Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37686092

RESUMEN

While the central nervous system (CNS) tumor classification has increasingly incorporated molecular parameters, there is a paucity of literature reporting molecular alterations found in intraventricular glioblastoma (IVGBM), which are rare. We present a case series of nine IVGBMs, including molecular alterations found in standardized next-generation sequencing (NGS). We queried the clinical charts, operative notes, pathology reports, and radiographic images of nine patients with histologically confirmed IVGBM treated at our institution (1995-2021). Routine NGS was performed on resected tumor tissue of two patients. In this retrospective case series of nine patients (22% female, median (range) age: 64.3 (36-85) years), the most common tumor locations were the atrium of the right lateral ventricle (33%) and the septum pellucidum (33%). Five patients had preoperative hydrocephalus, which was managed with intraoperative external ventricular drains in three patients and ventriculoperitoneal shunts in one patient. Hydrocephalus was managed with subtotal resection of a fourth ventricular IVGBM in one patient. The most common surgical approach was transcortical intraventricular (56%). Gross total resection was achieved in two patients, subtotal resection was achieved in six patients, and one patient received a biopsy only. Immunohistochemistry for IDH1 R132H mutant protein was performed in four cases and was negative in all four. Genetic alterations common in glioblastoma, IDH-wildtype, were seen in two cases with available NGS data, including EGFR gene amplification, TERT promoter mutation, PTEN mutation, trisomy of chromosome 7, and monosomy of chromosome 10. Following surgical resection, four patients received adjuvant chemoradiation. Median survival among our cohort was 4.7 months (IQR: 0.9-5.8 months). Management of IVGBM is particularly challenging due to their anatomical location, presentation with obstructive hydrocephalus, and fast growth, necessitating prompt intervention. Additional studies are needed to better understand the genetic landscape of IVGBM compared to parenchymal glioblastoma and may further elucidate the unique pathophysiology of these rare tumors.


Asunto(s)
Glioblastoma , Hidrocefalia , Humanos , Femenino , Persona de Mediana Edad , Masculino , Glioblastoma/genética , Estudios Retrospectivos , Investigación , Quimioradioterapia Adyuvante
2.
Acta Neuropathol ; 144(4): 747-765, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35945463

RESUMEN

Gliomas arising in the setting of neurofibromatosis type 1 (NF1) are heterogeneous, occurring from childhood through adulthood, can be histologically low-grade or high-grade, and follow an indolent or aggressive clinical course. Comprehensive profiling of genetic alterations beyond NF1 inactivation and epigenetic classification of these tumors remain limited. Through next-generation sequencing, copy number analysis, and DNA methylation profiling of gliomas from 47 NF1 patients, we identified 2 molecular subgroups of NF1-associated gliomas. The first harbored biallelic NF1 inactivation only, occurred primarily during childhood, followed a more indolent clinical course, and had a unique epigenetic signature for which we propose the terminology "pilocytic astrocytoma, arising in the setting of NF1". The second subgroup harbored additional oncogenic alterations including CDKN2A homozygous deletion and ATRX mutation, occurred primarily during adulthood, followed a more aggressive clinical course, and was epigenetically diverse, with most tumors aligning with either high-grade astrocytoma with piloid features or various subclasses of IDH-wildtype glioblastoma. Several patients were treated with small molecule MEK inhibitors that resulted in stable disease or tumor regression when used as a single agent, but only in the context of those tumors with NF1 inactivation lacking additional oncogenic alterations. Together, these findings highlight recurrently altered pathways in NF1-associated gliomas and help inform targeted therapeutic strategies for this patient population.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Neurofibromatosis 1 , Adulto , Astrocitoma/genética , Neoplasias Encefálicas/genética , Glioma/genética , Glioma/patología , Homocigoto , Humanos , Neurofibromatosis 1/complicaciones , Neurofibromatosis 1/genética , Eliminación de Secuencia
3.
J Neurooncol ; 160(2): 505-515, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36315366

RESUMEN

Meningiomas are the most common primary central nervous system neoplasm. Despite promising recent progress in elucidating the genomic landscape and underlying biology of these histologically, molecularly, and clinically diverse tumors, the mainstays of meningioma treatment remain maximal safe resection and radiation therapy. The aim of this review of meningioma radiotherapy is to provide a concise summary of the history, current evidence, and future for application of radiotherapy in meningioma treatment.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/patología , Neoplasias Meníngeas/patología , Radioterapia Adyuvante
7.
Neurosurg Focus ; 44(4): E9, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29606045

RESUMEN

OBJECTIVE Tuberculum sellae meningiomas (TSMs) are surgically challenging tumors that can severely impair vision. Debate exists regarding whether the transcranial (TC) or endoscopic transsphenoidal (TS) approach is best for resecting these tumors, and there are few large series comparing these approaches. METHODS A retrospective chart review was performed at 2 academic centers comparing TC and TS approaches with respect to vision, extent of resection, recurrence, and complications. The authors report surgical outcomes and propose a simple preoperative tumor grading scale that scores tumor size (1-2), optic canal invasion (0-2), and arterial encasement (0-2). The authors performed univariate, multivariate, and recursive partitioning analysis (RPA) to evaluate outcomes. RESULTS The TSMs were resected in 139 patients. The median follow-up was 29 months. Ninety-five (68%) cases were resected via a TC and 44 (32%) via a TS approach. Tumors treated via a TC approach had a higher tumor (p = 0.0007), artery (p < 0.0001), and total score (p = 0.0012) on the grading scale. Preoperative visual deficits were present in 87% of patients. Vision improved in 47%, stayed the same in 35%, declined in 10%, and was not recorded in 8%. The extent of resection was 65% gross-total resection, 23% near-total resection (95%-99% resection), and 12% subtotal resection (< 95%). A lower tumor score was significantly associated with better or stable vision postoperatively (p = 0.0052). The RPA confirmed low tumor score as the key predictor of postoperative visual improvement or stability. Multivariate analysis and RPA demonstrate that lower canal score (p < 0.0001) and TC approach (p = 0.0019) are associated with gross-total resection. Complications occurred in 20 (14%) patients, including CSF leak (5%) and infection (4%). There was no difference in overall complication rates between TC and TS approaches; however, the TS approach had more CSF leaks (OR 5.96, 95% CI 1.10-32.04). The observed recurrence rate was 10%, and there was no difference between the TC and TS approaches. CONCLUSIONS Tuberculum sellae meningiomas can be resected using either a TC or TS approach, with low morbidity and good visual outcomes in appropriately selected patients. The simple proposed grading scale provides a standard preoperative method to evaluate TSMs and can serve as a starting point for selection of the surgical approach. Higher scores were associated with worsened visual outcomes and subtotal resection, regardless of approach. The authors plan a multicenter review of this grading scale to further evaluate its utility.


Asunto(s)
Neoplasias Meníngeas/cirugía , Meningioma/cirugía , Recurrencia Local de Neoplasia/cirugía , Neoplasias de la Base del Cráneo/cirugía , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuroendoscopía/métodos , Procedimientos Neuroquirúrgicos/métodos , Estudios Retrospectivos , Neoplasias Supratentoriales/cirugía , Resultado del Tratamiento
15.
J Neuropathol Exp Neurol ; 83(7): 579-585, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38687613

RESUMEN

Advanced molecular testing has increasingly become an integral component for accurate diagnosis of central nervous system (CNS) tumors. We sought to establish the current state of molecular testing availability and approaches for the diagnosis of CNS tumors in US hospitals that conduct high volumes of CNS tumor resections. We distributed a 16-item survey inquiring about molecular testing approaches for CNS tumors to 115 neuropathologists at US hospitals with neurosurgery residency programs. Thirty-five neuropathologists (30.4%) responded to the survey, all of whom indicated their institutions perform molecular testing on CNS tumor tissue. The most commonly offered tests were MGMT methylation profiling and next-generation sequencing. Fourteen respondents (40%) indicated that their institution is able to test for and report all of the molecular alterations included in our survey. Nine (25.7%) respondents indicated that molecular testing is performed as standard of care for all patients with resected CNS tumors. Our results suggest that even in academic hospitals with a high volume of CNS tumor resections, molecular testing for these tumors is limited. Continued initiatives are necessary to expand the availability of molecular testing for CNS tumors to ensure diagnostic accuracy and guide targeted therapy.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Humanos , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/diagnóstico , Estados Unidos , Hospitales , Encuestas y Cuestionarios
16.
Neurosurgery ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101743

RESUMEN

BACKGROUND AND OBJECTIVE: Patients who undergo gross total resection (GTR) of Central Nervous System World Health Organization (WHO) grade 1 meningioma constitute a "low-risk" group, but some low-risk meningiomas can recur despite reassuring clinical and histological features. In this study, gene expression values in newly diagnosed WHO grade 1 meningiomas that had undergone GTR were evaluated for their association with recurrence. METHODS: This was a retrospective, international, multicenter cohort study that included WHO grade 1 meningiomas that underwent GTR, as first treatment, based on postoperative magnetic resonance imaging. Normalized gene expression values from a previously validated 34-gene panel were evaluated for their association with recurrence. Kaplan-Meier, multivariable Cox proportional hazard analyses, and K-means clustering were performed to assess the association of genes of interest with recurrence and identify molecular subgroups among clinically and histologically low-risk meningiomas. RESULTS: In total, 442 patients with WHO grade 1 meningiomas that underwent GTR and had available gene expression profiling data were included in the study. The median follow-up was 5.0 years (interquartile range 2.6-7.7 years), local recurrence occurred in 36 patients (8.1%), 5-year local freedom from recurrence was 90.5%, and median time to recurrence was 2.9 years (range 0.5-10.7 years). Eleven genes were associated with local recurrence, including lower expression of ARID1B, ESR1, LINC02593, PGR, and TMEM30B and higher expression of CDK6, CDKN2C, CKS2, KIF20A, PGK1, and TAGLN. Of these genes, PGK1 had the largest effect size. K-means clustering based on these 11 genes distinguished 2 molecular groups of clinically and histologically low-risk meningiomas with significant differences in local freedom from recurrence (hazard ratio 2.5, 95% CI 1.2-5.1, P = .016). CONCLUSION: Gene expression profiling may help to identify newly diagnosed WHO grade 1 meningiomas that have an elevated risk of recurrence despite GTR.

17.
Nat Genet ; 56(6): 1121-1133, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38760638

RESUMEN

Intratumor heterogeneity underlies cancer evolution and treatment resistance, but targetable mechanisms driving intratumor heterogeneity are poorly understood. Meningiomas are the most common primary intracranial tumors and are resistant to all medical therapies, and high-grade meningiomas have significant intratumor heterogeneity. Here we use spatial approaches to identify genomic, biochemical and cellular mechanisms linking intratumor heterogeneity to the molecular, temporal and spatial evolution of high-grade meningiomas. We show that divergent intratumor gene and protein expression programs distinguish high-grade meningiomas that are otherwise grouped together by current classification systems. Analyses of matched pairs of primary and recurrent meningiomas reveal spatial expansion of subclonal copy number variants associated with treatment resistance. Multiplexed sequential immunofluorescence and deconvolution of meningioma spatial transcriptomes using cell types from single-cell RNA sequencing show decreased immune infiltration, decreased MAPK signaling, increased PI3K-AKT signaling and increased cell proliferation, which are associated with meningioma recurrence. To translate these findings to preclinical models, we use CRISPR interference and lineage tracing approaches to identify combination therapies that target intratumor heterogeneity in meningioma cell co-cultures.


Asunto(s)
Heterogeneidad Genética , Neoplasias Meníngeas , Meningioma , Meningioma/genética , Meningioma/patología , Humanos , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patología , Variaciones en el Número de Copia de ADN , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Análisis de la Célula Individual , Proliferación Celular/genética , Recurrencia Local de Neoplasia/genética , Transducción de Señal/genética , Línea Celular Tumoral , Transcriptoma
18.
Neurosurgery ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007559

RESUMEN

BACKGROUND AND OBJECTIVES: Oligodendrogliomas are defined by IDH1/2 mutation and codeletion of chromosome arms 1p/19q. Although previous studies identified CIC, FUBP1, and TERTp as frequently altered in oligodendrogliomas, the clinical relevance of these molecular signatures is unclear. Moreover, previous studies predominantly used research panels that are not readily available to providers and patients. Accordingly, we explore genomic alterations in molecularly defined oligodendrogliomas using clinically standardized next-generation sequencing (NGS) panels. METHODS: A retrospective single-center study evaluated adults with pathologically confirmed IDH-mutant, 1p/19q-codeleted oligodendrogliomas diagnosed between 2005 and 2021. Genetic data from formalin-fixed, paraffin-embedded specimens were analyzed with the NGS Solid Tumor Panel at the Johns Hopkins Medical Laboratories, which tests more than 400 cancer-related genes. Kaplan-Meier plots and log-rank tests compared progression-free survival (PFS) and overall survival by variant status. χ2 tests, t-tests, and Wilcoxon rank-sum tests were used to compare clinical characteristics between genomic variant status in the 10 most frequently altered genes. RESULTS: Two hundred and seventy-seven patients with molecularly defined oligodendrogliomas were identified, of which 95 patients had available NGS reports. Ten genes had 9 or more patients with a genomic alteration, with CIC, FUBP1, and TERTp being the most frequently altered genes (n = 60, 23, and 22, respectively). Kaplan-Meier curves showed that most genes were not associated with differences in PFS or overall survival. At earlier time points (PFS <100 months), CIC alterations conferred a reduction in PFS in patients (P = .038). CONCLUSION: Our study confirms the elevated frequency of CIC, FUBP1, and TERTp alterations in molecularly defined oligodendrogliomas and suggests a potential relationship of CIC alteration to PFS at earlier time points. Understanding these genomic variants may inform prognosis or therapeutic recommendations as NGS becomes routine.

19.
Nat Commun ; 15(1): 7873, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251601

RESUMEN

Meningiomas are associated with inactivation of NF2/Merlin, but approximately one-third of meningiomas with favorable clinical outcomes retain Merlin expression. Biochemical mechanisms underlying Merlin-intact meningioma growth are incompletely understood, and non-invasive biomarkers that may be used to guide treatment de-escalation or imaging surveillance are lacking. Here, we use single-cell RNA sequencing, proximity-labeling proteomic mass spectrometry, mechanistic and functional approaches, and magnetic resonance imaging (MRI) across meningioma xenografts and patients to define biochemical mechanisms and an imaging biomarker that underlie Merlin-intact meningiomas. We find Merlin serine 13 (S13) dephosphorylation drives meningioma Wnt signaling and tumor growth by attenuating inhibitory interactions with ß-catenin and activating the Wnt pathway. MRI analyses show Merlin-intact meningiomas with S13 phosphorylation and favorable clinical outcomes are associated with high apparent diffusion coefficient (ADC). These results define mechanisms underlying a potential imaging biomarker that could be used to guide treatment de-escalation or imaging surveillance for patients with Merlin-intact meningiomas.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias Meníngeas , Meningioma , Neurofibromina 2 , Vía de Señalización Wnt , Meningioma/diagnóstico por imagen , Meningioma/metabolismo , Meningioma/patología , Meningioma/genética , Humanos , Fosforilación , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Animales , Imagen por Resonancia Magnética/métodos , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patología , Neoplasias Meníngeas/genética , Ratones , Línea Celular Tumoral , beta Catenina/metabolismo , beta Catenina/genética , Femenino , Serina/metabolismo , Masculino , Proteómica/métodos , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética
20.
Nat Commun ; 15(1): 477, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216572

RESUMEN

Schwann cell tumors are the most common cancers of the peripheral nervous system and can arise in patients with neurofibromatosis type-1 (NF-1) or neurofibromatosis type-2 (NF-2). Functional interactions between NF1 and NF2 and broader mechanisms underlying malignant transformation of the Schwann lineage are unclear. Here we integrate bulk and single-cell genomics, biochemistry, and pharmacology across human samples, cell lines, and mouse allografts to identify cellular de-differentiation mechanisms driving malignant transformation and treatment resistance. We find DNA methylation groups of Schwann cell tumors can be distinguished by differentiation programs that correlate with response to the MEK inhibitor selumetinib. Functional genomic screening in NF1-mutant tumor cells reveals NF2 loss and PAK activation underlie selumetinib resistance, and we find that concurrent MEK and PAK inhibition is effective in vivo. These data support a de-differentiation paradigm underlying malignant transformation and treatment resistance of Schwann cell tumors and elucidate a functional link between NF1 and NF2.


Asunto(s)
Neurilemoma , Neurofibromatosis , Neurofibromatosis 1 , Neurofibromatosis 2 , Animales , Humanos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neurilemoma/genética , Neurilemoma/patología , Neurofibromatosis/metabolismo , Neurofibromatosis/patología , Neurofibromatosis 1/genética , Neurofibromatosis 1/metabolismo , Neurofibromatosis 2/genética , Neurofibromatosis 2/patología , Células de Schwann/metabolismo , Resistencia a Antineoplásicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA