Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 34(38): 11253-11263, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30156847

RESUMEN

The surface functionalization of radio frequency magnetron-sputtered zinc oxide (ZnO) thin films tailored by low-pressure Ar/NH3 mixture surface-wave plasmas (SWPs) is discussed based on the results of photoluminescence (PL), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and spectrophotometric measurements. At an Ar/NH3 gas mixture ratio of 70%/30%, both the PL intensity of the near-band-edge emission and the XRD intensity of the ZnO(002) reflection peak were enhanced by about 5.5 and 8 times, respectively, compared to the values for the as-grown sample. Furthermore, the XPS and spectrophotometric analyses using the fluorescent dye showed that the amine group functionalization over the surface of the ZnO films reached their maximum values at the same gas ratio. From the results of optical emission spectroscopic and ion mass spectrometric measurements in the Ar/NH3 mixture SWPs, it is inferred that the nitrogen-containing reactive species, such as NH x+ ( x = 1-4) ions and NH y ( y = 1, 2) molecules in addition to H radicals might crucially interact with the defective ZnO surface lattices to repair the ZnO thin films from compressive to strain-free crystallized structures, enhance the PL intensity, and produce the amine group surface functionalization.

2.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38063695

RESUMEN

Electrochemical anodization is already a well-established process, owing to its multiple benefits for creating high-grade titanium dioxide nanotubes with suitable characteristics and tunable shapes. Nevertheless, more research is necessary to fully comprehend the basic phenomena at the anode-electrolyte interface during anodization. In a recent paper, we proposed the use of sawtooth-shaped voltage pulses for Ti anodization, which controls the pivoting point of the balance between the two processes that compete to create nanotubes during a self-organization process: oxide etching and oxidation. Under these conditions, pulsed anodization clearly reveals the history of nanotube growth as recorded in the nanotube morphology. We show that by selecting the suitable electrolyte and electrical discharge settings, a nanoporous structure may be generated as a repeating pattern along the nanotube wall axis. We report the findings in terms of nanotube morphology, crystallinity, surface chemistry, photocatalytic activity, and surface hydrophilicity as they relate to the electrical parameters of electrochemical anodization. Aside from their fundamental relevance, our findings could lead to the development of a novel form of TiO2 nanotube array layer.

3.
Nanomaterials (Basel) ; 10(10)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977596

RESUMEN

Herein we report on the synthesis and the effects of gradual loading of TiO2 nanotube array layers with ZnO upon surface wettability. Two-step preparation was chosen, where TiO2 nanotube layers, grown in a first instance by anodization of a Ti foil, were gradually loaded with controlled amounts of ZnO using the reactive RF magnetron sputtering. After crystallization annealing, the formerly amorphous TiO2 nanotubes were converted to predominantly anatase crystalline phase, as detected by XRD measurements. The as-prepared nanotubes exhibited a well-aligned columnar structure, 1.6 µm long and 88 nm in diameter, and a small concentration of oxygen vacancies. Ti2+ and Ti3+ occur along with the Ti4+ state upon sputter-cleaning the layer surfaces from contaminants. The Ti2+ and Ti3+ signals diminish with gradual ZnO loading. As demonstrated by the VB-XPS data, the ZnO loading is accompanied by a slight narrowing of the band gap of the materials. A combined effect of material modification and surface roughness was taken into consideration to explain the evolution of surface super-hydrophilicity of the materials under UV irradiation. The loading process resulted in increasing surface wettability with approx. 33%, and in a drastic extension of activation decay, which clearly points out to the effect of ZnO-TiO2 heterojunctions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA