Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Biol Sci ; 287(1941): 20202743, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33323091

RESUMEN

Submarine groundwater discharge (SGD) influences near-shore coral reef ecosystems worldwide. SGD biogeochemistry is distinct, typically with higher nutrients, lower pH, cooler temperature and lower salinity than receiving waters. SGD can also be a conduit for anthropogenic nutrients and other pollutants. Using Bayesian structural equation modelling, we investigate pathways and feedbacks by which SGD influences coral reef ecosystem metabolism at two Hawai'i sites with distinct aquifer chemistry. The thermal and biogeochemical environment created by SGD changed net ecosystem production (NEP) and net ecosystem calcification (NEC). NEP showed a nonlinear relationship with SGD-enhanced nutrients: high fluxes of moderately enriched SGD (Wailupe low tide) and low fluxes of highly enriched SGD (Kupikipiki'o high tide) increased NEP, but high fluxes of highly enriched SGD (Kupikipiki'o low tide) decreased NEP, indicating a shift toward microbial respiration. pH fluctuated with NEP, driving changes in the net growth of calcifiers (NEC). SGD enhances biological feedbacks: changes in SGD from land use and climate change will have consequences for calcification of coral reef communities, and thereby shoreline protection.


Asunto(s)
Arrecifes de Coral , Monitoreo del Ambiente , Agua Subterránea/química , Agua de Mar/química , Teorema de Bayes , Hawaii , Salinidad , Movimientos del Agua
2.
PLoS One ; 12(11): e0186146, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29117191

RESUMEN

The Great Barrier Reef Marine Park (GBRMP) is the largest network of marine reserves in the world, yet little is known of the efficacy of no-fishing zones in the relatively lightly-exploited remote parts of the system (i.e., northern regions). Here, we find that the detection of reserve effects is challenging and that heterogeneity in benthic habitat composition, specifically branching coral cover, is one of the strongest driving forces of fish assemblages. As expected, the biomass of targeted fish species was generally greater (up to 5-fold) in no-take zones than in fished zones, but we found no differences between the two forms of no-take zone: 'no-take' versus 'no-entry'. Strong effects of zoning were detected in the remote Far-North inshore reefs and more central outer reefs, but surprisingly fishing effects were absent in the less remote southern locations. Moreover, the biomass of highly targeted species was nearly 2-fold greater in fished areas of the Far-North than in any reserve (no-take or no-entry) further south. Despite high spatial variability in fish biomass, our results suggest that fishing pressure is greater in southern areas and that poaching within reserves may be common. Our results also suggest that fishers 'fish the line' as stock sizes in exploited areas decreased near larger no-take zones. Interestingly, an analysis of zoning effects on small, non-targeted fishes appeared to suggest a top-down effect from mesopredators, but was instead explained by variability in benthic composition. Thus, we demonstrate the importance of including appropriate covariates when testing for evidence of trophic cascades and reserve successes or failures.


Asunto(s)
Conservación de los Recursos Naturales , Arrecifes de Coral , Explotaciones Pesqueras , Biología Marina , Animales , Antozoos/fisiología , Ecosistema , Trucha/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA