Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 96(2): e0087621, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34705561

RESUMEN

Broad tissue tropism of cytomegaloviruses (CMVs) is facilitated by different glycoprotein entry complexes, which are conserved between human CMV (HCMV) and murine CMV (MCMV). Among the wide array of cell types susceptible to the infection, mononuclear phagocytes (MNPs) play a unique role in the pathogenesis of the infection as they contribute both to the virus spread and immune control. CMVs have dedicated numerous genes for the efficient infection and evasion of macrophages and dendritic cells. In this study, we have characterized the properties and function of M116, a previously poorly described but highly transcribed MCMV gene region that encodes M116.1p, a novel protein necessary for the efficient infection of MNPs and viral spread in vivo. Our study further revealed that M116.1p shares similarities with its positional homologs in HCMV and RCMV, UL116 and R116, respectively, such as late kinetics of expression, N-glycosylation, localization to the virion assembly compartment, and interaction with gH-a member of the CMVs fusion complex. This study, therefore, expands our knowledge about virally encoded glycoproteins that play important roles in viral infectivity and tropism. IMPORTANCE Human cytomegalovirus (HCMV) is a species-specific herpesvirus that causes severe disease in immunocompromised individuals and immunologically immature neonates. Murine cytomegalovirus (MCMV) is biologically similar to HCMV, and it serves as a widely used model for studying the infection, pathogenesis, and immune responses to HCMV. In our previous work, we have identified the M116 ORF as one of the most extensively transcribed regions of the MCMV genome without an assigned function. This study shows that the M116 locus codes for a novel protein, M116.1p, which shares similarities with UL116 and R116 in HCMV and RCMV, respectively, and is required for the efficient infection of mononuclear phagocytes and virus spread in vivo. Furthermore, this study establishes the α-M116 monoclonal antibody and MCMV mutants lacking M116, generated in this work, as valuable tools for studying the role of macrophages and dendritic cells in limiting CMV infection following different MCMV administration routes.


Asunto(s)
Sistema Mononuclear Fagocítico/virología , Muromegalovirus/fisiología , Proteínas del Envoltorio Viral/metabolismo , Animales , Fibroblastos/metabolismo , Fibroblastos/virología , Glicosilación , Infecciones por Herpesviridae/virología , Glicoproteínas de Membrana/metabolismo , Ratones , Sistema Mononuclear Fagocítico/metabolismo , Transcripción Genética , Proteínas del Envoltorio Viral/genética , Virión/metabolismo , Ensamble de Virus , Internalización del Virus , Replicación Viral
2.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36077391

RESUMEN

Beta-herpesvirus infection completely reorganizes the membrane system of the cell. This system is maintained by the spatiotemporal arrangement of more than 3000 cellular proteins that continuously adapt the configuration of membrane organelles according to cellular needs. Beta-herpesvirus infection establishes a new configuration known as the assembly compartment (AC). The AC membranes are loaded with virus-encoded proteins during the long replication cycle and used for the final envelopment of the newly formed capsids to form infectious virions. The identity of the envelopment membranes is still largely unknown. Electron microscopy and immunofluorescence studies suggest that the envelopment occurs as a membrane wrapping around the capsids, similar to the growth of phagophores, in the area of the AC with the membrane identities of early/recycling endosomes and the trans-Golgi network. During wrapping, host cell proteins that define the identity and shape of these membranes are captured along with the capsids and incorporated into the virions as host cell signatures. In this report, we reviewed the existing information on host cell signatures in human cytomegalovirus (HCMV) virions. We analyzed the published proteomes of the HCMV virion preparations that identified a large number of host cell proteins. Virion purification methods are not yet advanced enough to separate all of the components of the rich extracellular material, including the large amounts of non-vesicular extracellular particles (NVEPs). Therefore, we used the proteomic data from large and small extracellular vesicles (lEVs and sEVs) and NVEPs to filter out the host cell proteins identified in the viral proteomes. Using these filters, we were able to narrow down the analysis of the host cell signatures within the virions and determine that envelopment likely occurs at the membranes derived from the tubular recycling endosomes. Many of these signatures were also found at the autophagosomes, suggesting that the CMV-infected cell forms membrane organelles with phagophore growth properties using early endosomal host cell machinery that coordinates endosomal recycling.


Asunto(s)
Herpes Simple , Ensamble de Virus , Citomegalovirus , Humanos , Proteoma , Proteómica , Proteínas Virales , Virión
3.
J Cell Physiol ; 232(3): 463-476, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27458974

RESUMEN

In this report, we present an analysis of several recycling protocols based on labeling of membrane proteins with specific monoclonal antibodies (mAbs). We analyzed recycling of membrane proteins that are internalized by clathrin-dependent endocytosis, represented by the transferrin receptor, and by clathrin-independent endocytosis, represented by the Major Histocompatibility Class I molecules. Cell surface membrane proteins were labeled with mAbs and recycling of mAb:protein complexes was determined by several approaches. Our study demonstrates that direct and indirect detection of recycled mAb:protein complexes at the cell surface underestimate the recycling pool, especially for clathrin-dependent membrane proteins that are rapidly reinternalized after recycling. Recycling protocols based on the capture of recycled mAb:protein complexes require the use of the Alexa Fluor 488 conjugated secondary antibodies or FITC-conjugated secondary antibodies in combination with inhibitors of endosomal acidification and degradation. Finally, protocols based on the capture of recycled proteins that are labeled with Alexa Fluor 488 conjugated primary antibodies and quenching of fluorescence by the anti-Alexa Fluor 488 displayed the same quantitative assessment of recycling as the antibody-capture protocols. J. Cell. Physiol. 232: 463-476, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Bioensayo/métodos , Endocitosis , Proteínas de la Membrana/metabolismo , Bleomicina/farmacología , Agregación Celular/efectos de los fármacos , Agregación Celular/efectos de la radiación , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Forma de la Célula/efectos de los fármacos , Forma de la Célula/efectos de la radiación , Cisplatino/farmacología , Relación Dosis-Respuesta a Droga , Endocitosis/efectos de los fármacos , Endocitosis/efectos de la radiación , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Concentración 50 Inhibidora , Oxazinas/metabolismo , Rayos Ultravioleta , Xantenos/metabolismo
4.
J Cell Physiol ; 232(4): 872-887, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27438986

RESUMEN

With an increasing number of endosomal cargo molecules studied, it is becoming clear that endocytic routes are diverse, and the cell uses more pathways to adjust expression of cell surface proteins. Intracellular itinerary of integral membrane proteins that avoid the early endosomal recycling route is not enough studied. Therefore, we studied endocytic trafficking of empty Ld (eLd ) molecules, an open form of murine MHC-I allele, in fibroblast-like cells. Pulse labeling of cell surface eLd with mAbs and internalization kinetics suggest two steps of endosomal recycling: rapid and late. The same kinetics was also observed for human open MHC-I conformers. Kinetic modeling, using in-house developed software for multicompartment analysis, colocalization studies and established protocols for enriched labeling of the late endosomal (LE) pool of eLd demonstrated that the late step of recycling occurs from an LE compartment. Although the majority of eLd distributed into pre-degradative multivesicular bodies (MVBs), these LE subsets were not a source for eLd recycling. The LE recycling of eLd did not require Rab7 membrane domains, as demonstrated by Rab7-silencing, but required vectorial LE motility, suggesting that LE recycling occurs from dynamic tubulovesicular LE domains prior segregation of eLd in MVBs. Thus, our study indicates that LE system should not be simply considered as a feeder for loading of the degradative tract of the cell but also as a feeder for loading of the plasma membrane and thereby contribute to the maintenance of homeostasis of plasma membrane proteins. J. Cell. Physiol. 232: 872-887, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Endocitosis , Endosomas/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Células 3T3 , Animales , Brefeldino A/farmacología , Compartimento Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Simulación por Computador , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Células HeLa , Humanos , Cinética , Ratones , Vías Secretoras/efectos de los fármacos , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
5.
Viruses ; 15(3)2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36992475

RESUMEN

Extensive reorganization of infected cells and the formation of large structures known as the nuclear replication compartment (RC) and cytoplasmic assembly compartment (AC) is a hallmark of beta-herpesvirus infection. These restructurings rely on extensive compartmentalization of the processes that make up the virus manufacturing chain. Compartmentalization of the nuclear processes during murine cytomegalovirus (MCMV) infection is not well described. In this study, we visualized five viral proteins (pIE1, pE1, pM25, pm48.2, and pM57) and replicated viral DNA to reveal the nuclear events during MCMV infection. As expected, these events can be matched with those described for other beta and alpha herpesviruses and contribute to the overall picture of herpesvirus assembly. Imaging showed that four viral proteins (pE1, pM25, pm48.2, and pM57) and replicated viral DNA condense in the nucleus into membraneless assemblies (MLAs) that undergo a maturation sequence to form the RC. One of these proteins (pM25), which is also expressed in a cytoplasmic form (pM25l), showed similar MLAs in the AC. Bioinformatics tools for predicting biomolecular condensates showed that four of the five proteins had a high propensity for liquid-liquid phase separation (LLPS), suggesting that LLPS may be a mechanism for compartmentalization within RC and AC. Examination of the physical properties of MLAs formed during the early phase of infection by 1,6-hexanediol treatment in vivo revealed liquid-like properties of pE1 MLAs and more solid-like properties of pM25 MLAs, indicating heterogeneity of mechanisms in the formation of virus-induced MLAs. Analysis of the five viral proteins and replicated viral DNA shows that the maturation sequence of RC and AC is not completed in many cells, suggesting that virus production and release is carried out by a rather limited number of cells. This study thus lays the groundwork for further investigation of the replication cycle of beta-herpesviruses, and the results should be incorporated into plans for high-throughput and single-cell analytic approaches.


Asunto(s)
Infecciones por Citomegalovirus , Muromegalovirus , Virus , Animales , Ratones , Muromegalovirus/metabolismo , ADN Viral/genética , Núcleo Celular/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virus/metabolismo
6.
J Cell Physiol ; 227(7): 2953-64, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21959869

RESUMEN

Major histocompatibility class I (MHC-I) molecules are present at the cell surface both as fully conformed trimolecular complexes composed of heavy chain (HC), beta-2-microglobulin (ß2m) and peptide, and various open forms, devoid of peptide and/or ß2m (open MHC-I conformers). Fully conformed MHC-I complexes and open MHC-I conformers can be distinguished by well characterized monoclonal antibody reagents that recognize their conformational difference in the extracellular domain. In the present study, we used these tools in order to test whether conformational difference in the extracellular domain determines endocytic and endosomal route of plasma membrane (PM) proteins. We analyzed PM localization, internalization, endosomal trafficking, and recycling of human and murine MHC-I proteins on various cell lines. We have shown that fully conformed MHC-I and open MHC-I conformers segregate at the PM and during endosomal trafficking resulting in the exclusion of open MHC-I conformers from the recycling route. This segregation is associated with their partitioning into the membranes of different compositions. As a result, the open MHC-I conformers internalized with higher rate than fully conformed counterparts. Thus, our data suggest the existence of conformation-based protein sorting mechanism in the endosomal system.


Asunto(s)
Endosomas/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Células 3T3 BALB , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Endocitosis/fisiología , Células HeLa , Humanos , Ratones , Conformación Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas
7.
Cells ; 11(6)2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35326413

RESUMEN

Phosphatidylinositol-3-phosphate (PI3P), a major identity tag of early endosomes (EEs), provides a platform for the recruitment of numerous cellular proteins containing an FYVE or PX domain that is required for PI3P-dependent maturation of EEs. Most of the PI3P in EEs is generated by the activity of Vps34, a catalytic component of class III phosphatidylinositol-3-phosphate kinase (PI3Ks) complex. In this study, we analyzed the role of Vps34-derived PI3P in the EE recycling circuit of unperturbed cells using VPS34-IN1 (IN1), a highly specific inhibitor of Vps34. IN1-mediated PI3P depletion resulted in the rapid dissociation of recombinant FYVE- and PX-containing PI3P-binding modules and endogenous PI3P-binding proteins, including EEA1 and EE sorting nexins. IN1 treatment triggered the rapid restructuring of EEs into a PI3P-independent functional configuration, and after IN1 washout, EEs were rapidly restored to a PI3P-dependent functional configuration. Analysis of the PI3P-independent configuration showed that the Vps34-derived PI3P is not essential for the pre-EE-associated functions and the fast recycling loop of the EE recycling circuit but contributes to EE maturation toward the degradation circuit, as previously shown in Vps34 knockout and knockdown studies. However, our study shows that Vps34-derived PI3P is also essential for the establishment of the Rab11a-dependent pathway, including recycling cargo sorting in this pathway and membrane flux from EEs to the pericentriolar endosomal recycling compartment (ERC). Rab11a endosomes of PI3P-depleted cells expanded and vacuolized outside the pericentriolar area without the acquisition of internalized transferrin (Tf). These endosomes had high levels of FIP5 and low levels of FIP3, suggesting that their maturation was arrested before the acquisition of FIP3. Consequently, Tf-loaded-, Rab11a/FIP5-, and Rab8a-positive endosomes disappeared from the pericentriolar area, implying that PI3P-associated functions are essential for ERC biogenesis. ERC loss was rapidly reversed after IN1 washout, which coincided with the restoration of FIP3 recruitment to Rab11a-positive endosomes and their dynein-dependent migration to the cell center. Thus, our study shows that Vps34-derived PI3P is indispensable in the recycling circuit to maintain the slow recycling pathway and biogenesis of the ERC.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III , Endosomas , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Endosomas/metabolismo , Fosfatos/metabolismo , Transporte de Proteínas , Nexinas de Clasificación/metabolismo
8.
J Virol ; 84(21): 11101-12, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20719942

RESUMEN

Murine cytomegalovirus (MCMV) functions interfere with protein trafficking in the secretory pathway. In this report we used Δm138-MCMV, a recombinant virus with a deleted viral Fc receptor, to demonstrate that MCMV also perturbs endosomal trafficking in the early phase of infection. This perturbation had a striking impact on cell surface-resident major histocompatibility complex class I (MHC-I) molecules due to the complementary effect of MCMV immunoevasins, which block their egress from the secretory pathway. In infected cells, constitutively endocytosed cell surface-resident MHC-I molecules were arrested and retained in early endosomal antigen 1 (EEA1)-positive and lysobisphosphatidic acid (LBPA)-negative perinuclear endosomes together with clathrin-dependent cargo (transferrin receptor, Lamp1, and epidermal growth factor receptor). Their progression from these endosomes into recycling and degradative routes was inhibited. This arrest was associated with a reduction of the intracellular content of Rab7 and Rab11, small GTPases that are essential for the maturation of recycling and endolysosomal domains of early endosomes. The reduced recycling of MHC-I in Δm138-MCMV-infected cells was accompanied by their accelerated loss from the cell surface. The MCMV function that affects cell surface-resident MHC-I was activated in later stages of the early phase of viral replication, after the expression of known immunoevasins. MCMV without the three immunoevasins (the m04, m06, and m152 proteins) encoded a function that affects endosomal trafficking. This function, however, was not sufficient to reduce the cell surface expression of MHC-I in the absence of the transport block in the secretory pathway.


Asunto(s)
Endosomas/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Muromegalovirus/fisiología , Animales , Infecciones por Herpesviridae , Ratones , Mutación , Transporte de Proteínas , Receptores de Quimiocina , Factores de Tiempo , Replicación Viral
9.
Bioorg Med Chem Lett ; 21(20): 6161-5, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21911293

RESUMEN

Molecular modeling and phosphorylation assay in vitro were employed to select a novel unsaturated 1,3-dihydroxyisobutenyl thymine derivative 6 as ligand for HSV-1 TK which may be of interest as lead for the development of an positron emission tomography (PET) imaging agent. Compound 6 was successfully prepared using modified approaches. A significant improvement over the syntheses involving pathways A and B (1% and 3% overall yield, respectively), was observed using synthetic route C (14% overall yield).


Asunto(s)
Antivirales/química , Antivirales/farmacología , Herpes Simple/enzimología , Herpesvirus Humano 1/enzimología , Timidina Quinasa/metabolismo , Timina/análogos & derivados , Timina/farmacología , Línea Celular Tumoral , Herpes Simple/diagnóstico , Humanos , Modelos Moleculares , Fosforilación , Tomografía de Emisión de Positrones/métodos
10.
Life (Basel) ; 11(8)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34440611

RESUMEN

Shortly after entering the cells, cytomegaloviruses (CMVs) initiate massive reorganization of cellular endocytic and secretory pathways, which results in the forming of the cytoplasmic virion assembly compartment (AC). We have previously shown that the formation of AC in murine CMV- (MCMV) infected cells begins in the early phase of infection (at 4-6 hpi) with the pre-AC establishment. Pre-AC comprises membranes derived from the endosomal recycling compartment, early endosomes, and the trans-Golgi network, which is surrounded by fragmented Golgi cisterns. To explore the importance of Arf GTPases in the biogenesis of the pre-AC, we infected Balb 3T3 cells with MCMV and analyzed the expression and intracellular localization of Arf proteins in the early phases (up to 16 hpi) of infection and the development of pre-AC in cells with a knockdown of Arf protein expression by small interfering RNAs (siRNAs). Herein, we show that even in the early phase, MCMVs cause massive reorganization of the Arf system of the host cells and induce the over-recruitment of Arf proteins onto the membranes of pre-AC. Knockdown of Arf1, Arf3, Arf4, or Arf6 impaired the establishment of pre-AC. However, the knockdown of Arf1 and Arf6 also abolished the establishment of infection. Our study demonstrates that Arf GTPases are required for different steps of early cytomegalovirus infection, including the establishment of the pre-AC.

11.
Life (Basel) ; 11(9)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34575026

RESUMEN

Cytomegalovirus (CMV) infection initiates massive rearrangement of cytoplasmic organelles to generate assembly compartment (AC). The earliest events, the establishment of the preAC, are initiated in the early phase as an extensive reorganization of early endosomes (EEs), endosomal recycling compartment (ERC), trans-Golgi network (TGN), and the Golgi. Here, we demonstrate that dynamin inhibitors (Dynasore, Dyngo-4a, MiTMAB, and Dynole-34-2) block the establishment of the preAC in murine CMV (MCMV) infected cells. In this study, we extensively analyzed the effect of Dynasore on the Golgi reorganization sequence into the outer preAC. We also monitored the development of the inner preAC using a set of markers that define EEs (Rab5, Vps34, EEA1, and Hrs), the EE-ERC interface (Rab10), the ERC (Rab11, Arf6), three layers of the Golgi (GRASP65, GM130, Golgin97), and late endosomes (Lamp1). Dynasore inhibited the pericentriolar accumulation of all markers that display EE-ERC-TGN interface in the inner preAC and prevented Golgi unlinking and dislocation to the outer preAC. Furthermore, in pulse-chase experiments, we demonstrated that the presence of dynasore only during the early phase of MCMV infection (4-14 hpi) is sufficient to prevent not only AC formation but also the synthesis of late-phase proteins and virion production. Therefore, our results indicate that dynamin-2 acts as a part of the machinery required for AC generation and rearrangement of EE/ERC/Golgi membranes in the early phase of CMV infection.

12.
Life (Basel) ; 11(8)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34440603

RESUMEN

Murine cytomegalovirus (MCMV) initiates the stepwise establishment of the pre-assembly compartment (pre-AC) in the early phase of infection by the expansion of the early endosome (EE)/endosomal recycling compartment (ERC) interface and relocation of the Golgi complex. We depleted Vps34-derived phosphatidylinositol-3-phosphate (PI(3)P) at EEs by VPS34-IN1 and inhibited PI(3)P-associated functions by overexpression of 2xFYVE- and p40PX PI(3)P-binding modules to assess the role of PI(3)P-dependent EE domains in the pre-AC biogenesis. We monitored the accumulation of Rab10 and Evectin-2 in the inner pre-AC and the relocation of GM130-positive cis-Golgi organelles to the outer pre-AC by confocal microscopy. Although PI(3)P- and Vps34-positive endosomes build a substantial part of pre-AC, the PI(3)P depletion and the inhibition of PI(3)P-associated functions did not prevent the establishment of infection and progression through the early phase. The PI(3)P depletion in uninfected and MCMV-infected cells rapidly dispersed PI(3)P-bond proteins and reorganized EEs, including ablation of EE-to-ERC transport and relocation of Rab11 endosomes. The PI(3)P depletion one hour before pre-AC initiation and overexpression of 2xFYVE and p40PX domains neither prevented Rab10- and Evectin-2 accumulation, nor Golgi unlinking and relocation. These data demonstrate that PI(3)P-dependent functions, including the Rab11-dependent EE-to-ERC route, are dispensable for pre-AC initiation. Nevertheless, the virus growth was drastically reduced in PI(3)P-depleted cells, indicating that PI(3)P-associated functions are essential for the late phase of infection.

13.
Biomedicines ; 9(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073297

RESUMEN

Extracellular vesicles (EVs) are nanometric membranous structures secreted from almost every cell and present in biofluids. Because EV composition reflects the state of its parental tissue, EVs possess an enormous diagnostic/prognostic potential to reveal pathophysiological conditions. However, a prerequisite for such usage of EVs is their detailed characterisation, including visualisation which is mainly achieved by atomic force microscopy (AFM) and electron microscopy (EM). Here we summarise the EV preparation protocols for AFM and EM bringing out the main challenges in the imaging of EVs, both in their natural environment as biofluid constituents and in a saline solution after EV isolation. In addition, we discuss approaches for EV imaging and identify the potential benefits and disadvantages when different AFM and EM methods are applied, including numerous factors that influence the morphological characterisation, standardisation, or formation of artefacts. We also demonstrate the effects of some of these factors by using cerebrospinal fluid as an example of human biofluid with a simpler composition. Here presented comparison of approaches to EV imaging should help to estimate the current state in morphology research of EVs from human biofluids and to identify the most efficient pathways towards the standardisation of sample preparation and microscopy modes.

14.
Front Cell Dev Biol ; 8: 563607, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042998

RESUMEN

Beta-herpesviruses develop a unique structure within the infected cell known as an assembly compartment (AC). This structure, as large as the nucleus, is composed of host-cell-derived membranous elements. The biogenesis of the AC and its contribution to the final stages of beta-herpesvirus assembly are still unclear. In this study, we performed a spatial and temporal analysis of the AC in cells infected with murine CMV (MCMV), a member of the beta-herpesvirus family, using a panel of markers that characterize membranous organelle system. Out of 64 markers that were analyzed, 52 were cytosolic proteins that are recruited to membranes as components of membrane-shaping regulatory cascades. The analysis demonstrates that MCMV infection extensively reorganizes interface between early endosomes (EE), endosomal recycling compartment (ERC), and the trans-Golgi network (TGN), resulting in expansion of various EE-ERC-TGN intermediates that fill the broad area of the inner AC. These intermediates are displayed as over-recruitment of host-cell factors that control membrane flow at the EE-ERC-TGN interface. Most of the reorganization is accomplished in the early (E) phase of infection, indicating that the AC biogenesis is controlled by MCMV early genes. Although it is known that CMV infection affects the expression of a large number of host-cell factors that control membranous system, analysis of the host-cell transcriptome and protein expression in the E phase of infection demonstrated no sufficiently significant alteration in expression levels of analyzed markers. Thus, our study demonstrates that MCMV-encoded early phase function targets recruitment cascades of host cell-factors that control membranous flow at the EE-ERC-TGN interface in order to initiate the development of the AC.

15.
J Neurotrauma ; 36(2): 190-200, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29690821

RESUMEN

Extracellular vesicles (EVs) are membranous nanostructures that can indicate undergoing processes in organs and thus help in diagnostics and prognostics. They are secreted by all cells, contained in body fluids, and able to transfer proteins, lipids and nucleic acids to distant cells. Intracranial EVs were shown to change their composition after severe traumatic brain injury (TBI) and therefore to have biomarker potential to evaluate brain events. Properties of intracranial EVs early after TBI, however, have not been characterized. Here, we assessed cerebrospinal fluid (CSF) up to seven days after isolated severe TBI for physical properties of EVs and their proteins associated with neuroregeneration. These findings were compared with healthy controls and correlated to patient outcome. The study included 17 patients with TBI and 18 healthy controls. EVs in TBI-CSF were visualized by electron microscopy and confirmed by immunoblotting for membrane associated Flotillin-1 and Flotillin-2. Using nanoparticle tracking analysis, we detected the highest range in EV concentration at day 1 after injury and significantly increased EV size at days 4-7. CSF concentrations of neuroregeneration associated proteins Flotillin-1, ADP-ribosylation Factor 6 (Arf6), and Ras-related protein Rab7a (Rab7a) were monitored by enzyme-linked immunosorbent assays. Flotillin-1 was detected solely in TBI-CSF in about one third of tested patients. Unfavorable outcomes included decreasing Arf6 concentrations and a delayed Rab7a concentration increase in CSF. CSF concentrations of Arf6 and Rab7a were negatively correlated. Our data suggest that the brain response within several days after severe TBI includes shedding of EVs associated with neuroplasticity. Extended studies with a larger number of participants and CSF collected at shorter intervals are necessary to further evaluate neuroregeneration biomarker potential of Rab7a, Arf6, and Flotillin-1.


Asunto(s)
Biomarcadores/líquido cefalorraquídeo , Lesiones Traumáticas del Encéfalo/líquido cefalorraquídeo , Vesículas Extracelulares , Factor 6 de Ribosilación del ADP , Adulto , Anciano , Anciano de 80 o más Años , Lesiones Traumáticas del Encéfalo/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Regeneración Nerviosa/fisiología , Recuperación de la Función/fisiología , Adulto Joven
17.
Virology ; 515: 108-122, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29277005

RESUMEN

Cytomegaloviruses (CMVs) extensively rearrange the cellular membrane system to develop assembly compartment (AC), but the earliest events in this process are poorly characterized. Here, we demonstrate that murine CMV (MCMV) infection restrains endosomal trafficking of cargo molecules that travel along the recycling (TfR and MHC-I) and the late endosomal (EGFR, M6PR, Lamp1) circuit. Internalized cargo accumulates in Arf6-, Rab5-, Rab22A-, and Rab11-positive and Rab35-, Rab8-, and Rab10-negative juxtanuclear endosomes, suggesting the disruption of Arf/Rab regulatory cascade at the stage of sorting endosomes and the endosomal recycling compartment. Rearrangement of the endosomal system is initiated by an MCMV-encoded function very early in the infection. Our study, thus, establishes a set of landmarks of endosomal remodeling in the early phase of MCMV-infection which coincide with the Golgi rearrangement, suggesting that these perturbations are the earliest membrane reorganizations that may represent an initial step in the biogenesis of the AC.


Asunto(s)
Endosomas/metabolismo , Infecciones por Herpesviridae/virología , Muromegalovirus/fisiología , Proteínas de Unión al GTP rab/metabolismo , Animales , Células 3T3 BALB , Membrana Celular/metabolismo , Femenino , Aparato de Golgi/metabolismo , Ratones , Ratones Endogámicos BALB C , Transporte de Proteínas
18.
Front Cell Dev Biol ; 6: 165, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30564576

RESUMEN

Cytomegaloviruses (CMV) reorganize membranous system of the cell in order to develop a virion assembly compartment (VAC). The development starts in the early (E) phase of infection with the reorganization of the endosomal system and the Golgi and proceeds to the late phase until newly formed virions are assembled and released. The events in the E phase involve reorganization of the endosomal recycling compartment (ERC) in a series of cellular alterations that are mostly unknown. In this minireview, we discuss the effect of murine CMV infection on Rab proteins, master regulators of membrane trafficking pathways, which in the cascades with their GEFs and GAPs organize the flow of membranes through the ERC. Immunofluorescence analyzes of murine CMV infected cells suggest perturbations of Rab cascades that operate at the ERC. Analysis of cellular transcriptome in the course of both murine and human CMV infection demonstrates the alteration in expression of cellular genes whose products are known to build Rab cascades. These alterations, however, cannot explain perturbations of the ERC. Cellular proteome data available for human CMV infected cells suggests the potential role of RabGAP downregulation at the end of the E phase. However, the very early onset of the ERC alterations in the course of MCMV infection indicates that CMVs exploit Rab cascades to reorganize the ERC, which represents the earliest step in the sequential establishment of the cVAC.

19.
Cell Mol Immunol ; 12(2): 154-69, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25263490

RESUMEN

Cytomegaloviruses (CMVs), members of the herpesvirus family, have evolved a variety of mechanisms to evade the immune response to survive in infected hosts and to establish latent infection. They effectively hide infected cells from the effector mechanisms of adaptive immunity by eliminating cellular proteins (major histocompatibility Class I and Class II molecules) from the cell surface that display viral antigens to CD8 and CD4 T lymphocytes. CMVs also successfully escape recognition and elimination of infected cells by natural killer (NK) cells, effector cells of innate immunity, either by mimicking NK cell inhibitory ligands or by downregulating NK cell-activating ligands. To accomplish these immunoevasion functions, CMVs encode several proteins that function in the biosynthetic pathway by inhibiting the assembly and trafficking of cellular proteins that participate in immune recognition and thereby, block their appearance at the cell surface. However, elimination of these proteins from the cell surface can also be achieved by perturbation of their endosomal route and subsequent relocation from the cell surface into intracellular compartments. Namely, the physiological route of every cellular protein, including immune recognition molecules, is characterized by specific features that determine its residence time at the cell surface. In this review, we summarize the current understanding of endocytic trafficking of immune recognition molecules and perturbations of the endosomal system during infection with CMVs and other members of the herpesvirus family that contribute to their immune evasion mechanisms.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Endosomas/metabolismo , Evasión Inmune/inmunología , Animales , Transporte Biológico , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , Humanos
20.
Microbes Infect ; 5(13): 1263-77, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14623023

RESUMEN

Infection of mice with murine cytomegalovirus (MCMV) is an established model for studying human cytomegalovirus (HCMV) infection. Similarly to HCMV infection, pathological changes and disease manifestations during MCMV infection are mainly dependent on the immune status of the mouse host. This review focuses mainly on the pathogenesis of MCMV infection in immunocompetent and immunodeficient and/or immature mice and discusses the principles of immunosurveillance of infection and the mechanisms by which this virus evades immune control.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Citomegalovirus/patogenicidad , Animales , Citomegalovirus/aislamiento & purificación , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/etiología , Infecciones por Citomegalovirus/fisiopatología , Modelos Animales de Enfermedad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA