was independent of transcription factors Efg1, Cph1 and Ume6, but was suppressed by deleting checkpoint BUB2 or overexpressing NRG1. Deletion of ARP1 impaired the colonization of Candida cells in mice and also attenuated virulence in a mouse model. All the data suggest that loss of ARP1 activates filamentous and invasive growth in vitro, and that it positively regulates virulence in vivo, which provides insight into actin-related morphology and pathogenicity in C. albicans.

17.
J Exp Clin Cancer Res ; 39(1): 105, 2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-32517809

RESUMEN

BACKGROUND: DCZ3301, a novel aryl-guanidino compound previously reported by our group, exerts cytotoxic effects against multiple myeloma (MM), diffused large B cell lymphoma (DLBCL), and T-cell leukemia/lymphoma. However, the underlying mechanism of its action remains unknown. METHODS: We generated bortezomib (BTZ)-resistant cell lines, treated them with various concentrations of DCZ3301 over varying periods, and studied its effect on colony formation, cell proliferation, apoptosis, cell cycle, DNA synthesis, and DNA damage response. We validated our results using in vitro and in vivo experimental models. RESULTS: DCZ3301 overcame bortezomib (BTZ) resistance through regulation of the G2/M checkpoint in multiple myeloma (MM) in vitro and in vivo. Furthermore, treatment of BTZ-resistant cells with DCZ3301 restored their drug sensitivity. DCZ3301 induced M phase cell cycle arrest in MM mainly via inhibiting DNA repair and enhancing DNA damage. Moreover, DCZ3301 promoted the phosphorylation of ATM, ATR, and their downstream proteins, and these responses were blocked by the ATM specific inhibitor KU55933. CONCLUSIONS: Our study provides a proof-of-concept that warrants the clinical evaluation of DCZ3301 as a novel anti-tumor compound against BTZ resistance in MM.


Asunto(s)
Amidas/farmacología , Bortezomib/farmacología , Daño del ADN , Resistencia a Antineoplásicos/efectos de los fármacos , Mitosis , Mieloma Múltiple/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Piridinas/farmacología , Animales , Antineoplásicos/farmacología , Apoptosis , Ciclo Celular , Proliferación Celular , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA