Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Environ Sci Technol ; 58(36): 16164-16174, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39190796

RESUMEN

Microplastics (MPs) in coastal wetlands have been of great concern, but information on the aging behavior of MPs in the sediment-water interface is still lacking. In this study, the contribution of a typical abiotic (photoaging) and biotic (biodegradation) process and the underlying aging pathway of MPs with different degradabilities (including polypropylene, polyethylene terephthalate, and polylactic acid) were studied. With a quantified relative importance of photoaging (>55%) vs biodegradation, the crucial contribution of photoaging on MP aging was highlighted. This was likely attributed to more generation of reactive oxygen species (ROS) under sunlight irradiation conditions, containing O2•- and H2O2. By raising higher the level of malondialdehyde (0.5-3.5 times as high as that in the dark condition), these photochemically formed ROS caused oxidative stress and inhibited the selective attachment of plastic-degrading microbes on the MP surface, thereby weakening the effect of biodegradation. On this basis, the aging characteristics and potential pathway of different MPs were revealed. The functional group of nondegradable polypropylene tends to be broken by ROS first, while biodegradation (Arthrobacter oryzae and Bacillus sp.) played a relatively dominant role in biodegradable polylactic acid. This study provides a new sight for the understanding on the aging behaviors of MPs in the sediment-water interface.


Asunto(s)
Biodegradación Ambiental , Sedimentos Geológicos , Microplásticos , Sedimentos Geológicos/química , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Agua/química , Poliésteres/metabolismo
2.
Environ Sci Technol ; 58(18): 8065-8075, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38597221

RESUMEN

We report a previously unrecognized but efficient reductive degradation pathway in peroxydisulfate (PDS)-driven soil remediation. With supplements of naturally occurring low-molecular-weight organic acids (LMWOAs) in anaerobic biochar-activated PDS systems, degradation rates of 12 γ-hexachlorocyclohexanes (HCH)-spiked soils boosted from 40% without LMWOAs to a maximum of 99% with 1 mM malic acid. Structural analysis revealed that an increase in α-hydroxyl groups and a diminution in pKa1 values of LMWOAs facilitated the formation of reductive carboxyl anion radicals (COO•-) via electrophilic attack by SO4•-/•OH. Furthermore, degradation kinetics were strongly correlated with soil organic matter (SOM) contents than iron minerals. Combining a newly developed in situ fluorescence detector of reductive radicals with quenching experiments, we showed that for soils with high, medium, and low SOM contents, dominant reactive species switched from singlet oxygen/semiquinone radicals to SO4•-/•OH and then to COO•- (contribution increased from 30.8 to 66.7%), yielding superior HCH degradation. Validation experiments using SOM model compounds highlighted critical roles of redox-active moieties, such as phenolic - OH and quinones, in radical formation and conversion. Our study provides insights into environmental behaviors related to radical activation of persulfate in a broader soil horizon and inspiration for more advanced reduction technologies.


Asunto(s)
Suelo , Suelo/química , Radicales Libres/química , Contaminantes del Suelo/química , Oxidación-Reducción , Halogenación
3.
Environ Sci Technol ; 57(27): 10053-10061, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37377074

RESUMEN

Globally, more than 6 million metric tons of agricultural plastic films are used to increase crop yields and reduce the use of water and herbicides, resulting in the contamination of soil and water by plastic debris and additives. However, knowledge of the occurrence and release of additives from agricultural films is limited. In this study, suspect screening with high-resolution mass spectrometry, one-dimensional Fickian diffusion models, and linear free energy relationships (LFERs) were used to determine the occurrence and mass transfer of various additives from agricultural plastic films. A total of 89 additives were tentatively identified in 40 films, and 62 of them were further validated and quantified. The aqueous concentrations of 26 released additives reached mg L-1 after a 28 day incubation at 25 °C. Diffusion models and LFERs demonstrated that the film-water partition coefficient and the diffusivity in the polymer, the two critical parameters controlling the mass transfer, could be predicted using Abraham descriptors. The findings of this study highlighted the need for future research on the environmental fate and risk assessment of previously neglected additives in agricultural plastic films and other similar products.


Asunto(s)
Plásticos , Agua , Plásticos/análisis , Agricultura , Polímeros , Suelo
4.
Environ Sci Technol ; 57(14): 5703-5713, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36932960

RESUMEN

We report an unrecognized but efficient nonradical mechanism in biochar-activated peroxydisulfate (PDS) systems. Combining a newly developed fluorescence trapper of reactive oxygen species with steady-state concentration calculations, we showed that raising pyrolysis temperatures of biochar (BC) from 400 to 800 °C remarkably enhanced trichlorophenol degradation but inhibited the catalytic production of radicals (SO4•- and •OH) in water and soil, thereby switching a radical-based activation into an electron-transfer-dominated nonradical pathway (contribution increased from 12.9 to 76.9%). Distinct from previously reported PDS* complex-determined oxidation, in situ Raman and electrochemical results of this study demonstrated that the simultaneous activation of phenols and PDS on the biochar surface triggers the potential difference-driven electron transfer. The formed phenoxy radicals subsequently undergo coupling and polymerization reactions to generate dimeric and oligomeric intermediates, which are eventually accumulated on the biochar surface and removed. Such a unique nonmineralizing oxidation achieved an ultrahigh electron utilization efficiency (ephenols/ePDS) of 182%. Through biochar molecular modeling and theoretical calculations, we highlighted the critical role of graphitic domains rather than redox-active moieties in lowering band-gap energy to facilitate electron transfer. Our work provides insights into outstanding contradictions and controversies related to nonradical oxidation and inspiration for more oxidant-saving remediation technologies.


Asunto(s)
Electrones , Polifenoles , Oxidación-Reducción , Fenoles , Carbón Orgánico/química
5.
Environ Sci Technol ; 57(7): 2739-2748, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36724064

RESUMEN

Adding conductive materials to the cathode of a microbial electrochemical system (MES) can alter the route of interspecies electron transfer and the kinetics of reduction reactions. We tested reductive dechlorination of γ-hexachlorocyclohexane (γ-HCH), along with CH4 production, in MES systems whose cathodes were coated with conductive magnetite nanoparticles (NaFe), biochar (BC), magnetic biochar (FeBC), or anti-conductive silica biochar (SiBC). Coating with NaFe enriched electroactive microorganisms, boosted electro-bioreduction, and accelerated γ-HCH dechlorination and CH4 production. In contrast, BC only accelerated dechlorination, while FeBC only accelerated methanogenesis, because of their assemblies of functional taxa that selectively transferred electrons to those electron sinks. SiBC, which decreased electro-bioreduction, yielded the highest CH4 production and increased methanogens and the mcrA gene. This study provides a strategy to selectively control the distribution of electrons between reductive dechlorination and methanogenesis by adding conductive or anti-conductive materials to the MES's cathode. If the goal is to maximize dechlorination and minimize methane generation, then BC is the optimal conductive material. If the goal is to accelerate electro-bioreduction, then the best addition is NaFe. If the goal is to increase the rate of methanogenesis, adding anti-conductive SiBC is the best.


Asunto(s)
Electrones , Hexaclorociclohexano , Transporte de Electrón , Metano , Anaerobiosis
6.
Environ Res ; 184: 109354, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32182482

RESUMEN

The assumption that only biological processes are enantioselective introduces challenges in the reliability of enantioselective analysis as a tool for discriminating biotic and abiotic processes in the environmental fate of chiral pollutants. Enantioselectivity does not depend on the nature of the fate process a chiral contaminant undergoes but on the interaction of the chiral contaminant with homochirality inducing external agents (e.g. chiral molecules, macromolecules or surfaces such as enzymes, blood plasma, proteins, chiral co-pollutants, humic acid and soil organominerals). The environmental behavior of a chiral contaminant is difficult to anticipate because the interactions between the chiral contaminants and the homochirality inducing external agents is often complex and strongly influenced by local environment conditions such as pH, redox conditions, organic carbon, organic nitrogen, humic acid, and redox conditions. Furthermore, the use of enantioselective analysis in environmental forensics depend on the adequate separation and accurate identification and quantification of the enantiomers of the chiral contaminant. Matrix effects, instrument effects, inadequate enantioselective separation, and poor quantification techniques introduce uncertainties in the determination of enantiomeric composition. Here we present the weaknesses of this assumption and recommend using enantiomeric fractions as chemical markers of biotransformation with caution. We recommend using stable isotopes, including abiotic controls to determine if enantioselective sorption occurs, and determining stability of enantiomers in solvent or at elevated temperatures to account for confounding factors arising from matrix effects, enantioselective abiotic processes, and enantiomerization due solvent and thermal lability of the chiral analyte, respectively to maintain the integrity of the utility of enantiomeric composition changes as an environmental forensics tool.


Asunto(s)
Contaminantes Ambientales , Biotransformación , Reproducibilidad de los Resultados , Suelo , Estereoisomerismo
7.
Environ Sci Technol ; 50(1): 285-93, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26587648

RESUMEN

Black carbons (BCs) dominate the sorption of many hydrophobic organic compounds (HOCs) in soils and sediments, thereby reducing the HOCs' mobilities and bioavailabilities. However, we do not have data for diverse HOCs' sorption to BC because it is time-consuming and labor-intensive to obtain isotherms on soot and other BCs. In this study, we developed a frontal analysis chromatographic method to investigate the adsorption of 21 organic compounds with diverse functional groups to NIST diesel soot. This method was precise and time-efficient, typically taking only a few hours to obtain an isotherm. Based on 102 soot-carbon normalized sorption coefficients (KsootC) acquired at different sorbate concentrations, a sorbate-activity-dependent polyparameter linear free-energy relationship was established: logKsootC = (3.74 ± 0.11)V + ((-0.35 ± 0.02)log ai)E + (-0.62 ± 0.10)A + (-3.35 ± 0.11)B + (-1.45 ± 0.09); (N = 102, R(2) = 0.96, SE = 0.18), where V, E, A, and B are the sorbate's McGowan's characteristic volume, excess molar refraction, and hydrogen acidity and basicity, respectively; and ai is the sorbate's aqueous activity reflecting the system's approach to saturation. The difference in dispersive interactions with the soot versus with the water was the dominant factor encouraging adsorption, and H-bonding interactions discouraged this process. Using this relationship, soot-water and sediment-water or soil-water adsorption coefficients of HOCs of interest (PAHs and PCBs) were estimated and compared with the results reported in the literature.


Asunto(s)
Compuestos Orgánicos/química , Hollín/química , Adsorción , Carbono/química , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Teóricos , Suelo/química , Agua/química
8.
Environ Sci Technol ; 48(2): 1008-14, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24345275

RESUMEN

Nonylphenol (NP), a well-known environmental estrogen with numerous isomers, is frequently found in surface water and sediments. Recent studies showed that NP isomers exhibited different estrogenicity. However, at present little information is available on its isomer-specific degradation in the bed sediment, which is the primary sink of NP in surface aquatic systems. In this study, we investigated the biodegradability of 19 NP isomers in two river sediments under oxic and anoxic conditions. Under oxic conditions, the half-lives of NP isomers in an upper river sediment ranged from 0.9 to 13.2 d. Under reduced conditions, the persistence of NP isomers generally increased, with negligible dissipation under strongly reduced conditions. In the well-aerated sediment, NP isomers with short side chain and/or bulky α-substituents were found to be more recalcitrant to degradation. Moreover, when a total of 57 molecular descriptors were examined, the degree of branching as quantified by IDWbar was found to result in the best linear correlation with half-lives of NP isomers (R(2) = 0.88). These results indicated that the isomer-specificity of NP in environmental processes should be considered, and that simple molecular descriptors may be used to identify the more recalcitrant isomers, thus allowing prioritization in the evaluation of environmental fate and risks of NP isomers.


Asunto(s)
Sedimentos Geológicos/química , Fenoles/química , Fenoles/metabolismo , Ríos/química , Anaerobiosis , Biodegradación Ambiental , Semivida , Concentración de Iones de Hidrógeno , Isomerismo , Análisis de los Mínimos Cuadrados , Oxidación-Reducción
9.
PLoS One ; 19(5): e0302789, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38768109

RESUMEN

Employing the "Green Credit Guidelines" implemented in 2012 as the basis for a quasi-natural experiment, this study applies the method of Difference-in-Differences(DID) to investigate the influence of the Green Credit Policy on both the quantity and quality of enterprise innovation. The outcomes of our analysis reveal that the policy has significantly boosted both the quantity and quality of innovation among enterprises identified as heavy polluters. It is noteworthy that the policy's positive impact on innovation quantity surpasses its positive effect on innovation quality. This substantiates that the Green Credit Policy effectively generates incentivizing outcomes for innovation among the heavy polluters, thereby verifying Porter's hypothesis within the domain of green credit in China. Furthermore, we find that the positive impact is more significant for enterprises with lower innovation capabilities, large-scale enterprises, state-owned enterprises, and those situated in both the Eastern and Western regions. Through these findings, this study illuminates a novel perspective on the interplay between the Green Credit Policy and enterprise innovation dynamics in China.


Asunto(s)
Contaminación Ambiental , China , Contaminación Ambiental/prevención & control , Conservación de los Recursos Naturales/métodos , Invenciones , Humanos
10.
Sci Total Environ ; 918: 170763, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38336072

RESUMEN

It is widely recognized that applications of plastic films result in plastic pollution in agroecosystems. However, there is limited knowledge on the release and occurrence of additives beyond phthalates in agricultural soil. In this study, the rates of release and biodegradation of various additives, including phthalates, bisphenols, organophosphate esters, phenolic antioxidants, and ultraviolet absorbents from mulching films in soil were quantified by laboratory incubation. The rates of release and biodegradation ranged from 0.069 d-1 to 5.893 d-1 and from 1.43 × 10-3 d-1 to 0.600 d-1, respectively. Both of these rates were affected by temperature, flooding, and the properties of additives, films, and soils. An estimated 4000 metric tons of these additives were released into soil annually in China exclusively. The total concentrations of these additives in 80 agricultural soils varied between 228 and 3455 µg kg-1, with phenolic antioxidants, phthalates, and bisphenols accounting for 54.1%, 25.2%, and 17.9% of the total concentrations, respectively. A preliminary risk assessment suggested that the current levels of these additives could potentially present moderate hazards to the soil ecosystem.


Asunto(s)
Ácidos Ftálicos , Contaminantes del Suelo , Suelo , Ecosistema , Plásticos , Contaminantes del Suelo/análisis , Agricultura , China
11.
Sci Total Environ ; 937: 173597, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38810741

RESUMEN

Microfluidics, also called lab-on-a-chip, represents an emerging research platform that permits more precise and manipulation of samples at the microscale or even down to the nanoscale (nanofluidic) including picoliter droplets, microparticles, and microbes within miniaturized and highly integrated devices. This groundbreaking technology has made significant strides across multiple disciplines by providing an unprecedented view of physical, chemical, and biological events, fostering a holistic and an in-depth understanding of complex systems. The application of microfluidics to address the challenges in environmental science is likely to contribute to our better understanding, however, it's not yet fully developed. To raise researchers' interest, this discussion first delineates the valuable and underutilized environmental applications of microfluidic technology, ranging from environmental surveillance to acting as microreactors for investigating interfacial dynamic processes, and facilitating high-throughput bioassays. We highlight, with examples, how rationally designed microfluidic devices lead to new insights into the advancement of environmental science and technology. We then critically review the key challenges that hinder the practical adoption of microfluidic technologies. Specifically, we discuss the extent to which microfluidics accurately reflect realistic environmental scenarios, outline the areas to be improved, and propose strategies to overcome bottlenecks that impede the broad application of microfluidics. We also envision new opportunities and future research directions, aiming to provide guidelines for the broader utilization of microfluidics in environmental studies.


Asunto(s)
Ciencia Ambiental , Microfluídica , Microfluídica/métodos , Monitoreo del Ambiente/métodos , Dispositivos Laboratorio en un Chip
12.
Environ Pollut ; 335: 122357, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37567403

RESUMEN

Dechlorination of chlorinated organic pollutants and methanogenesis are attractive biocathode reductions in microbial electrolysis cells (MECs). Quorum sensing (QS) is applied to regulate microbial communications. However, how acyl-homoserine lactones (AHLs)-dependent QS organize the assembly of the biocathode microbial community, and then regulate multiple biocathode reductions remains unclear. By applying N-butanoyl homoserine lactone (C4-HSL), N-hexanoyl homoserine lactone (C6-HSL) and 3-oxo-hexanoyl homoserine lactone (3OC6-HSL) in γ-hexachlorocyclohexane (γ-HCH) contaminated MECs, this study investigated the changes of biofilm microbial structure and function and the mechanisms of AHLs-QS on γ-HCH dechlorination and CH4 production. Exogenous C4-HSL and 3OC6-HSL increased cytochrome c production and enriched dechlorinators, electroactive bacteria but not methanogens to accelerate γ-HCH dechlorination and inhibit CH4 production. C6-HSL facilitated dechlorination and CH4 production by enhancing biofilm electroactivity and increasing membrane transportation. Besides, exogenous C6-HSL restored the electron transfer capacity that was damaged by the concurrent addition of acylase, an endogenous AHL quencher. From the perspective of microbial assembly, this study sheds insights into and provides an efficient strategy to selectively accelerate dechlorination and CH4 production by harnessing microbial structure based on QS systems to meet various environmental demands.


Asunto(s)
Hexaclorociclohexano , Percepción de Quorum , Biopelículas , 4-Butirolactona , Acil-Butirolactonas
13.
Environ Pollut ; 316(Pt 2): 120669, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36395909

RESUMEN

The sluggish Fe3+/Fe2+ cycle was the rate-limiting step in the Fenton-like reaction, and metal-free carbonaceous materials are considered as emerging alternatives to solve this problem. However, the effect of carbon material properties on the distribution of reactive species remains poorly understood. This study investigated the possibility and mechanism of using biochar to accelerate the Fe3+/Fe2+ cycle to overcome the low efficiency of Fe3+/persulfate (PS) catalytic oxidation of phenanthrene. More importantly, the contribution of reactive species in the reaction systems with the variation of biochar pyrolysis temperatures was quantitatively studied. The results showed that medium-temperature derived biochar (BC500) had the greatest ability to enhance the Fenton-like system compared to the low- and high-temperature (BC350/700), and the first-order rate constant achieved 5.2 and 35.7-fold increase against the biochar/PS and Fe3+/PS systems, respectively. Using electrochemical evidence, sulfoxide probe tests, and steady-state concentration calculations, radicals yields were found to rise and then reduce with decreasing pyrolysis temperature, while the nonradical contribution of Fe(IV) increased to 56.3%. Electron paramagnetic resonance, Boehm titration, and Raman spectroscopy unraveled that the enhanced effect of biochar resulted from itself persistent free radicals, phenolic-OH, and edge defects, which enabled electron transfer between Fe3+ and biochar. Fe2+ was thus continuously generated and effectively activated the PS. This work enables a better understanding of the Fe3+-mediated Fenton-like reaction in the presence of biochar and provides a sustainable green strategy for Fenton chemistry with potential applications.


Asunto(s)
Pirólisis , Catálisis , Oxidación-Reducción , Transporte de Electrón
14.
Heliyon ; 9(12): e23131, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38144269

RESUMEN

Internal Carbon Pricing (ICP) represents an innovative approach to carbon emission reduction. The implementation of the ICP involves enterprises and internal organizations, with its outcomes closely tied to government actions. In this study, a tripartite evolutionary game model comprising these subjects was constructed, and subsequent simulation analyses were conducted. The results revealed the following key findings: (1) When the combined total of carbon fees and governments' emission reduction subsidies surpasses the aggregate of carbon fees returned to internal organizations and ICP implementation costs, and when enterprises' revenues exceed governments' subsidies, all three parties will evolve towards ESS (1,1,1). This signifies that enterprises opt for the ICP, internal organizations actively reduce emissions, and governments engage in proactive regulation. (2) Reducing the cost of implementing ICP, increasing the carbon fee rebate ratio, raising governments' subsidies, and elevating the internal carbon price all contribute to promoting the attainment of the evolutionary game results ESS (1,1,1). However, it's important to note that higher governments' subsidies and carbon fee rebate ratios do not necessarily lead to a greater incentive for the three parties to reach the ESS(1,1,1). These findings provide a solid theoretical foundation for enterprises considering the implementation of the ICP in the future.

15.
Environ Pollut ; 320: 121087, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36649883

RESUMEN

Microplastic (MP) pollution in coastal wetlands is of a global concern. Little attention has been paid to the co-occurrence and corresponding risk of MPs with pollutants, especially refractory chlorinated persistent organic pollutants (CPOPs). A case study of Zhejiang, China was conducted to investigate the occurrence of MPs and targeted CPOPs in coastal wetlands. MPs were 100% detected, but with the lowest abundance in coastal wetlands (average: 666.1 ± 159.1 items kg-1), as compared to other 6 terrestrial ecosystems (average: 1293.9 ± 163.7 items kg-1) including paddy field, upland, facility vegetable field, forestland, urban soil, and grassland. A total of 35 kinds CPOPs were also detected in all studied coastal wetlands, with their concentration almost under 10 µg kg-1 (90.1%). Both enrichment of MPs and CPOPs was affected by sediment TOC, wetland vegetation and land use simultaneously. Interestingly, the occurrence of MPs was significantly correlated with polychlorinated biphenyls (PCBs) but not organochlorine pesticides (OCPs). Results of co-occurrence pollution assessment of MPs and CPOPs further indicated only Hangzhou Bay showed the ecological risk among all tested wetlands. This would suggest a potential risk of co-occurrence of MPs and modern CPOPs in coastal wetland in economic development area. Possible reason may lie on strong MP vector effect to CPOPs. More attention should thus be paid to other wetlands polluted by MPs and MP-carrying CPOPs in area with relatively great environmental pressure induced by human activity. This study may provide reference for a better understanding with respect to the risk level posed by co-occurrence of MPs and CPOPs to global coastal wetlands.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Humedales , Plásticos , Ecosistema , Contaminantes Orgánicos Persistentes , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , China
16.
Sci Total Environ ; 837: 155772, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35533864

RESUMEN

Wetlands are a key hub for the accumulation of microplastics (MPs) and have great load capacity to organic pollutants (OPs), thus, have been a hot research topic. It has shown that OPs adsorbed on MPs could be transported to anywhere and MP-associated biofilms also affects the co-occurrence of MPs and OPs. This would induce the desorption of MP-carrying OPs into environment again, increasing latent migration and convergence of MPs and OPs in wetlands. Considering MPs vector effect and MP-associated biofilms, it is necessary to integrate MPs information on its occurrence characteristics and migration behavior for an improved assessment of ecological risk brought by MPs and MP-carrying OPs to whole wetland ecosystems. In this review, we studied papers published from 2010 to 2020, focused on the interaction of MPs with OPs and the role of their co-occurrence and migration on ecological risk to wetlands. Results suggested the interaction between MPs and OPs dominated by adsorption altered their toxicity and environmental behavior, and the corresponding ecological risk induced by their co-occurrence to wetlands is various and complicated. Especially, constructed wetlands as the special hub for the migration of MPs and MP-carrying OPs might facilitate their convergence between natural and constructed wetlands, posing a potential enlarging ecological risk to whole wetlands. Since the study of MPs in wetlands has still been in a primary stage, we hope to provide a new sight to set forth the potential harm of MPs and MP-carrying OPs to wetlands and useful information for follow-up study.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Ecosistema , Estudios de Seguimiento , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Humedales
17.
Sci Total Environ ; 808: 152074, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34863759

RESUMEN

The occurrence and risks of pesticides and their transformation products in soil at the manufacturing sites are "known unknowns." In this study, pesticides and their transformation products were screened in soil at 6 pesticide manufacturing sites across China using liquid and gas chromatography coupled with quadrupole time-of-flight mass spectrometry. The screening strategy can correctly identify 75% of 209 pesticides spiked at 50 ng g-1. A total of 212 pesticides were identified; 23.1% of pesticides detected were above 200 ng g-1, and the maximum concentration was 1.5 × 105 ng g-1. The risk quotients of 20% pesticides were greater than 1, and the maximum risk quotient of imidacloprid reached 6.3 × 104. The most recent site showed a larger number of pesticides with higher diversity, whereas older sites were dominated by organochlorine insecticides. The extended screen identified 163 transformation products with concentrations up to 6.6 × 104 ng g-1. Half of the transformation products had higher concentrations than their parent compounds, and metabolic ratios up to 371 were observed. The results of this study validate the prevalence of pesticides and their transformation products in soil at pesticide manufacturing sites. The results also highlight the importance of comprehensive screening at industrial sites and call for improved management and regulation of pesticide manufacturing, particularly for in-service facilities.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas , Residuos de Plaguicidas/análisis , Plaguicidas/análisis , Suelo
18.
Sci Total Environ ; 852: 158384, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36055488

RESUMEN

The terrestrial environment is both a critical source and sink for microplastics (MPs). However, further efforts into the risk assessment, management, and mitigation activities of MPs in the terrestrial environment were limited by the scant data on their occurrence. In this study, we investigated the co-occurrence and correlations of light MPs and phthalate esters (PAEs) in the soils of China's hotspots and non-hotspot regions. Light MPs and PAEs were detected in all agricultural and urban soils (n = 125). In soils from hotspots (Shihezi, Xinjiang) where intense plastic mulching was used, the concentrations of MPs and phthalate diesters (di-PAEs) were 650-36,450 pcs kg-1 and 55.60-1236.64 µg kg-1, respectively. In hotspots but not in non-hotspot regions of China, a positive correlation between MPs and PAEs was established, suggesting PAEs may serve as an indicator of MP contamination in hotspots. High quantities of MPs (1143-5911 pcs kg-1) and PAEs (67.3-1236.64 µg kg-1) were also detected in urban park soils, demonstrating a need for future research on MP in urban soils. In addition, the ubiquitous co-occurrence of MPs and PAEs in all 125 investigated soils revealed that potential joint toxicity, co-transformation, and co-transportation of MPs and PAEs should not be disregarded.


Asunto(s)
Ácidos Ftálicos , Contaminantes del Suelo , China , Dibutil Ftalato , Ésteres , Microplásticos , Plásticos , Suelo , Contaminantes del Suelo/análisis
19.
Environ Sci Technol ; 45(18): 7928-35, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21823571

RESUMEN

After a single oral exposure of technical chlordane, levels of cis-chlordane (CC), trans-chlordane (TC), heptachlor (HEP), heptachlorepoxide (HEPX), and oxychlordane (OXY) were determined in gastrointestinal residues, droppings, and various tissues of cockerels at times of 60, 120, 160, 200, 300, 500, 1000, and 2000 min. Over 98% of CC and TC were found to be bioaccessible; only 1.1% of CC and TC were directly excreted through droppings without further biotransformation. According to the single-compartment toxicokinetic modeling, CC and TC shared similar absorption rates in the whole body while TC showed a slightly more rapid elimination rate, with a half-life of 13.4 h for CC and 12.5 h for TC. The metabolites HEPX and OXY appeared quickly in tissues 60 min after exposure and were mainly accumulated in fat and liver tissues. Concentrations of CC, TC, and HEP in cockerel tissues roughly followed the order as fat > intestine > skin > liver> brain > muscle > blood. Levels of CC, TC, and HEP in various tissues showed significant correlation with the lipid contents of the tissues (p < 0.05) for samples beginning 500 min after exposure. A multicompartment toxicokinetic model was developed to characterize the accumulation dynamics of CC and TC in the various tissues. All tissues of cockerels enantioselectively accumulated (-)-CC and (+)-TC, and fat, skin, and liver tissues showed a relatively stronger capacity of enantioenrichment. The enantiomer fractions (EFs) of droppings remained nearly racemic at first but gradually decreased to less than 0.5 for CC and increased to more than 0.5 for TC, which could rule out enantioselective absorption and excretion of CC and TC in cockerels. The one-compartment toxicokinetic model was applied to the individual enantiomers of CC and TC. Different elimination rates but similar absorption rates were observed between the enantiomers for both CC and TC.


Asunto(s)
Pollos/metabolismo , Clordano/farmacocinética , Insecticidas/farmacocinética , Tejido Adiposo/metabolismo , Administración Oral , Animales , Encéfalo/metabolismo , Clordano/sangre , Clordano/química , Heces/química , Tracto Gastrointestinal/metabolismo , Insecticidas/sangre , Insecticidas/química , Hígado/metabolismo , Modelos Biológicos , Músculos/metabolismo , Piel/metabolismo , Estereoisomerismo
20.
Sci Total Environ ; 780: 146606, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34030285

RESUMEN

Pollution induces pressure to soil microorganism; and conversely, the degradation of pollutants is reported largely regulated by the soil microbiome assembly in situ. However, the specific-dependent core taxa of degraders were barely confirmed, which is not conducive to improving the soil remediation strategy. Taking pollution of a typical organochlorine pesticide (OCP), lindane, as an example, we explored the microbial community assembly in flooded soils and simultaneously quantified the corresponding dynamics of typical soil redox processes. Contrasting initial status of microbial diversity was set up by gamma irradiation or not, with additives (acetate, NaNO3, acetate + NaNO3) capable of modifying microbial growth employed simultaneously. Microorganism under lindane stress was reflected by microbial adaptability within complex co-occurrence networks, wherein some environment-dependent core taxa (e.g., Clostridia, Bacteroidia, Bacilli) were highly resilient to pollution and sterilization disturbances. Lindane had higher degradation rate in irradiated soil (0.96 mg kg-1 d-1) than non-irradiated soil (0.83 mg kg-1 d-1). In non-irradiated soil, addition of acetate promoted lindane degradation and methanogenesis, whereas nitrate inhibited lindane degradation but promoted denitrification. No significant differences in lindane degradation were observed in irradiated soils, which exhibited low-diversity microbiomes in parallel to stronger Fe reduction and methanogenesis. The varied corresponding trigger effects on soil redox processes are likely due to differences of soil microbiome, specifically, deterministic or stochastic assembly, in response to pollution stress under high or low initial microbial diversity conditions. Our results improve the knowledge of the adaptability of disturbed microbiomes and their feedback on microbial functional development in OCP-polluted soils, achieving for a more reliable understanding with respect to the ecological risk of soils resided with OCPs under the fact of global microbial diversity loss.


Asunto(s)
Hexaclorociclohexano , Contaminantes del Suelo , Biodegradación Ambiental , Hexaclorociclohexano/análisis , Oxidación-Reducción , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA