Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Exp Physiol ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39323005

RESUMEN

Acute mountain sickness (AMS) causes serious illness for many individuals ascending to high altitude (HA), although preventable with appropriate acclimatisation. AMS is a clinical diagnosis, with symptom severity evaluated using the Lake Louise Score (LLS). Reliable methods of predicting which individuals will develop AMS have not been developed. This systematic review evaluates whether a predictive relationship exists between oxygen saturation and subsequent development of AMS. PubMed, PubMed Central, MEDLINE, Semantic Scholar, Cochrane Library, University of Birmingham Library and clinicaltrials.gov databases were systematically searched from inception to 15 June 2023. Human studies involving collection of peripheral blood oxygen saturation ( S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ) from healthy lowlanders during ascent to HA that evaluated any relationship between S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ and AMS severity were considered for eligibility. Risk of bias was assessed using a modified Newcastle-Ottawa Tool for cohort studies (PROPSPERO CRD42023423542). Seven of 980 total identified studies were ultimately included for data extraction. These studies evaluated S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ and AMS (via LLS) in 1406 individuals during ascent to HA (3952-6300 m). Risk of bias was 'low' for six and 'moderate' for one of the included studies. Ascent profiles and S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ measurement methodology varied widely, as did the statistical methods for AMS prediction. Decreasing oxygen saturation measured with pulse oximetry during ascent shows a positive predictive relationship for individuals who develop AMS. Studies have high heterogeneity in ascent profile and oximetry measurement protocols. Further studies with homogeneous methodology are required to enable statistical analysis for more definitive evaluation of AMS predictability by pulse oximetry.

2.
Exp Physiol ; 109(11): 1856-1868, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277825

RESUMEN

Acute mountain sickness (AMS) is a well-studied illness defined by clinical features (e.g., headache and nausea), as assessed by the Lake Louise score (LLS). Although obvious in its severe form, early stages of AMS are poorly defined and easily confused with common travel-related conditions. Measurement of hypoxaemia, the cause of AMS, should be helpful, yet to date its utility for identifying AMS susceptibility remains unclear. This study quantified altitude-induced hypoxaemia in individuals during an ascent to 4800 m to determine the utility of nocturnal pulse oximetry measurements for prediction of AMS. Eighteen individuals (36 ± 16 years of age) ascended to 4800 m over 12 days. Symptomology of AMS was assessed each morning via LLS criteria, with participants categorized as either AMS-positive (LLS ≥ 3 with headache) or AMS-negative. Overnight peripheral oxygen saturations (ov- S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_2}}}$ ) were recorded continuously (1 Hz) using portable oximeters. Derivatives of these recordings were compared between AMS-positive and -negative subjects (Mann-Whitney U-test). Exploratory analyses (Pearson's) were conducted to investigate relationships between overnight parameters and AMS severity. Overnight derivatives, including ov- S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_2}}}$ , heart rate/ov- S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_2}}}$ , variance, oxygen desaturation index, hypoxic burden and total sleep time at <80% S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_2}}}$ , all differed significantly between AMS-positive and -negative subjects (all P < 0.01), with cumulative/relative frequency plots highlighting these differences visually. Exploratory analysis revealed that ov- S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_2}}}$ from 3850 m was correlated with peak LLS at 4800 m (r = 0.58-0.61). The findings highlight the potential for overnight oximetry to predict AMS susceptibility during ascent to high altitude. Further investigation is required to develop, evaluate and optimize predictive models to improve AMS management and prevention.


Asunto(s)
Mal de Altura , Hipoxia , Oximetría , Humanos , Mal de Altura/fisiopatología , Mal de Altura/diagnóstico , Mal de Altura/sangre , Oximetría/métodos , Adulto , Masculino , Femenino , Persona de Mediana Edad , Hipoxia/fisiopatología , Hipoxia/sangre , Adulto Joven , Saturación de Oxígeno/fisiología , Enfermedad Aguda , Oxígeno/sangre , Oxígeno/metabolismo , Altitud
3.
Scand J Med Sci Sports ; 34(2): e14573, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38389140

RESUMEN

AIM: The present systematic review and meta-analysis aimed to compare the effect of moderate- versus high-intensity aerobic exercise on cardiorespiratory fitness (CRF) in older adults, taking into account the volume of exercise completed. METHODS: The databases MEDLINE (Ovid), EMBASE (Ovid), and CENTRAL (Cochrane Library) were searched to identify randomized controlled trials (RCTs). Two reviewers extracted data and assessed bias. Comprehensive Meta-Analysis software calculated overall effect size, intensity differences, and performed meta-regression analyses using pre-to-post intervention or change scores of peak oxygen uptake (V̇O2 peak). The review included 23 RCTs with 1332 older adults (intervention group: n = 932; control group: n = 400), divided into moderate-intensity (435 older adults) and high-intensity (476 older adults) groups. RESULTS: Meta-regression analysis showed a moderate, but not significant, relationship between exercise intensity and improvements in V̇O2 peak after accounting for the completed exercise volume (ß = 0.31, 95% CI = [-0.04; 0.67]). Additionally, studies comparing moderate- versus high-intensity revealed a small, but not significant, effect in favor of high-intensity (Hedges' g = 0.20, 95% CI = [-0.02; 0.41]). Finally, no significant differences in V̇O2 peak improvements were found across exercise groups employing various methods, modalities, and intensity monitoring strategies. CONCLUSION: Findings challenge the notion that high-intensity exercise is inherently superior and indicate that regular aerobic exercise, irrespective of the specific approach and intensity, provides the primary benefits to CRF in older adults. Future RCTs should prioritize valid and reliable methodologies for monitoring and reporting exercise volume and adherence among older adults.


Asunto(s)
Capacidad Cardiovascular , Ejercicio Físico , Consumo de Oxígeno , Humanos , Capacidad Cardiovascular/fisiología , Anciano , Consumo de Oxígeno/fisiología , Ejercicio Físico/fisiología , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
Scand J Med Sci Sports ; 34(7): e14694, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38982665

RESUMEN

BACKGROUND: This study aimed to investigate the effectiveness of a 6-month home-based high-intensity interval training (HIIT) intervention to improve peak oxygen consumption (V̇O2peak) and lactate threshold (LT) in older adults. METHODS: Two hundred thirty-three healthy older adults (60-84 years; 54% females) were randomly assigned to either 6-month, thrice-weekly home-based HIIT (once-weekly circuit training and twice-weekly interval training) or a passive control group. Exercise sessions were monitored using a Polar watch and a logbook for objective and subjective data, respectively, and guided by a personal coach. The outcomes were assessed using a modified Balke protocol combining V̇O2peak and LT measures. General linear regression models assessed between-group differences in change and within-group changes for each outcome. RESULTS: There was a significant between-group difference in the pre-to-post change in V̇O2peak (difference: 1.8 [1.2; 2.3] mL/kg/min; exercise: +1.4 [1.0; 1.7] mL/kg/min [~5%]; control: -0.4 [-0.8; -0.0] mL/kg/min [approximately -1.5%]; effect size [ES]: 0.35). Compared with controls, the exercise group had lower blood lactate concentration (-0.7 [-0.9; -0.4] mmol/L, ES: 0.61), % of peak heart rate (-4.4 [-5.7; -3.0], ES: 0.64), and % of V̇O2peak (-4.5 [-6.1; -2.9], ES: 0.60) at the intensity corresponding to preintervention LT and achieved a higher treadmill stage (% incline) at LT (0.6 [0.3; 0.8]; ES: 0.47), following the intervention. CONCLUSION: This study highlights the effectiveness of a home-based HIIT intervention as an accessible and equipment-minimal strategy to induce clinically meaningful improvements in cardiorespiratory fitness in older adults. Over 6 months, the exercise group showed larger improvements in all outcomes compared with the control group. Notably, the LT outcome exhibited a more pronounced magnitude of change than V̇O2peak.


Asunto(s)
Capacidad Cardiovascular , Entrenamiento de Intervalos de Alta Intensidad , Ácido Láctico , Consumo de Oxígeno , Humanos , Femenino , Capacidad Cardiovascular/fisiología , Masculino , Anciano , Consumo de Oxígeno/fisiología , Entrenamiento de Intervalos de Alta Intensidad/métodos , Persona de Mediana Edad , Anciano de 80 o más Años , Ácido Láctico/sangre , Frecuencia Cardíaca/fisiología
5.
Eur J Appl Physiol ; 124(11): 3265-3278, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38878074

RESUMEN

Endothelial dysfunction is an early predictor of atherosclerosis and cardiovascular disease. Flow-mediated dilation (FMD) is the gold standard to assess endothelial function in humans. FMD reproducibility has been mainly assessed in the brachial artery (BA) with limited research in lower limb arteries. The purpose of this study was to compare FMD reproducibility in the upper limb BA and lower limb superficial femoral artery (SFA) in young healthy adults.Fifteen young healthy adults (nine males; six females) underwent FMD, resting diameter, velocity, and shear rate measurements on three occasions to determine intra-and inter-day reproducibility in both BA and SFA, assessed by coefficient of variation (CV), intraclass correlation coefficient (ICC), and Bland-Altman plots.BA FMD CVs (intra-day: 4.2%; inter-day: 8.7%) and ICCs (intra-day: 0.967; inter-day: 0.903) indicated excellent reproducibility and reliability, while for SFA FMD, both CVs (intra-day: 11.6%; inter-day: 26.7%) and ICCs (intra-day: 0.898; inter-day: 0.651) showed good/moderate reproducibility and reliability. BA FMD was significantly more reproducible than SFA FMD (p < 0.05). Diameter reproducibility was excellent and similar between arteries, while resting velocity and shear rate have lower reproducibility in the BA compared to SFA. Bland-Altman plots displayed no proportional and fixed bias between measurements.In summary, SFA FMD is less reproducible than BA FMD, with identical volume of ultrasound training. Given the increasing interest in using SFA FMD to test the efficacy of interventions targeting lower limb's vascular health and as a potential biomarker for peripheral arterial disease risk, future studies should ensure higher levels of training for adequate reproducibility.


Asunto(s)
Arteria Braquial , Vasodilatación , Humanos , Masculino , Femenino , Arteria Braquial/fisiología , Adulto , Reproducibilidad de los Resultados , Vasodilatación/fisiología , Arteria Femoral/fisiología , Arteria Femoral/diagnóstico por imagen , Extremidad Inferior/irrigación sanguínea , Extremidad Inferior/fisiología , Extremidad Superior/irrigación sanguínea , Extremidad Superior/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Endotelio Vascular/fisiología , Adulto Joven , Flujo Sanguíneo Regional/fisiología
6.
Neuroophthalmology ; 48(2): 122-133, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487358

RESUMEN

Idiopathic intracranial hypertension (IIH) is a disease characterised by elevated intracranial pressure (ICP). The impact of straining and exercise on ICP regulation is poorly understood yet clinically relevant to IIH patient care. We sought to investigate the impact of Valsalva manoeuvres (VMs) and exercise on ICP and cerebrovascular haemodynamics in IIH. People with IIH were prospectively enrolled and had an intraparenchymal telemetric ICP sensor inserted. Three participants (age [mean ± standard deviation]: 40.3 ± 13.9 years) underwent continuous real-time ICP monitoring coupled with cerebrovascular haemodynamic assessments during VMs and moderate exercise. Participants had IIH with supine ICP measuring 15.3 ± 8.7 mmHg (20.8 ± 11.8 cm cerebrospinal fluid (CSF)) and sitting ICP measuring -4.2 ± 7.9 mmHg (-5.7 ± 10.7 cmCSF). During phase I of a VM ICP increased by 29.4 ± 13.5 mmHg (40.0 ± 18.4 cmCSF) but returned to baseline within 16 seconds from VM onset. The pattern of ICP changes during the VM phases was associated to that of changes in blood pressure, the middle cerebral artery blood velocity and prefrontal cortex haemodynamics. Exercise led to minimal effects on ICP. In conclusion, VM-induced changes in ICP were coupled to cerebrovascular haemodynamics and showed no sustained impact on ICP. Exercise did not lead to prolonged elevation of ICP. Those with IIH experiencing VMs (for example, during exercise and labour) may be reassured at the brief nature of the changes. Future research must look to corroborate the findings in a larger IIH cohort.

7.
J Physiol ; 601(22): 5093-5106, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36855276

RESUMEN

Small extracellular vesicles (sEVs) are released from all cell types and participate in the intercellular exchange of proteins, lipids, metabolites and nucleic acids. Proteomic, flow cytometry and nanoparticle tracking analyses suggest sEVs are released into circulation with exercise. However, interpretation of these data may be influenced by sources of bias introduced by different analytical approaches. Seven healthy participants carried out a high intensity intermittent training (HIIT) cycle protocol consisting of 4 × 30 s at a work-rate corresponding to 200% of individual max power (watts) interspersed by 4.5 min of active recovery. EDTA-treated blood was collected before and immediately after the final effort. Platelet-poor (PPP) and platelet-free (PFP) plasma was derived by one or two centrifugal spins at 2500 g, respectively (15 min, room temperature). Platelets were counted on an automated haemocytometer. Plasma samples were assessed with the Exoview R100 platform, which immobilises sEVs expressing common tetraspanin markers CD9, CD63, CD81 and CD41a on microfluidic chips and with the aid of fluorescence imaging, counts their abundance at a single sEV resolution, importantly, without a pre-isolation step. There was a lower number of platelets in the PFP than PPP, which was associated with a lower number of CD9, CD63 and CD41a positive sEVs. HIIT induced an increase in fluorescence counts in CD9, CD63 and CD81 positive sEVs in both PPP and PFP. These data support the concept that sEVs are released into circulation with exercise. Furthermore, platelet-free plasma is the preferred, representative analyte to study sEV dynamics and phenotype during exercise. KEY POINTS: Small extracellular vesicles (sEV) are nano-sized particles containing protein, metabolites, lipid and RNA that can be transferred from cell to cell. Previous findings implicate that sEVs are released into circulation with exhaustive, aerobic exercise, but since there is no gold standard method to isolate sEVs, these findings may be subject to bias introduced by different approaches. Here, we use a novel method to immobilise and image sEVs, at single-vesicle resolution, to show sEVs are released into circulation with high intensity intermittent exercise. Since platelet depletion of plasma results in a reduction in sEVs, platelet-free plasma is the preferred analyte to examine sEV dynamics and phenotype in the context of exercise.


Asunto(s)
Vesículas Extracelulares , Entrenamiento de Intervalos de Alta Intensidad , Humanos , Proteómica , Ejercicio Físico , Voluntarios Sanos
8.
PLoS Med ; 20(11): e1004082, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38011304

RESUMEN

BACKGROUND: A low level of cardiorespiratory fitness [CRF; defined as peak oxygen uptake ([Formula: see text]O2peak) or peak power output (PPO)] is a widely reported consequence of spinal cord injury (SCI) and a major risk factor associated with chronic disease. However, CRF can be modified by exercise. This systematic review with meta-analysis and meta-regression aimed to assess whether certain SCI characteristics and/or specific exercise considerations are moderators of changes in CRF. METHODS AND FINDINGS: Databases (MEDLINE, EMBASE, CENTRAL, and Web of Science) were searched from inception to March 2023. A primary meta-analysis was conducted including randomised controlled trials (RCTs; exercise interventions lasting >2 weeks relative to control groups). A secondary meta-analysis pooled independent exercise interventions >2 weeks from longitudinal pre-post and RCT studies to explore whether subgroup differences in injury characteristics and/or exercise intervention parameters explained CRF changes. Further analyses included cohort, cross-sectional, and observational study designs. Outcome measures of interest were absolute (A[Formula: see text]O2peak) or relative [Formula: see text]O2peak (R[Formula: see text]O2peak), and/or PPO. Bias/quality was assessed via The Cochrane Risk of Bias 2 and the National Institute of Health Quality Assessment Tools. Certainty of the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Random effects models were used in all meta-analyses and meta-regressions. Of 21,020 identified records, 120 studies comprising 29 RCTs, 67 pre-post studies, 11 cohort, 7 cross-sectional, and 6 observational studies were included. The primary meta-analysis revealed significant improvements in A[Formula: see text]O2peak [0.16 (0.07, 0.25) L/min], R[Formula: see text]O2peak [2.9 (1.8, 3.9) mL/kg/min], and PPO [9 (5, 14) W] with exercise, relative to controls (p < 0.001). Ninety-six studies (117 independent exercise interventions comprising 1,331 adults with SCI) were included in the secondary, pooled meta-analysis which demonstrated significant increases in A[Formula: see text]O2peak [0.22 (0.17, 0.26) L/min], R[Formula: see text]O2peak [2.8 (2.2, 3.3) mL/kg/min], and PPO [11 (9, 13) W] (p < 0.001) following exercise interventions. There were subgroup differences for R[Formula: see text]O2peak based on exercise modality (p = 0.002) and intervention length (p = 0.01), but there were no differences for A[Formula: see text]O2peak. There were subgroup differences (p ≤ 0.018) for PPO based on time since injury, neurological level of injury, exercise modality, and frequency. The meta-regression found that studies with a higher mean age of participants were associated with smaller changes in A[Formula: see text]O2peak and R[Formula: see text]O2peak (p < 0.10). GRADE indicated a moderate level of certainty in the estimated effect for R[Formula: see text]O2peak, but low levels for A[Formula: see text]O2peak and PPO. This review may be limited by the small number of RCTs, which prevented a subgroup analysis within this specific study design. CONCLUSIONS: Our primary meta-analysis confirms that performing exercise >2 weeks results in significant improvements to A[Formula: see text]O2peak, R[Formula: see text]O2peak, and PPO in individuals with SCI. The pooled meta-analysis subgroup comparisons identified that exercise interventions lasting up to 12 weeks yield the greatest change in R[Formula: see text]O2peak. Upper-body aerobic exercise and resistance training also appear the most effective at improving R[Formula: see text]O2peak and PPO. Furthermore, acutely injured, individuals with paraplegia, exercising for ≥3 sessions/week will likely experience the greatest change in PPO. Ageing seemingly diminishes the adaptive CRF responses to exercise training in individuals with SCI. REGISTRATION: PROSPERO: CRD42018104342.


Asunto(s)
Ejercicio Físico , Traumatismos de la Médula Espinal , Adulto , Humanos , Estudios Transversales , Ejercicio Físico/fisiología , Enfermedad Crónica , Estudios Observacionales como Asunto
9.
Sleep Breath ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38085496

RESUMEN

PURPOSE: To compare loop gain (LG) before and during pharmacological increases in cerebral blood flow (CBF) at high altitude (HA). Loop gain (LG) describes stability of a negative-feedback control system; defining the magnitude of response to a disturbance, such as hyperpnea to an apnea in periodic breathing (PB). "Controller-gain" sensitivity from afferent peripheral (PCR) and central-chemoreceptors (CCR) plays a key role in perpetuating PB. Changes in CBF may have a critical role via effects on central chemo-sensitivity during sleep. METHODS: Polysomnography (PSG) was performed on volunteers after administration of I.V. Acetazolamide (ACZ-10mg/kg) + Dobutamine (DOB-2-5 µg/kg/min) to increase CBF (via Duplex-ultrasound). Central sleep apnea (CSA) was measured from NREM sleep. The duty ratio (DR) was calculated as ventilatory duration (s) divided by cycle duration (s) (hyperpnea/hyperpnea + apnea), LG = 2π/(2πDR-sin2πDR). RESULTS: A total of 11 volunteers were studied. Compared to placebo-control, ACZ/DOB showed a significant increase in the DR (0.79 ± 0.21 vs 0.52 ± 0.03, P = 0.002) and reduction in LG (1.90 ± 0.23 vs 1.29 ± 0.35, P = 0.0004). ACZ/DOB increased cardiac output (CO) (8.19 ± 2.06 vs 6.58 ± 1.56L/min, P = 0.02) and CBF (718 ± 120 vs 526 ± 110ml/min, P < 0.001). There was no significant change in arterial blood gases, minute ventilation (VE), or hypoxic ventilatory response (HVR). However, there was a reduction of hypercapnic ventilatory response (HCVR) by 29% (5.9 ± 2.7 vs 4.2 ± 2.8 L/min, P = 0.1). CONCLUSION: Pharmacological elevation in CBF significantly reduced LG and severity of CSA. We speculate the effect was on HCVR "controller gain," rather than "plant gain," because PaCO2 and VE were unchanged. An effect via reduced circulation time is unlikely, as the respiratory-cycle length did not change.

10.
Eur J Appl Physiol ; 122(12): 2493-2514, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36149520

RESUMEN

The most common non-pharmacological intervention for both peripheral and cerebral vascular health is regular physical activity (e.g., exercise training), which improves function across a range of exercise intensities and modalities. Numerous non-exercising approaches have also been suggested to improved vascular function, including repeated ischemic preconditioning (IPC); heat therapy such as hot water bathing and sauna; and pneumatic compression. Chronic adaptive responses have been observed across a number of these approaches, yet the precise mechanisms that underlie these effects in humans are not fully understood. Acute increases in blood flow and circulating signalling factors that induce responses in endothelial function are likely to be key moderators driving these adaptations. While the impact on circulating factors and environmental mechanisms for adaptation may vary between approaches, in essence, they all centre around acutely elevating blood flow throughout the circulation and stimulating improved endothelium-dependent vascular function and ultimately vascular health. Here, we review our current understanding of the mechanisms driving endothelial adaptation to repeated exposure to elevated blood flow, and the interplay between this response and changes in circulating factors. In addition, we will consider the limitations in our current knowledge base and how these may be best addressed through the selection of more physiologically relevant experimental models and research. Ultimately, improving our understanding of the unique impact that non-pharmacological interventions have on the vasculature will allow us to develop superior strategies to tackle declining vascular function across the lifespan, prevent avoidable vascular-related disease, and alleviate dependency on drug-based interventions.


Asunto(s)
Endotelio Vascular , Precondicionamiento Isquémico , Humanos , Endotelio Vascular/fisiología , Arteria Braquial/fisiología , Ejercicio Físico/fisiología , Adaptación Fisiológica/fisiología
11.
J Physiol ; 599(14): 3513-3530, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34047356

RESUMEN

KEY POINTS: We investigated the influence of arterial PCO2 (PaCO2 ) with and without experimentally altered pH on cerebral blood flow (CBF) regulation at sea level and with acclimatization to 5050 m. At sea level and high altitude, we assessed stepwise alterations in PaCO2 following metabolic acidosis (via 2 days of oral acetazolamide; ACZ) with and without acute restoration of pH (via intravenous sodium bicarbonate; ACZ+HCO3- ). Total resting CBF was unchanged between trials at each altitude even though arterial pH and [HCO3- ] (i.e. buffering capacity) were effectively altered. The cerebrovascular responses to changes in arterial [H+ ]/pH were consistent with the altered relationship between PaCO2 and [H+ ]/pH following ACZ at high altitude (i.e. leftward x-intercept shifts). Absolute cerebral blood velocity (CBV) and the sensitivity of CBV to PaCO2 was unchanged between trials at high altitude, indicating that CBF is acutely regulated by PaCO2 rather than arterial pH. ABSTRACT: Alterations in acid-base balance with progressive acclimatization to high altitude have been well-established. However, how respiratory alkalosis and the resultant metabolic compensation interact to regulate cerebral blood flow (CBF) is uncertain. We addressed this via three separate experimental trials at sea level and following partial acclimatization (14 to 20 days) at 5050 m; involving: (1) resting acid-base balance (control); (2) following metabolic acidosis via 2 days of oral acetazolamide at 250 mg every 8 h (ACZ; pH: Δ -0.07 ± 0.04 and base excess: Δ -5.7 ± 1.9 mEq⋅l-1 , trial effects: P < 0.001 and P < 0.001, respectively); and (3) after acute normalization of arterial acidosis via intravenous sodium bicarbonate (ACZ + HCO3- ; pH: Δ -0.01 ± 0.04 and base excess: Δ -1.5 ± 2.1 mEq⋅l-1 , trial effects: P = 1.000 and P = 0.052, respectively). Within each trial, we utilized transcranial Doppler ultrasound to assess the cerebral blood velocity (CBV) response to stepwise alterations in arterial PCO2 (PaCO2 ), i.e. cerebrovascular CO2 reactivity. Resting CBF (via Duplex ultrasound) was unaltered between trials within each altitude, indicating that respiratory compensation (i.e. Δ -3.4 ± 2.3 mmHg PaCO2 , trial effect: P < 0.001) was sufficient to offset any elevations in CBF induced via the ACZ-mediated metabolic acidosis. Between trials at high altitude, we observed consistent leftward shifts in both the PaCO2 -pH and CBV-pH responses across the CO2 reactivity tests with experimentally reduced arterial pH via ACZ. When indexed against PaCO2 - rather than pH - the absolute CBV and sensitivity of CBV-PaCO2 was unchanged between trials at high altitude. Taken together, following acclimatization, CO2 -mediated changes in cerebrovascular tone rather than arterial [H+ ]/pH is integral to CBF regulation at high altitude.


Asunto(s)
Acidosis , Dióxido de Carbono , Aclimatación , Altitud , Velocidad del Flujo Sanguíneo , Circulación Cerebrovascular , Humanos
12.
Eur J Nutr ; 60(1): 1-28, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32303823

RESUMEN

PURPOSE: Red wine polyphenols (RWP) are plant-based molecules that have been extensively studied in relation to their protective effects on vascular health in both animals and humans. The aim of this review was to quantify and compare the efficacy of RWP and pure resveratrol on outcomes measures of vascular health and function in both animals and humans. METHODS: Comprehensive database searches were carried out through PubMed, Web of Science and OVID for randomised, placebo-controlled studies in both animals and humans. Meta-analyses were carried out on acute and chronic studies of RWP in humans, alongside sub-group analysis where possible. Risk-of-bias assessment was carried out for all included studies based on randomisation, allocation, blinding, outcome data reporting, and other biases. RESULTS: 48 animal and 37 human studies were included in data extraction following screening. Significant improvements in measures of blood pressure and vascular function following RWP were seen in 84% and 100% of animal studies, respectively. Human studies indicated significant improvements in systolic blood pressure overall (- 2.6 mmHg, 95% CI: [- 4.8, - 0.4]), with a greater improvement in pure-resveratrol studies alone (- 3.7 mmHg, 95% CI: [- 7.3, - 0.0]). No significant effects of RWP were seen in diastolic blood pressure or flow-mediated dilation (FMD) of the brachial artery. CONCLUSION: RWP have the potential to improve vascular health in at risk human populations, particularly in regard to lowering systolic blood pressure; however, such benefits are not as prevalent as those observed in animal models.


Asunto(s)
Vitis , Vino , Animales , Presión Sanguínea , Humanos , Polifenoles/farmacología , Resveratrol
13.
Eur J Appl Physiol ; 121(2): 621-635, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33211153

RESUMEN

PURPOSE: This study investigated whether intermittent post-exercise sauna bathing across three-weeks endurance training improves exercise heat tolerance and exercise performance markers in temperate conditions, compared to endurance training alone. The subsidiary aim was to determine whether exercise-heat tolerance would further improve following 7-Weeks post-exercise sauna bathing. METHODS: Twenty middle-distance runners (13 female; mean ± SD, age 20 ± 2 years, [Formula: see text]O2max 56.1 ± 8.7 ml kg-1 min-1) performed a running heat tolerance test (30-min, 9 km h-1/2% gradient, 40 °C/40%RH; HTT) and temperate (18 °C) exercise tests (maximal aerobic capacity [[Formula: see text]O2max], speed at 4 mmol L-1 blood lactate concentration ([La-]) before (Pre) and following three-weeks (3-Weeks) normal training (CON; n = 8) or normal training with 28 ± 2 min post-exercise sauna bathing (101-108 °C, 5-10%RH) 3 ± 1 times per week (SAUNA; n = 12). Changes from Pre to 3-Weeks were compared between-groups using an analysis of co-variance. Six SAUNA participants continued the intervention for 7 weeks, completing an additional HTT (7-Weeks; data compared using a one-way repeated-measures analysis of variance). RESULTS: During the HTT, SAUNA reduced peak rectal temperature (Trec; - 0.2 °C), skin temperature (- 0.8 °C), and heart rate (- 11 beats min-1) more than CON at 3-Weeks compared to Pre (all p < 0.05). SAUNA also improved [Formula: see text]O2max (+ 0.27 L-1 min-1; p = 0.02) and speed at 4 mmol L-1 [La-] (+ 0.6 km h-1; p = 0.01) more than CON at 3-Weeks compared to Pre. Only peak Trec (- 0.1 °C; p = 0.03 decreased further from 3-Weeks to 7-Weeks in SAUNA (other physiological variables p > 0.05). CONCLUSIONS: Three-weeks post-exercise sauna bathing is an effective and pragmatic method of heat acclimation, and an effective ergogenic aid. Extending the intervention to seven weeks only marginally improved Trec.


Asunto(s)
Tolerancia al Ejercicio/fisiología , Ejercicio Físico/fisiología , Resistencia Física/fisiología , Carrera/fisiología , Aclimatación/fisiología , Adulto , Rendimiento Atlético/fisiología , Baños/métodos , Regulación de la Temperatura Corporal/fisiología , Prueba de Esfuerzo/métodos , Femenino , Frecuencia Cardíaca/fisiología , Calor , Humanos , Masculino , Temperatura Cutánea/fisiología , Baño de Vapor/métodos , Termotolerancia/fisiología , Adulto Joven
14.
J Physiol ; 598(8): 1459-1473, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31912506

RESUMEN

KEY POINTS: Aerobic exercise elicits increases in cerebral blood flow (CBF), as well as core body temperature; however, the isolated influence of temperature on CBF regulation during exercise has not been investigated The present study assessed CBF regulation and neurovascular coupling during submaximal cycling exercise and temperature-matched passive heat stress during isocapnia (i.e. end-tidal PCO2 was held constant) Submaximal cycling exercise and temperature-matched passive heat stress provoked ∼16% increases in vertebral artery blood flow, independent of changes in end-tidal PCO2 and blood pressure External carotid artery blood flow increased by ∼43% during both exercise and passive heat stress, with no change in internal carotid artery blood flow Neurovascular coupling (i.e. the relationship between local increases in cerebral metabolism and appropriately matched increases in regional cerebral blood flow) is preserved during both exercise and temperature-matched passive heat stress ABSTRACT: Acute moderate-intensity exercise increases core temperature (Tc ; +0.7-0.8°C); however, such exercise increases cerebral blood flow (CBF; +10-20%) mediated via small elevations in arterial PCO2 and metabolism. The present study aimed to isolate the role of Tc from PCO2 on CBF regulation during submaximal exercise. Healthy adults (n = 11; 10 males/one female; 26 ± 4 years) participated in two interventions each separated by ≥48 h: (i) 60 min of semi-recumbent cycling (EX; 50% workload max) and (ii) 75 min of passive heat stress (HS; 49°C water-perfused suit) to match the exercise-induced increases in Tc (EX: Δ0.75 ± 0.33°C vs. HS: Δ0.77 ± 0.33°C, P = 0.855). Blood flow (Q) in the internal and external carotid arteries (ICA and ECA, respectively) and vertebral artery (VA) (Duplex ultrasound) was measured. End-tidal PCO2 and PO2 were effectively clamped to resting values within each condition. The QICA was unchanged with EX and HS interventions (P = 0.665), consistent with the unchanged end-tidal PCO2 (P = 0.327); whereas, QVA was higher throughout both EX and HS (EX: Δ16 ± 21% vs. HS: Δ16 ± 23%, time effect: P = 0.006) with no between condition differences (P = 0.785). These increases in QVA contributed to higher global CBF throughout both EX and HS (EX: Δ12 ± 20% vs. HS: Δ14 ± 14%, time effect: P = 0.029; condition effect: P = 0.869). The QECA increased throughout both EX and HS (EX: Δ42 ± 58% vs. HS: Δ53 ± 28%, time effect: P < 0.001; condition effect: P = 0.628). Including blood pressure as a covariate did not alter these CBF findings (all P > 0.05). Overall, these data provide new evidence for temperature-mediated elevations in posterior CBF during exercise that are independent of changes in PCO2 and blood pressure.


Asunto(s)
Dióxido de Carbono , Circulación Cerebrovascular , Adulto , Velocidad del Flujo Sanguíneo , Ejercicio Físico , Femenino , Humanos , Masculino , Flujo Sanguíneo Regional , Temperatura
15.
J Physiol ; 598(13): 2513-2530, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32347544

RESUMEN

The increasing number of older adults has seen a corresponding growth in those affected by neurovascular diseases, including stroke and dementia. Since cures are currently unavailable, major efforts in improving brain health need to focus on prevention, with emphasis on modifiable risk factors such as promoting physical activity. Moderate-intensity continuous training (MICT) paradigms have been shown to confer vascular benefits translating into improved musculoskeletal, cardiopulmonary and cerebrovascular function. However, the time commitment associated with MICT is a potential barrier to participation, and high-intensity interval training (HIIT) has since emerged as a more time-efficient mode of exercise that can promote similar if not indeed superior improvements in cardiorespiratory fitness for a given training volume and further promote vascular adaptation. However, randomised controlled trials (RCTs) investigating the impact of HIIT on the brain are surprisingly limited. The present review outlines how the HIIT paradigm has evolved from a historical perspective and describes the established physiological changes including its mechanistic bases. Given the dearth of RCTs, the vascular benefits of MICT are discussed with a focus on the translational neuroprotective benefits including their mechanistic bases that could be further potentiated through HIIT. Safety implications are highlighted and components of an optimal HIIT intervention are discussed including practical recommendations. Finally, statistical effect sizes have been calculated to allow prospective research to be appropriately powered and optimise the potential for detecting treatment effects. Future RCTs that focus on the potential clinical benefits of HIIT are encouraged given the prevalence of cognitive decline in an ever-ageing population.


Asunto(s)
Capacidad Cardiovascular , Entrenamiento de Intervalos de Alta Intensidad , Encéfalo , Ejercicio Físico
16.
Exp Physiol ; 105(5): 893-903, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32083357

RESUMEN

NEW FINDINGS: What is the central question of this study? Cerebrovascular reactivity (CVR) is a common functional test to assess brain health, and impaired CVR has been associated with all-cause cardiovascular mortality: does the duration of the CO2 stimulus and the time point used for data extraction alter the CVR outcome measure? What is the main finding and its importance? This study demonstrated CVR measures calculated from 1 and 2 min CO2 stimulus durations were significantly higher than CVR calculated from a 4 min CO2 stimulus. CVRs calculated from the first 2 min of the CO2 stimulus were significantly higher than CVR values calculated from the final minute if the duration was ≥4 min. This study highlights the need for consistent methodological approaches. ABSTRACT: Cerebrovascular reactivity to carbon dioxide (CVR) is a common functional test to assess brain vascular health, though conflicting age and fitness effects have been reported. Studies have used different CO2 stimulus durations to induce CVR and extracted data from different time points for analysis. Therefore, this study examined whether these differences alter CVR and explain conflicting findings. Eighteen healthy volunteers (24 ± 5 years) inhaled CO2 for four stimulus durations (1, 2, 4 and 5 min) of 5% CO2 (in air) via the open-circuit Douglas bag method, in a randomized order. CVR data were derived from transcranial Doppler (TCD) measures of middle cerebral artery blood velocity (MCAv), with concurrent ventilatory sensitivity to the CO2 stimulus ( V̇E,CO2 ). Repeated measures ANOVAs compared CVR and V̇E,CO2 measures between stimulus durations and steady-state time points. An effect of stimulus duration was observed (P = 0.002, η² = 0.140), with 1 min (P = 0.010) and 2 min (P < 0.001) differing from 4 min, and 2 min differing from 5 min (P = 0.019) durations. V̇E,CO2 sensitivity increased ∼3-fold from 1 min to 4 and 5 min durations (P < 0.001, η² = 0.485). CVRs calculated from different steady-state time points within each stimulus duration were different (P < 0.001, η² = 0.454), specifically for 4 min (P = 0.001) and 5 min (P < 0.001), but not 2 min stimulus durations (P = 0.273). These findings demonstrate that methodological differences alter the CVR measure.


Asunto(s)
Velocidad del Flujo Sanguíneo , Dióxido de Carbono/sangre , Circulación Cerebrovascular , Adulto , Humanos , Arteria Cerebral Media , Ultrasonografía Doppler Transcraneal , Adulto Joven
17.
Eur J Appl Physiol ; 120(7): 1637-1649, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32476054

RESUMEN

PURPOSE: Cognition, cerebral blood flow (CBF) and its major regulator (i.e., arterial CO2), increase with submaximal exercise and decline with severe exercise. These responses may depend on fitness. We investigated whether exercise-related changes in cognition are mediated in part by concomitant changes in CBF and CO2, in ten active (26 ± 3 years) and ten inactive (24 ± 6 years) healthy adults. METHODS: Participants completed two randomised sessions; exercise and a resting CO2-control-wherein end-tidal CO2 (PETCO2) was matched between sessions and clamped across conditions at exercise-associated increases (+ 3 mmHg) and hypercapnia (+ 10 mmHg). Exercise comprised inclined walking at submaximal and severe intensities. CBF was indexed using right middle cerebral artery blood velocity (MCAv). Cognition (visuomotor, switching and inhibitory response time) was measured before, during, and after exercise. RESULTS: MCAv and its inverted-U response to exercise were comparable between groups, whereas visuomotor performance improved during submaximal exercise in the active group only (p = 0.046). Submaximal, but not severe (p = 0.33), exercise increased MCAv (p ≤ 0.03). Hypercapnia increased MCAv during the CO2-control (27 ± 12%) and during submaximal exercise (39 ± 17%; p < 0.01). Despite the acute increases in MCAv, cognition was impaired during both levels of increased PETCO2 (3-6%; p ≤ 0.04), regardless of session. Overall, resting or exercise-related changes in PETCO2 and MCAv did not associate with changes in cognition (r ≤ 0.29 ± 0.34). Fitness ([Formula: see text]O2MAX) was associated with baseline cognition (r ≥ 0.50). CONCLUSION: Acute increases in PETCO2 and MCAv were not associated with improved cognition. In fact, cognitive performance was impaired at both levels of increased PETCO2, regardless of session. Finally, fitter people were found to have better cognition.


Asunto(s)
Dióxido de Carbono/metabolismo , Circulación Cerebrovascular/fisiología , Ejercicio Físico/fisiología , Consumo de Oxígeno/fisiología , Adulto , Velocidad del Flujo Sanguíneo/fisiología , Presión Sanguínea/fisiología , Cognición/fisiología , Femenino , Humanos , Masculino , Arteria Cerebral Media/fisiología
18.
Exp Physiol ; 104(10): 1482-1493, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31342596

RESUMEN

NEW FINDINGS: What is the central question of this study? What are the independent effects of hypoxia and hypocapnia on cerebral haemodynamics and cognitive function? What is the main finding and its importance? Exposure to hyperventilation-induced hypocapnia causes cognitive impairment in both normoxia and hypoxia. In addition, supplementation of carbon dioxide during hypoxia alleviates the cognitive impairment and reverses hypocapnia-induced vasoconstriction of the cerebrovasculature. These data provide new evidence for the independent effect of hypocapnia on the cognitive impairment associated with hypoxia. ABSTRACT: Hypoxia, which is accompanied by hypocapnia at altitude, is associated with cognitive impairment. This study examined the independent effects of hypoxia and hypocapnia on cognitive function and assessed how changes in cerebral haemodynamics may underpin cognitive performance outcomes. Single reaction time (SRT), five-choice reaction time (CRT) and spatial working memory (SWM) tasks were completed in 20 participants at rest and after 1 h of isocapnic hypoxia (IH, end-tidal oxygen partial pressure ( PETO2 ) = 45 mmHg, end-tidal carbon dioxide partial pressure ( PETCO2 ) clamped at normal) and poikilocapnic hypoxia (PH, PETO2  = 45 mmHg, PETCO2 not clamped). A subgroup of 10 participants were also exposed to euoxic hypocapnia (EH, PETO2  = 100 mmHg, PETCO2 clamped 8 mmHg below normal). Middle cerebral artery velocity (MCAv) and prefrontal cerebral haemodynamics were measured with transcranial Doppler and near infrared spectroscopy, respectively. IH did not affect SRT and CRT performance from rest (566 ± 50 and 594 ± 70 ms), whereas PH (721 ± 51 and 765 ± 48 ms) and EH (718 ± 55 and 755 ± 34 ms) slowed response times (P < 0.001 vs. IH). Performance on the SWM task was not altered by condition. MCAv increased during IH compared to PH (P < 0.05), which was unchanged from rest. EH caused a significant fall in MCAv and prefrontal cerebral oxygenation (P < 0.05 vs. baseline). MCAv was moderately correlated to cognitive performance (R2  = 0.266-0.289), whereas prefrontal cerebral tissue perfusion and saturation were not (P > 0.05). These findings reveal a role of hyperventilation-induced hypocapnia per se on the development of cognitive impairment during normoxic and hypoxic exposures.


Asunto(s)
Circulación Cerebrovascular , Cognición , Hiperventilación/fisiopatología , Hiperventilación/psicología , Hipocapnia/fisiopatología , Hipocapnia/psicología , Hipoxia/fisiopatología , Hipoxia/psicología , Adolescente , Adulto , Dióxido de Carbono/sangre , Humanos , Masculino , Memoria a Corto Plazo , Arteria Cerebral Media/diagnóstico por imagen , Arteria Cerebral Media/fisiopatología , Oxígeno/sangre , Tiempo de Reacción , Percepción Espacial , Espectroscopía Infrarroja Corta , Ultrasonografía Doppler , Adulto Joven
19.
Exp Physiol ; 104(11): 1678-1687, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31465595

RESUMEN

NEW FINDINGS: What is the central question of the study? What are the effects of acute mental stress on the mechanisms regulating cerebral blood flow? What is the main finding and its importance? The major new findings are as follows: (i) high mental stress and hypercapnia had an interactive effect on mean middle cerebral artery blood velocity; (ii) high mental stress altered the regulation of cerebral blood flow; (iii) the increased cerebrovascular hypercapnic reactivity was not driven by changes in mean arterial pressure alone; and (iv) this increased perfusion with mental stress appeared not to be justified functionally by an increase in oxygen demand (as determined by near-infrared spectroscopy-derived measures). ABSTRACT: In this study, we examined the effects of acute mental stress on cerebrovascular function. Sixteen participants (aged 23 ± 4 years; five female) were exposed to low and high mental stress using simple arithmetic (counting backwards from 1000) and more complex arithmetic (serial subtraction of 13 from a rapidly changing four-digit number), respectively. During consecutive conditions of baseline, low stress and high stress, end-tidal partial pressure of CO2 ( PET,CO2 ) was recorded at normocapnia (37 ± 3 mmHg) and clamped at two elevated levels (P < 0.01): 41 ± 1 and 46 ± 1 mmHg. Mean right middle cerebral artery blood velocity (MCAvmean ; transcranial Doppler ultrasound), right prefrontal cortex haemodynamics (near-infrared spectroscopy) and mean arterial blood pressure (MAP; finger photoplethysmography) were measured continuously. Cerebrovascular hypercapnic reactivity (ΔMCAvmean /Δ PET,CO2 ), cerebrovascular conductance (CVC; MCAvmean /MAP), CVC CO2 reactivity (ΔCVC/Δ PET,CO2 ) and total peripheral resistance (MAP/cardiac output) were calculated. Acute high mental stress increased MCAvmean by 7 ± 7%, and more so at higher PET,CO2 (32 ± 10%; interaction, P = 0.03), illustrating increased sensitivity to CO2 (i.e. its major regulator). High mental stress also increased MAP (17 ± 9%; P ≤ 0.01), coinciding with increased near-infrared spectroscopy-derived prefrontal haemoglobin volume and saturation measures. High mental stress elevated both cerebrovascular hypercapnic and conductance reactivities (main effect of stress, P ≤ 0.04). These findings indicate that the cerebrovascular response to acute high mental stress results in a coordinated regulation between multiple processes.


Asunto(s)
Presión Sanguínea/fisiología , Circulación Cerebrovascular/fisiología , Hipercapnia/fisiopatología , Arteria Cerebral Media/fisiología , Estrés Fisiológico/fisiología , Adulto , Velocidad del Flujo Sanguíneo/fisiología , Dióxido de Carbono/metabolismo , Gasto Cardíaco/fisiología , Femenino , Hemodinámica/fisiología , Humanos , Hipercapnia/metabolismo , Masculino , Arteria Cerebral Media/metabolismo , Presión Parcial , Adulto Joven
20.
Exp Physiol ; 104(12): 1780-1789, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31549452

RESUMEN

NEW FINDINGS: What is the central question of this study? Does habitual resistance and endurance exercise modify dynamic cerebral autoregulation? What is the main finding and its importance? To the authors' knowledge, this is the first study to directly assess dynamic cerebral autoregulation in resistance-trained individuals, and potential differences between exercise training modalities. Forced oscillations in blood pressure were induced by repeated squat-stands, from which dynamic cerebral autoregulation was assessed using transfer function analysis. These data indicate that dynamic cerebral autoregulatory function is largely unaffected by habitual exercise type, and further document the systemic circulatory effects of regular exercise. ABSTRACT: Regular endurance and resistance exercise produce differential but desirable physiological adaptations in both healthy and clinical populations. The chronic effect of these different exercise modalities on cerebral vessels' ability to respond to rapid changes in blood pressure (BP) had not been examined. We examined dynamic cerebral autoregulation (dCA) in 12 resistance-trained (mean ± SD, 25 ± 6 years), 12 endurance-trained (28 ± 9 years) and 12 sedentary (26 ± 6 years) volunteers. The dCA was assessed using transfer function analysis of forced oscillations in BP vs. middle cerebral artery blood velocity (MCAv), induced via repeated squat-stands at 0.05 and 0.10 Hz. Resting BP and MCAv were similar between groups (interaction: both P ≥ 0.544). The partial pressure of end-tidal carbon dioxide ( PETCO2 ) was unchanged (P = 0.561) across squat-stand manoeuvres (grouped mean for absolute change +0.6 ± 2.3 mmHg). Gain and normalized gain were similar between groups across all frequencies (both P ≥ 0.261). Phase showed a frequency-specific effect between groups (P = 0.043), tending to be lower in resistance-trained (0.63 ± 0.21 radians) than in endurance-trained (0.90 ± 0.41, P = 0.052) and -untrained (0.85 ± 0.38, P = 0.081) groups at slower frequency (0.05 Hz) oscillations. Squat-stands induced mean arterial pressure perturbations differed between groups (interaction: P = 0.031), with greater changes in the resistance (P < 0.001) and endurance (P = 0.001) groups compared with the sedentary group at 0.05 Hz (56 ± 13 and 49 ± 11 vs. 35 ± 11 mmHg, respectively). The differences persisted at 0.1 Hz between resistance and sedentary groups (49 ± 12 vs. 33 ± 7 mmHg, P < 0.001). These results indicate that dCA remains largely unaltered by habitual endurance and resistance exercise with a trend for phase to be lower in the resistance exercise group at lower fequencies.


Asunto(s)
Encéfalo/fisiología , Circulación Cerebrovascular/fisiología , Hábitos , Homeostasis/fisiología , Resistencia Física/fisiología , Entrenamiento de Fuerza/métodos , Adulto , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Estudios de Cohortes , Femenino , Humanos , Masculino , Entrenamiento de Fuerza/tendencias , Ultrasonografía Doppler/métodos , Ultrasonografía Doppler/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA